Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An understanding of the fundamental correlation between grain size and material damping is crucial for the successful development of structural components offering high strength and good mechanical energy absorption. With this regard, we fabricated aluminum sheets with grain sizes ranging from tens of microns down to 60 nm and investigated their tensile properties and mechanical damping behavior. An obvious transition of the damping mechanism was observed at nanoscale grain sizes, and the underlying causes by grain boundaries were interpreted.

Go to article

Authors and Affiliations

Haneul Jang
Kwangmin Choi
Jaehyuck Shin
Donghyun Bae
Hyunjoo Choi
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of the coiling temperature on the tensile properties of API X70 linepipe steel plates is investigated in terms of the microstructure and related anisotropy. Two coiling temperatures are selected to control the microstructure and tensile properties. The API X70 linepipe steels consist mostly of ferritic microstructures such as polygonal ferrite, acicular ferrite, granular bainite, and pearlite irrespective of the coiling temperature. In order to evaluate the anisotropy in the tensile properties, tensile tests in various directions, in this case 0° (rolling direction), 30°, 45° (diagonal direction), 60°, and 90° (transverse direction) are conducted. As the higher coiling temperature, the larger amount of pearlite is formed, resulting in higher strength and better deformability. The steel has higher ductility and lower strength in the rolling direction than in the transverse direction due to the development of γ-fiber, particularly the {111}<112> texture.
Go to article

Authors and Affiliations

Dong-Kyu Oh
1
ORCID: ORCID
Seung-Hyeok Shin
1
ORCID: ORCID
Sang-Min Lee
2
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  2. Hyundai Steel Company, Dangjin-Si, Chungnam, 31719, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study was to investigate the dependence of the room temperature tensile properties on the volume fraction of discontinuous precipitates (DPs) in a cast AZ91 magnesium alloy. In order to obtain various volume fractions of DPs, the solution-treated alloy was aged at 428 K for up to 48 h. The volume fraction of DPs increased from 0% to 72% with an increase in the aging time up to 24 h; for aging times longer than 24 h, discontinuous precipitation was substantially inhibited owing to the occurrence of significant continuous precipitation within the α-(Mg) grains. YS and UTS of the alloy increased with the volume fraction of DPs, whereas the elongation showed a reverse trend. A relatively rapid change in the tensile properties with increasing volume fraction of DPs up to ~40% was noted, which would be due to the reduction of the effective α grain size in response to the formation of DPs along the grain boundaries.

Go to article

Authors and Affiliations

Joong-Hwan Jun
Download PDF Download RIS Download Bibtex

Abstract

The forming limit of AZ31 alloy, a representative Mg-Al-Zn-based wrought alloy, and the effect of severe plastic deformation (SPD) by examining the microstructure change caused by dynamic recrystallization led by high temperature and high dislocation density at 300℃ using a biaxial alternate forging (BAF) were investigated in this study. As a result of BAF test for AZ31 Mg alloy, significant cracks on the ends of workpieces occurred after 7 passes. The microstructure of as-extruded specimen showed the non-uniform distribution of the relatively coarse grains and the fine grains considered to be sub-grains. However, as the number of passes increases, the area of coarse grains gradually disappeared and the fine grains became more dominant in the microstructures. The result of tensile test for workpieces with each forging pass showed an increase in strength depending on pass number was shown with a slight increase of elongation. The Electron Backscatter Diffraction (EBSD) results exhibited that, the microstructure showed the presence of coarse grains and twins after only 1 pass, while the grains appeared to be significantly refined and uniformly distributed after 3 pass, at which the strength and elongation began to increase, simultaneously.
Go to article

Authors and Affiliations

Young-Chul Shin
1
ORCID: ORCID
Seong-Ho Ha
1
ORCID: ORCID
Abdul Wahid Shah
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology (KITECH), Molding & Metal Forming R&D Department, 156 Gaetbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Turbulent filling of a mould is one of the ways to introduce extrinsic defects into the cast part that could deteriorate many properties of any casting. The turbulence can be easily eliminated by counter gravity casting. In gravity casting, tapered downsprue, tapered runner is needed such that the mould cavity is filled counter-gravity from the bottom which is the only best way to eliminate turbulence during filling. Tilt casting method also exists which has the potential to quiescently transfer the liquid into the mould cavity. In this work, gravity and tilt casting methods were used to evaluate the tensile properties of Nb grain refined 206 alloy. Three different Nb contents were investigated: 0.025, 0.05 and 0.1 wt% ratios and it was found that 0.05 wt% revealed the highest tensile properties. On the other hand, when the intrusion of surface folded oxides was eliminated during filling, it was found that mechanical properties were increased significantly, and particularly, the toughness was increased by two folds when tilt casting was applied compared to gravity casting.
Go to article

