Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The topic of smart structures, their active control and implementation, is relatively new. Therefore, different approaches to the problem can be met. The present paper discusses variable aspects of the active control of structures. It explains the idea of smart systems, introduces different terms used in smart technique and defines the structural smartness. The author indicates differences between actively controlled structures and structural health monitoring systems and shows an example of an actively controlled smart footbridge. The analyses presented in the study concern tensegrity structures, which are prone to the structural control through self-stress state adjustment. The paper introduces examples of structural control performed on tensegrity modules and plates. An influence of several self-stress states on displacements is analyzed and a study concerning damage due to member loss is presented.

Go to article

Authors and Affiliations

A. Al Sabouni-Zawadzka
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to prove that the dynamic behavior of tensegrity grids can be controlled. This possibility is very important, especially for deployable structures. The impact the support conditions of the structure on the existence of the immanent characteristics, such as self-stress states and infinitesimal mechanisms, and consequently on the dynamic control, is analyzed. Grids built with the modified Quartex modules are considered. A geometrically non-linear model is used, implemented in an original program written in the Mathematica environment. The results confirm the feasibility of controlling tensegrity structures characterized by the presence of the infinitesimal mechanisms. In the case that the mechanisms do not exist, structures are insensitive to the change of the initial prestress level. The occurrence of mechanisms can be controlled by changing the support conditions of the structure. The obtained results make tensegrity a very promising structural concept, applicable in many areas when conventional solutions are insufficient.
Go to article

Authors and Affiliations

Paulina Obara
1
ORCID: ORCID
Justyna Tomasik
1
ORCID: ORCID

  1. Kielce University of Technology, al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present paper is dedicated to the analysis of deployable tensegrity columns. The main aim of this work is to present a technique, developed by combining the finite element (FE) analysis and the multibody dynamics (MBD) simulation, which enables precise and reliable simulations of deployable structures. While the finite element model of the column provides information on structural behavior in the deployed state, the dynamical modeling allows to analyze various deployment scenarios, choose active cables for the deployment and for the self-stress application, and to control distributions of internal forces during the assembly process. An example of a deployable column based on a popular tensegrity module – a 3-strut simplex – is presented. By analyzing the proposed column with the use of the developed method it is proven that the technique is suitable for complex simulations of deployable systems.

Go to article

Authors and Affiliations

Anna Al Sabouni-Zawadzka
ORCID: ORCID
Adam Zawadzki
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns steel domes with regard to the special structures named tensegrity. Tensegrities are characterized by the occurrence of self-stress states. Some of them are also characterized by the presence of infinitesimal mechanisms. The aim of this paper is to prove that only tensegrity domes with mechanisms are sensitive to the change of the level of initial prestress. Two tensegrity domes are considered. In addition, a standard single-layer dome is taken into account for comparison. The analysis is carried out in two stages. Firstly, the presence of the characteristic tensegrity features is examined (qualitative analysis). Next, the behavior under static external loads is studied (quantitative analysis). In particular, the influence of the initial prestress level on displacements, effort, and stiffness of the structure is analyzed. To evaluate this behavior, a geometrically non-linear model is used. The model is implemented in an original program written in the Mathematica environment. The analysis demonstrates that for a dome with mechanisms, the adjustment of pre-stressing forces influences the static properties. It has been found that the stiffness depends not only on the geometry and properties of the material but also on the initial prestress level and external load. In the case of the non-existence of mechanisms, structures are insensitive to the initial prestress level.
Go to article

Authors and Affiliations

Paulina Obara
1
ORCID: ORCID
Maryna Solovei
1
ORCID: ORCID
Justyna Tomasik
1
ORCID: ORCID

  1. Faculty of Civil Engineering and Architecture, Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper focuses on the static behavior of double-layered tensegrity grids. Due to the specific characteristics, like the self-stress states and infinitesimal mechanisms, tensegrities can be used as deployable structures. For such structures, the possibility of the control of the behavior is very important. The main purpose of the work is to prove that the control of tensegrity structures with mechanisms is possible. The stiffness of such structures is found to depend not only on the geometry and material properties, but also on the initial prestress level and external load. In the case, when mechanisms do not exist, structures are insensitive to the initial prestress. It is possible to control the occurrence of mechanisms by changing the support conditions of the structure. Grids built with modified Simplex modules are considered. Two-stage analysis is performed. Firstly, the presence of the characteristic tensegrity features is examined and then, on that basis, the structures are classified into one of two classes. Next, the influence of the level of initial prestress on the behavior of structures under static load is analyzed. To evaluate this behavior, a geometrically non-linear model is used.
Go to article

Authors and Affiliations

Justyna Tomasik
1
ORCID: ORCID
Paulina Obara
1
ORCID: ORCID

  1. Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

This page uses 'cookies'. Learn more