Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study offers an overview of how changing habits in consuming a cup of tea can contribute to make better environment. As the initial existing scenario, survey for picturing Indonesian consumers in preparing their cup of tea from dried leaves was conducted to urban and suburban citizens. According to the survey, both respondent groups were using LPG as the first choice in boiling water for preparing tea, followed by using an electric dispenser as the second choice. This habit causes CO2 emission from processing a cup of tea by Indonesian consumer was 24 g CO2-eq per cup of tea, excluding the tea organic waste. The portion of CO2 emission from boiling water in tea preparation was 41.93% of whole CO2 emission from plantation to served cup. The emission can be significantly reduced by converting dried tea (initial scenario) into the ready-to-drink product, in the form of powdered tea (second scenario) and boxed tea (third scenario). This study simulated an integrated system of tea product manufacturing system with biogas utilization produced from tea organic waste. Simulation conducted based on daily manufacturing process at the Gamboeng green tea factory. Additional required energies were simulated from the wood pellet, which is the best practice in the Gamboeng Tea factory. By shifting tea consuming habit from dried tea to powdered tea and/or boxed tea, the emission from a cup of tea can be reduced, with range of reduction varied from 8.87 g to 22.13 g CO2-eq per cup of tea. If the Gamboeng green tea daily production capacity of the factory is fully converted into powdered tea, the potency of CO2 emission reduction reaches 26.92 metric ton CO2. However, the factory should pay attention to providing the water for the manufacturing process. The required water was 45.23 m3 of drinking water if all dried tea converted to powdered tea. Moreover, 11.53 m3 of water is required as irrigation for the biogas process in converting all tea organic waste into biogas.
Go to article

Authors and Affiliations

Teuku Beuna Bardant
1
Arief Ameir Rahman Setiawan
2 5
Muthia Syafika Haq
3
Hafiizh Prasetia
5
Adhi Irianto Mastur
3
Sugeng Harianto
3
Agusta Samodra Putra
4 5
Anny Sulaswatty
1
Edi Iswanto Wiloso
5
Ryozo Noguchi
4

  1. Research Center for Chemistry, Indonesian Institute of Sciences (LIPI),Kawasan Puspiptek, Serpong, Tangerang Selatan, Indonesia
  2. Graduate School of Sciences and Engineering, University of Tsukuba, Tsukuba, Japan
  3. Research Institute for Tea and Cinchona, Mekarsari, Gambung, Bandung, Indonesia
  4. Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
  5. Research Center for Policy and Management of Science, Technology and Innovation,Indonesian Institute of Sciences (LIPI), Jl. Gatot Subroto 10, Jakarta Selatan, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The sound absorption property of polyurethane (PU) foams loaded with natural tea-leaf fibers and luffa cylindrica (LC) has been studied. The results show a significant improvement in the sound absorption property parallel to an increase in the amount of tea-leaf fibers (TLF). Using luffa-cylindrica as a filler material improves sound absorption properties of soft foam at all frequency ranges. Moreover, an increase in the thickness of the sample resulted in an improvement of the sound absorption property. It is pleasing to see that adding tea-leaf fibers and luffa-cylindrica to the polyurethane foam demonstrate a significant contribution to sound absorption properties of the material and it encourages using environmental friendly products as sound absorption material in further studies.

Go to article

Authors and Affiliations

Bülent Ekici
Aykut Kentli
Haluk Küçük
Download PDF Download RIS Download Bibtex

Abstract

The role of the tea commodity in the economy of Indonesia is quite strategic. Various types of microorganisms in nature have been known to increase the benefit of the root function, suppress disease, and accelerate plant growth. This study aimed to determine the potential of indigenous bacteria (Azoto II-1, Acinetobacter sp., bacteria Endo-5, bacteria Endo-65 and Endo-76) on the growth of tea plants and their potential in increasing resistance to blister blight disease. The test of microbes’ potential effect on growth and blister blight was conducted in Gambung, West Java in an experimental field using a randomized block design (RBD) with six treatments and each treatment was replicated four times. The composition of the treatments was: A) Endo-5; B) Endo-65; C) Endo-76; D) Azoto II-1; E) Acinetobacter sp.; and F) control (without microbes). Bacterial suspension was applied directly to the soil at a dose of 2 l · ha−1. The bacterial suspension was applied six times at 1 week intervals. The results of field observations indicated that the intensity of blister blight decreased in all treatments but did not significantly differ from the control. Meanwhile, the results of Acinetobacter sp. treatment in tea shoots was 17.26% higher than the control.

Go to article

Authors and Affiliations

Fani Fauziah
Mieke Rochimi Setiawati
Eko Pranoto
Dwi Ningsih Susilowati
Yati Rachmiati
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of tea tree (Melaleuca alternifolia) and wintergreen (Gaultheria procumbens) essential oils as well as their phytotoxic effects against two invasive species – Cortaderia selloana and Nicotiana glauca – were studied. Fifty-eight compounds accounting for 98.89–99.94% of the total commercial tea tree and wintergreen essential oils were identified by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Tea tree essential oil with terpinen- 4-ol (28.37 ± 0.05%) followed by 1,8-cineole (15.81 ± 0.06%), γ-terpinene (15.60 ± 0.03%), α-pinene (10.92 ± 0.08%) and α-terpinene (8.52 ± 0.01%) as the main compounds did not produce significant effects against seed germination and hypocotyl growth of N. glauca, but showed significant effects in seed germination inhibition of C. selloana (34.69%) as well as in hypocotyl (60.96%) and radicle (62.55%) growth, at the highest dose (1 μl ⋅ ml–1) assayed. High amounts of methyl salicylate (99.63 ± 0.02%) were found in G. procumbens essential oil with remarkable phytotoxic effects in C. seollana. Methyl salicylate inhibited seed germination (77.38%) and hypocotyl and radicle growth (96.38% and 96.65%, respectively) at the highest dose (1 μl ⋅ ml–1) assayed. Wintergreen essential oil constitutes an eco-friendly alternative to control the high capacity of invasiveness of C. selloana.

Go to article

Authors and Affiliations

María Dolores Ibáñez
María Amparo Blázquez

This page uses 'cookies'. Learn more