Bibliography

[1] Campbell, J. (2015). Casting handbook: metal casting processes, metallurgy, techniques and design. Butterworth-Heinemann.
[2] Campbell, J. (2006). An overview of the effects of bifilms on the structure and properties of cast alloys. Metallurgical and Materials Transactions. B 37, 857-863. https://doi.org/10.1007/BF02735006.
[3] Campbell, J. (2020). The Mechanisms of Metallurgical Failure: On the Origin of Fracture. Butterworth-Heinemann.
[4] Burford, J.C. & Sokolowski, J. (2007). A study of bubble entrainment as related to runner velocity in aluminum sand castings using the Cosworth process. Materials Science Forum. 539-543, 398-403. https://doi.org/10.4028/ www.scientific.net/MSF.539-543.398.
[5] Byczynski, G., Mackay, R. (2019). The nemak cosworth casting process latest generation. In Shape Casting: 7th International Symposium Celebrating Prof. John Campbell's 80th Birthday (pp. 179-185). Springer International Publishing.
[6] Mirak, A., Divandari, M., Boutorabi, S. & Taylor, J. (2012). Effect of oxide film defects generated during mould filling on mechanical strength and reliability of magnesium alloy castings (AZ91). International Journal of Cast Metals Research. 25(3), 188-194. https://doi.org/10.1179/ 1743133611Y.0000000037.
[7] Tunçay, T., Baytar, F., Tunçay, B., Sunar, T. & Dişpinar, D. (2022). Effects of mold cavity geometry on flow rate and mechanical properties in Al-Si-Mg alloy. Journal of Materials Engineering and Performance. 32(10), 4702-4711. https://doi.org/10.1007/ s11665-022-07412-0.
[8] Teng X, Mae H, Bai Y, Wierzbicki T (2009). Pore size and fracture ductility of aluminum low pressure die casting. Engineering Fracture Mechanics. 76(8), 983-996. https://doi.org/10.1016/j.engfracmech.2009.01.001.
[9] Moradi, A. & Divandari, M. (2023). Effect of bottom gating filling system design on the initial stage of mold filling: a parametric study. International Journal of Metalcasting. 17, 2716-2730. https://doi.org/10.1007/s40962-022-00937-z.
[10] Hsu, F-Y. (2016). Bifilm defect formation in hydraulic jump of liquid aluminum. Metallurgical and Materials Transactions B. 47, 1634-1648. https://doi.org/10.1007/ s11663-016-0656-3.
[11] Hsu, F-Y. & Li, C-L. (2015). Runner systems containing ceramic foam filters quantified by “Area Normalized” bifilm index map. International Journal of Metalcasting. 9, 23-35. https://doi.org/10.1007/BF03355620.
[12] Hsu, F-Y. & Lin, H-J. (2009). A diffusing runner for gravity casting. Metallurgical and Materials Transactions B. 40, 833-842. https://doi.org/10.1007/s11663-009-9272-9.
[13] Hsu, F-Y. & Yang, Y-M. (2012). Confluence weld in an aluminum gravity casting. Journal of Materials Processing Technology. 212(4), 825-840. https://doi.org/10.1016/ j.jmatprotec.2011.11.006.
[14] Hsu, F-Y., Jolly, M.R. & Campbell, J. (2009). A multiple-gate runner system for gravity casting. Journal of Materials Processing Technology. 209(17), 5736-5750. https://doi.org/10.1016/j.jmatprotec.2009.06.003.
[15] Hsu, F-Y., Jolly, M.R. & Campbell, J. (2006). Vortex-gate design for gravity casting. International Journal of Cast Metals Research. 19(1), 38-44. https://doi.org/10.1179/ 136404606225023318.
[16] Hsu, Q.C., Do, A.T., Yeh, K.C. & Ye, J.H. (2014). Improvement on die-casting efficiency and property of aluminum alloy casing. Key Engineering Materials. 625, 518-524. https://doi.org/10.4028/www.scientific.net/ KEM.625.518.
[17] Ahmad, R. & Hashim, M. (2011). Effect of vortex runner gating system on the mechanical strength of Al-12Si alloy castings. Archives of Metallurgy and Materials. 56(4), 991-991.
[18] Ahmad, R. & Talib, N. (2011). Experimental study of vortex flow induced by a vortex well in sand casting. Metallurgical Research & Technology. 108(3), 129-139. https://doi.org/10.1051/metal/2011049.
[19] Majidi, S.H. & Beckermann, C. (2019). Effect of pouring conditions and gating system design on air entrainment during mold filling. International Journal of Metalcasting. 13(2), 255-272. https://doi.org/10.1007/s40962-018-0272-x.
[20] El-Sayed, M., Hassanin. H. & Essa, K. (2016). Bifilm defects and porosity in Al cast alloys. The International Journal of Advanced Manufacturing Technology. 86, 1173-1179. https://doi.org/10.1007/s00170-015-8240-6.
[21] El-Sayed, M.A. (2018). Influence of mould design and hydrogen content on the tensile properties of Al-Mg cast alloys. Journal of Engineering Technology. 6(1), 584-594.
[22] Jezierski, J., Dojka, R. & Janerka, K. (2018). Optimizing the gating system for steel castings. Metals. 8(4), 266, 1-13. https://doi.org/10.3390/met8040266.
[23] Dojka, R., Jezierski, J. & Campbell, J. (2018). Optimized gating system for steel castings. Journal of Materials Engineering and Performance. 27, 5152-5163. https://doi.org/10.1007/s11665-018-3497-1
[24] Remišová, A. The possibilities for reducing reoxidation in gating system. Retrieved May 21, 2023 from https://www.kavs.uniza.sk/images/PDF/ The_possibilities.pdf
[25] Zhao, H., Ohnaka, I. & Zhu, J. (2008). Modeling of mold filling of Al gravity casting and validation with X-ray in-situ observation. Applied Mathematical Modelling. 32(2), 185-194. https://doi.org/10.1016/j.apm.2006.11.009.
[26] Harding, R. (2007). The use of tilt filling to improve the quality and reliability of castings. Foundry Trade Journal. 180(3644), 142-146.
[27] Pease, L.F., Bao, J., Safarkoolan, R., Veldman, T.G., Phillips, N.R.J., McNeff, P.S. & Clayton, C.K. (2021). Flow obstacles minimize surface turbulence in Tilt casting. Chemical Engineering Science. 230, 116104. https://doi.org/10.1016/j.ces.2020.116104.
[28] Pavlak, L. (2008). Effect of filling conditions on the quality of cast aluminum cylinder heads. Metalurgija-Journal of Metallurgy. 14(3), 31-39.
[29] Cox, M. & Harding, R. (2007). Influence of tilt filling on Weibull modulus of 2L99 aluminium investment castings. Materials science and technology. 23(2), 214-224. https://doi.org/10.1179/174328407X157263.
[30] Hamzah, E., Prayitno, D. & Ghazali, M. (2002). Effect of mould tilt angle on the mechanical properties of as-cast aluminum alloy. Materials & Design. 23(2), 189-194. https://doi.org/10.1016/S0261-3069(01)00068-1.
[31] Gokhale, A. & Patel. G. (2005). Origins of variability in the fracture-related mechanical properties of a tilt-pour-permanent-mold cast Al-alloy. Scripta Materialia. 52(3), 237-241. https://doi.org/10.1016/j.scriptamat.2004.09.011.
[32] Sigworth, G.K. & DeHart, F. (2003). Recent developments in the high strength aluminum-copper casting alloy A206. AFS Transactions. 111, 341-354.
[33] Mi, J., Harding, R. & Campbell, J. (2002). The tilt casting process. International Journal of Cast Metals Research. 14(6), 325-334. https://doi.org/10.1080/13640461.2002. 11819450.
[34] Ransing, R., Savino, S. & Lewis. R. (2005). Numerical optimisation of tilt casting process. International Journal of Cast Metals Research. 18(2), 109-118. https://doi.org/10.1179/136404605225022901.
[35] Bolzoni, L., Nowak, M. & Babu, N.H. (2015). Grain refinement of Al–Si alloys by Nb–B inoculation. Part II: application to commercial alloys. Materials & Design. 66(5), 376-383. https://doi.org/10.1016/j.matdes.2014.08.067.
[36] Bolzoni, L., Nowak, M., Babu, N. H. (2015). On the effect of Nb-based compounds on the microstructure of Al–12Si alloy. Materials Chemistry and Physics. 162, 340-345. https://doi.org/10.1016/j.matchemphys.2015.05.076. Nowak, M., Bolzoni, L. & Babu, N.H. (2015). Grain refinement of Al–Si alloys by Nb–B inoculation. Part I: Concept development and effect on binary alloys. Materials & Design. 66, 366-375. https://doi.org/10.1016/j.matdes. 2014.08.066.
[37] Nowak, M., Yeoh, W., Bolzoni, L. & Babu, N.H. (2015). Development of Al–Nb–B master alloys using Nb and KBF4 powders. Materials & Design.75, 40-46. https://doi.org/10.1016/j.matdes.2015.03.010.
[38] Aydogan, F., Dizdar, K. C., Sahin, H., Mentese, E. & Dispinar, D. (2022). Weibull analysis evaluation of Ti, B, Nb and MTS grain refined Al11Si alloy. Materials Chemistry and Physics. 287, 126264. https://doi.org/10.1016/ j.matchemphys.2022.126264.
[39] Xu, J., Li, Y., Hu, B., Jiang, Y., Li, Q. (2019). Development of Al–Nb–B master alloy with high Nb/B ratio for grain refinement of hypoeutectic Al–Si cast alloys. Journal of Materials Science. 54, 23. 14561-14576. https://doi.org/ 10.1007/s10853-019-03915-9.
[40] Sahin, H., & Dispinar, D. (2023). Effect of Rare Earth Elements Erbium and Europium Addition on Microstructure and Mechanical Properties of A356 (Al–7Si–0.3 Mg) Alloy. International Journal of Metalcasting, 1-10
Go to article

Authors and Affiliations

Nuri Palamutcu
1
ORCID: ORCID
Kerem Can Dizdar
1
ORCID: ORCID
Hayati Sahin
2
ORCID: ORCID
Derya Dispinar
1
ORCID: ORCID

  1. Istanbul Technical University, Turkey
  2. Foseco R&D, Netherlands
Download PDF Download RIS Download Bibtex

Abstract

In the present investigation, the influence of addition of the rare earth element samarium (Sm) in different concentrations (0, 0.1, 0.3, 0.5, 0.7 and 0.9wt.%) on the microstructure and tensile properties of the Al-Si-Cu 319 alloy have been evaluated. Microstructural constituents such as SDAS of α-Al and characteristics of eutectic silicon particles were observed by optical microscopy. It was concluded from the findings that Sm addition reduces the size of secondary dendrite arm spacings (SDAS) and altered the morphology of the eutectic silicon particles from needle-like to lamellar and smaller segments. The tensile properties of the Al-Si-Cu 319 alloy improved with the concentration of Sm. It was found that the highest tensile properties were obtained at 0.7wt.% addition of Sm, i.e., 55.5% higher than unmodified 319 alloy. With the further addition of the Sm above 0.7wt.%, it does not improve the tensile properties of the alloy. This can be attributed to the precipitation of the brittle and needle like quaternary Sm-rich intermetallic compounds observed through Scanning electron microscopy.
Go to article

Bibliography

[1] ASM Handbook Committee. (1990). Properties and selection: nonferrous alloys and special-purpose materials (pp. 597-599). ASM International.
[2] Hernandez, F.C.R., Ramírez, J.M.H., Mackay, R. (2017). Al-Si alloys: automotive, aeronautical, and aerospace applications. Springer International Publishing. Retrieved 30 April 2022 from Springer link http://link.springer.com/10.1007/978-3-319-58380-8.
[3] Alkahtani, S. (2012). Mechanical performance of heat treated 319 alloys as a function of alloying and aging parameters. Materials & Design. 41, 358-369. https://doi.org/10.1016/j.matdes.2012.04.034.
[4] Javidani, M. & Larouche, D. (2014). Application of cast Al–Si alloys in internal combustion engine components. International Materials Reviews. 59(3), 132-158. https://doi.org/10.1179/1743280413Y.0000000027.
[5] Lombardi, A., Ravindran, C. & MacKay, R. (2015). Optimization of the solution heat treatment process to improve mechanical properties of 319 Al alloy engine blocks using the billet casting method. Materials Science and Engineering: A, 633, 125-135. https://doi.org/10.1016/j.msea.2015.02.076.
[6] Hegde, S. & Prabhu, K.N. (2008). Modification of eutectic silicon in Al–Si alloys. Journal of materials science. 43(9), 3009-3027. https://doi.org/10.1007/s10853-008-2505-5.
[7] Sigworth, G.K. (2008). The modification of Al-Si casting alloys: important practical and theoretical aspects. International Journal of Metalcasting. 2(2), 19-40. https://doi.org/10.1007/BF03355425.
[8] Mahmoud, M.G., Zedan, Y., Samuel, A.M., Doty, H.W., Songmene, V. & Samuel, F.H. (2021). Effect of rare earth metals (Ce and La) addition on the performance of Al-Si-Cu-Mg Cast Alloys. International Journal of Metalcasting. 1-27. https://doi.org/10.1007/s40962-021-00669-6.
[9] Mahmoud, M.G., Zedan, Y., Samuel, A.M., Songmene, V. & Samuel, F.H. (2022). The use of rare earth metals in Al–Si–Cu casting alloys. International Journal of Metalcasting. 16(2), 535-552. https://doi.org/10.1007/s40962-021-00640-5.
[10] Patel, D.N. & Sutaria, M.P. (2022). Effect of Trace Rare Earth Er Addition on Microstructure and Tensile Properties of 319 Al-Si-Cu Alloy. International Journal of Metalcasting. 16, 2199–2209. https://doi.org/10.1007/s40962-021-00730-4.
[11] Xu, C., Xiao, W., Hanada, S., Yamagata, H. & Ma, C. (2015). The effect of scandium addition on microstructure and mechanical properties of Al–Si–Mg alloy: A multi-refinement modifier. Materials Characterization. 110, 160-169. https://doi.org/10.1016/j.matchar.2015.10.030.
[12] Mao, F., Yan, G., Xuan, Z., Cao, Z. & Wang, T. (2015). Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys. Journal of Alloys and Compounds. 650, 896-906. https://doi.org/10.1016/j.jallcom.2015.06.266.
[13] Nie, Z.R., Jin, T., Fu, J., Xu, G., Yang, J., Zhou, J.X. & Zuo, T.Y. (2002). Research on rare earth in aluminum. Materials Science Forum. 396-402, 1731-1740. https://doi.org/10.4028/www.scientific.net/MSF.396-402.1731.
[14] Nie, Z. R., Fu, J.B., Zou, J.X., Jin, T.N., Yang, J.J., Xu, G. F., Ruan, H. Q. & Zuo, T.Y. (2004). Advanced aluminum alloys containing rare-earth erbium. Materials forum. 28, 197-201.
[15] Hu, Z., Yan, H. & Rao, Y.S. (2013). Effects of samarium addition on microstructure and mechanical properties of as-cast Al-Si-Cu alloy. Transactions of Nonferrous Metals Society of China. 23(11), 3228-3234. https://doi.org/10.1016/S1003-6326(13)62857-5.
[16] Qiu, H., Yan, H. & Hu, Z. (2014). Modification of near-eutectic Al–Si alloys with rare earth element samarium. Journal of Materials Research. 29, 1270-1277. https://doi.org/10.1557/jmr.2014.113.
[17] Qiu, H., Yan, H., & Hu, Z. (2013). Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7 Mg alloys. Journal of Alloys and Compounds. 567, 77-81. https://doi.org/10.1016/j.jallcom.2013.03.050.
[18] Rao, Y., Yan, H., & Hu, Z.(2013). Modification of eutectic silicon and β-Al5FeSi phases in as-cast ADC12 alloys by using samarium addition. Journal of Rare Earths. 31(9), 916-922. https://doi.org/10.1016/S1002-0721(12)60379-2.
[19] Li, Q., Li, J., Li, B., Lan, Y. & Xia, T. (2018). Effect of samarium (Sm) addition on the microstructure and tensile properties of Al–20% Si casting alloy. International Journal of Metalcasting. 12, 554-564. https://doi.org/10.1007/s40962-017-0193-0.
[20] Ibrahim, M.F., Abdelaziz, M.H., Samuel, A.M., Doty, H. W. & Samuel, F.H. (2020). Effect of rare earth metals on the mechanical properties and fractography of Al–Si-based alloys. International Journal of Metalcasting. 14, 108-124. https://doi.org/10.1007/s40962-019-00336-x.
[21] Mahmoud, M.G., Samuel, A.M., Doty, H.W. & Samuel, F.H. (2020). Effect of the addition of La and Ce on the solidification behavior of Al–Cu and Al–Si–Cu cast alloys. International Journal of Metalcasting. 14, 191-206. https://doi.org/10.1007/s40962-019-00351-y.
[22] Pandee, P., Patakham, U. & Limmaneevichitr, C. (2017). Microstructural evolution and mechanical properties of Al-7Si-0.3 Mg alloys with erbium additions. Journal of Alloys and Compounds. 728, 844-853. https://doi.org/10.1016/j.jallcom.2017.09.054.
[23] Sigworth, G.K. & Kuhn, T.A. (2007). Grain refinement of aluminum casting alloys. International Journal of Metalcasting. 1, 31-40. https://doi.org/10.1007/BF03355416.
[24] Basak, S., Biswas, P., Patra, S., Roy, H. & Mondal, M.K., (2021). Effect of TiB2 and Al3Ti on the microstructure, mechanical properties and fracture behaviour of near eutectic Al-12.6 Si alloy. International Journal of Minerals, Metallurgy and Materials. 28(7), 1174-1185. https://doi.org/10.1007/s12613-020-2070-8.
[25] Liu, Y.X., Wang, R.C., Peng, C.Q., Cai, Z.Y., Zhou, Z.H., Li, X.G. & Cao, X.Y. (2021). Microstructures and mechanical properties of in-situ TiB2/Al− xSi− 0.3 Mg composites. Transactions of Nonferrous Metals Society of China. 31(2), 331-344. https://doi.org/10.1016/S1003-6326(21)65499-7.
[26] Li, Z., Hu, Z. & Yan, H. (2016). Effect of samarium (Sm) addition on microstructure and mechanical properties of Al-5Cu alloys. Journal of Wuhan University of Technology-Materials Science Ed. 31(3), 624-629. https://doi.org/10.1007/s11595-016-1420-x.
[27] Ferdian, D., Pratama, J. R. & Pratesa, Y. (2019). Effect of samarium on microstructure and intermetallic formation in Al-5Zn-0.5 Si alloy. IOP Conference Series: Materials Science and Engineering. 541(1), 012024. DOI: 10.1088/1757-899X/541/1/012024.
[28] Lu, S.Z., & Hellawell, A. (1987). The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning. Metallurgical transactions A. 18(10), 1721-1733. https://doi.org/10.1007/BF02646204.
[29] Hume-Rothery, W., Smallman, R.E., Haworth, C.W. (1969). Structure of Metals and Alloys. London: Institute of Metals and the Institution of Metallurgists.

Go to article

Authors and Affiliations

D.N. Patel
1
M.P. Sutaria
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science and Technology (CHARUSAT), Changa, Anand-388421, Gujarat, India
Download PDF Download RIS Download Bibtex

Abstract

The tensile properties and microstructures of ZL114A alloy component with a complex shape are investigated at room temperature and 200°C, using the tensile tests, scanning electron microscopy and electron backscattering diffraction. Both thin wall and thick structure exhibit excellent properties, of which max ultimate tensile strength and elongation at break reach 314 MPa and 2.5% at room temperature, respectively. The ultimate tensile strengths of thin wall are 40 MPa and 25 MPa greater than those of thick structure at room temperature and 200°C, respectively. Moreover, the eutectic Si phases of thin wall exhibit a predominantly spherical morphology while of the morphology of thick structure are rod-like, resulting in the different mechanical properties between thin wall and thick structure. The fracture morphologies of thin wall and thick structure are studied to explain the difference in performance between thin wall and thick structure.
Go to article

Authors and Affiliations

Jianquan Tao
1
Lin Xiang
1
Xidong Chen
1
Jipeng Sun
1
Yanbin Wang
1
Chuanhang Du
1
Feifei Peng
1
Shiqing Gao
1
Qiang Chen
1

  1. Southwest Technology and Engineering Research Institute, Chongqing 400039, China
Download PDF Download RIS Download Bibtex

Abstract

An artificial neural network (ANN) model was developed to predict the tensile properties of dual-phase steels in terms of alloying elements and microstructural factors. The developed ANN model was confirmed to be more reasonable than the multiple linear regression model to predict the tensile properties. In addition, the 3D contour maps and an average index of the relative importance calculated by the developed ANN model, demonstrated the importance of controlling microstructural factors to achieve the required tensile properties of the dual-phase steels. The ANN model is expected to be useful in understanding the complex relationship between alloying elements, microstructural factors, and tensile properties in dual-phase steels.
Go to article

Bibliography

[1] H.L. Kim, S.H. Bang, J.M. Choi, N.H. Tak, S.W. Lee, S.H. Park, Met. Mater. Int. 26, 1757-1765 (2020).
[2] S.I. Lee, J. Lee, B. Hwang, Mater. Sci. Eng. A 758, 56-59 (2019).
[3] S.I. Lee, S.Y. Lee, J. Han, B. Hwang, Mater. Sci. Eng. A 742, 334-343 (2019).
[4] S.I. Lee, S.Y. Lee, S.G. Lee, H.G. Jung, B. Hwang, Met. Mater. Int. 24, 1221-1231 (2018).
[5] S.Y. Lee, S.I. Lee, B. Hwang, Mater. Sci. Eng. A 711, 22-28 (2018).
[6] W . Bleck, S. Papaefthymiou, A. Frehn, Steel Res. Int. 75, 704-710 (2004).
[7] M .J Jang, H. Kwak, Y.W Lee, Y.J. Jeong, J. Choi, Y.H. Jo, W.M. Choi, H.J. Sung, E.Y. Yoon, S. Praveen, S. Lee, B.J. Lee, M.I. Abd El Aal, H.S. Kim, Met. Mater. Int. 25, 277-284 (2019).
[8] N. Saeidi, M. Jafari, J.G. Kim, F. Ashrafizadeh, H.S. Kim, Met. Mater. Int. 26, 168-178 (2020).
[9] M . Soleimani, H. Mirzadeh, C. Dehghanian, Met. Mater. Int. 26, 882-890 (2020).
[10] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, Annual Rev. Mater. Res. 45, 391-431 (2015).
[11] D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957-2965 (2009).
[12] D.K. Mondal, R.M. Dey, Mater. Sci. Eng. A 149, 173-181 (1992).
[13] M . Sarwar, R. Priestner, J. Mater. Sci. 31, 2091-2095 (1996).
[14] B. Hwang, T. Cao, S.Y. Shin, S. Lee, S.J. Kim, Mater. Sci. Tech. 21, 967-975 (2005).
[15] F. Najafkhani, H. Mirzadeh, M. Zamani, Met. Mater. Int. 25, 1039-1046 (2019).
[16] J.I. Yoon, J. Jung, H.H. Lee, J.Y. Kim, H.S. Kim, Met. Mater. Int. 25, 1161-1169 (2019).
[17] H. Duan, Y. Li, G. He, J. Zhang, Int. J. Mod. Phys. B 23, 1191- 1196 (2009).
[18] S. Krajewski, J. Nowacki, Arch. Civ. Mech. Eng. 14, 278-286 (2014).
[19] N.S. Reddy, C.H. Park, Y.H. Lee, C.S. Lee, Mater. Sci. Tech. 24, 294-301 (2008).
[20] N.S. Reddy, Y.H. Lee, C.H. Park, C.S. Lee, Mater. Sci. Eng. A 492, 276-282 (2008).
[21] N.S. Reddy, B.B. Panigrahi, M.H. Choi, J.H. Kim, C.S. Lee, Comput. Mater. Sci. 107, 175-183 (2015).
[22] N.S. Reddy, J. Krishnaiah, S.G. Hong, J.S. Lee, Mater. Sci. Eng. A 508, 93-105 (2009).
[23] T. Dutta, S. Dey, S. Datta, D. Das, Comput. Mater. Sci. 157, 6-16 (2019).
[24] C. Lin, P.L. Nrayana, N.S. Reddy, S.W. Choi, J.T. Yeom, J.K Hong, C.H. Park, J. Mater. Sci. Tech. 35, 907-916 (2019).
[25] I .D. Jung, D.S. Shin, D. Kim, J. Lee, M.S. Lee, H.J. Son, N.S. Reddy, M. Kim, S.K. Moon, K.T. Kim, J. Yu, S. Kim, S.J. Park, H. Sung, Materialia 11, 100699 (2020).
[26] H.S. Lim, J.Y. Kim, B. Hwang, J. Korean. Soc. Heat Treat. 30, 106-112 (2017).
[27] S. Sodjit, V. Uthaisangsuk, Mater. Des. 41, 370-379 (2012).
[28] Z. Jiang, Z. Guan, J. Lian, Mater. Sci. Eng. A 190, 55-64 (1995).
[29] P . Chang, A.G. Preban, Acta Metall. 33, 897-903 (1985).
[30] N.D. Beynon, S. Oliver, T.B. Jones, G. Fourlaris, Mater. Sci. Tech, 21, 771-778 (2005).
Go to article

Authors and Affiliations

Seung-Hyeok Shin
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, Al 2024-T3 alloy plates were joined by using friction stir welding. Welding was performed at a rotational speed of 930, 1450, 2280 rpm and a welding feed rate of 180 mm min −1. The welded samples were analyzed at the microstructural level. Moreover, both bending fatigue tests and tensile tests were performed on samples. At the end of the microstructural examination of the samples welded at the rotational speed of 930 rpm and the welding feed rate of 180 mm min −1, the formation of tunnel defects was observed. The highest fatigue life was obtained at 2280 rpm and 180 mm min −1. The lowest fatigue life was obtained at 930 rpm and 180 mm min −1. The highest ultimate tensile stress was obtained at 2280 rpm/180 mm min –1 sample, which shows about a 12% reduction relative to the base material. The lowest ultimate tensile stress was obtained at 930 rpm/180 mm min –1 sample. The ultimate tensile stress value of the 930 rpm/180 mm min –1 sample decreased by approximately 25%.
Go to article

Authors and Affiliations

A. Şık
1
ORCID: ORCID
A. Özer
2
ORCID: ORCID

  1. Gazi University, Faculty of Architecture, Department of Industrial Design, 06570 Maltepe, Ankara, Turkey
  2. Gazi University, Technical Sciences Vocational School, 06374 Ostim, Yenimahalle, Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Tensile tests of 8009Al alloy reinforced with SiC and Al₂O₃ particles fabricated by powder metallurgy (PM) were conducted at temperatures of 250–350°C and strain rates of 0.001–0.1 s⁻¹. The ultimate tensile strength and yield strength of the samples decreased while the temperature and strain rate increased. The elongation slightly decreased at first and then increased with growing temperature because of the medium-temperature brittleness of the alloy matrix. When the strain rate was 0.1 s⁻¹, the elongation of the 8009Al/Al₂O₃ composites always decreased with an increase in temperature because of the poorly coordinated deformation and weak bonding between the matrix and Al₂O₃ particles at such a high strain rate. The work-hardening rates of the composites sharply increased to maxima and then decreased rapidly as the strain increased. Meanwhile, the 8009Al/SiCₚ composites displayed superior UTS, YS, elongation, and work-hardening rates than those of the 8009Al/Al₂O₃ composites under the same conditions. Compared to 8009Al alloys reinforced with spherical Al₂O₃ particle, 8009Al alloys reinforced with irregular SiC particles exhibited a better strengthening effect. The fracture mechanism of the 8009Al/SiCₚ composites was mainly ductile, while that of the 8009Al/Al₂O₃ composites was primarily debonding at the matrix–particle interfaces in a brittle mode.
Go to article

Bibliography

  1.  P.-h. Lü, X.F. Wang, C.G. Dong, C.Q. Peng, and R.C. Wang, “Preparation and characterization of different surface modified SiCp reinforced Al-matrix composites,” J. Cent. South Univ., vol. 27, no. 9, pp. 2567–2577, 2020, doi: 10.1007/s11771-020-4482-z.
  2.  C. Emmy Prema, S. Suresh, G. Ramanan, and M. Sivaraj, “Characterization, corrosion and failure strength analysis of Al7075 influenced with B4C and Nano-Al2O3 composite using online acoustic emission,” Mater. Res. Express, vol. 7, no. 1, pp. 016524, 2020, doi: 10.1088/2053- 1591/ab6257.
  3.  S.V. Nair, J.K. Tien, and R.C. Bates, “SiC-reinforced aluminium metal matrix composites International Metals Reviews,” Int. Met. Rev., vol. 30, no. 1, pp. 275–290, 1985, doi: 10.1179/imtr.1985.30.1.275.
  4.  Q. Yan, D. Fu, X. Deng, H. Zhang, and Z. Chen, “Tensile deformation behavior of spray-deposited FVS0812 heat-resistant aluminum alloy sheet at elevated temperatures,” Mater. Charact., vol.  58, no. 6, pp. 575–579, 2007, doi: 10.1016/j.matchar.2006.06.024.
  5.  Z.H. Chen, Y.Q. He, H.G. Yan, Z.G. Chen, X.J. Yin, and G. Chen, “Ambient temperature mechanical properties of Al-8.5Fe-1.3V-1.7Si/ SiC_P composite,” Mater. Sci. Eng. A, vol. A460‒61, no.  Jul, pp. p.180–185, 2007, doi: 10.1016/j.msea.2007.02.105.
  6.  D. Shimansky and H.J. McQueen, “Hot Working Of Heat Resistant Rapidly Solidified AI-Fe-V-Si Alloy,” High Temp. Mat., vol. 18, no. 4, pp. 241–252, 1999, doi: 10.1515/HTMP.1999.18.4.241.
  7.  S. Hariprasad, S. Sastry, and K.L. Jerina, “Deformation behavior of a rapidly solidified fine grained Al-8.5%Fe-1.2%V-1.7%Si alloy,” Acta. Mater., vol. 44, no. 1, pp. 383–389, 1995, doi: 10.1016/1359-6454(95)00160-1.
  8.  Y.D. Xiao, W. Wang, and L.I. Wen-Xian, “High temperature deformation behavior and mechanism of spray deposited Al-Fe-V-Si alloy,” Trans. Nonferrous Met. Soc. China, vol. 17, no. 006, pp. 1175–1180, 2007, doi: 10.1016/S1003-6326(07)60245-3.
  9.  S. Sun, L. Zheng, P. Hui, and Z. Hu, “Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting,” Mater. Sci. Eng. A, vol. 659, no. 6, pp.  207–214, 2016, doi: 10.1016/j.msea.2016.02.053.
  10.  Y. He, H. Tu, B. Qiao, L. Feng, J. Yang, and Y. Sun, “Tensile fracture behavior of spray-deposited SiCP/Al–Fe–V–Si composite sheet,” Adv. Compos. Mater., vol. 22, no. 4, pp. 227–237, 2011, doi: 10.1080/09243046.2013.796626.
  11.  L. Hao, Y.Q. He, N. Wang, Z.H. Chen, Z.G. Chen, H.G. Yan, and Z.K. Xu, “The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited SiCP/Al–11.7Fe–1.3V–1.7Si Composite,” Adv. Compos. Mater., vol. 18, no. 4, pp.  351–364, 2009, doi: 10.1163/156855109X434766.
  12.  S. Chen, D. Fu, H. Luo, Y. Wang, J. Teng, and H. Zhang, “Hot workability of PM 8009Al/Al2O3 particle-reinforced composite characterized using processing maps,” Vacuum, vol. 149, pp. 297–305, 2018, doi: 10.1016/j.vacuum.2018.01.001.
  13.  C. Shuang, T. Jie, H. Luo, W. Yu, and Z. Hui, “Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites,” Mater. Sci. Eng. A, vol. 697, pp. 194–202, 2017, doi: 10.1016/j.msea.2017.05.016.
  14.  M.H. Guo, J. Y. Liu, C.C. Jia, Q.J. Jia, and S.J. Guo, “Microstructure and properties of electronic packaging shell with high silicon carbide aluminum-base composites by semi-solid thixoforming,” J. Cent. South Univ., vol. 21, no. 11, pp. 4053–4058, 2014, doi: 10.1007/s11771- 014-2396-3.
  15.  H.S. Chen, W.X. Wang, H.H. Nie, J. Zhou, Y.L. Li, R.F. Liu, Y.Y. Zhang, and P. Zhang, “Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy,” J Alloys Compd., vol.  730, pp. 342–351, 2018, doi: 10.1016/j.jallcom.2017.09.312.
  16.  H.S. Chen, W.X. Wang, Y.L. Li, P. Zhang, H.H. Nie, and Q.C. Wu, “The design, microstructure and tensile properties of B4C particulate reinforced 6061Al neutron absorber composites,” J. Alloy. Compd., vol. 632, pp. 23–29, 2015, doi: 10.1016/j.jallcom.2015.01.048.
  17.  H. Sun, X. Li, P. Zhang, and W. Fang, “The microstructure and tensile properties of the Ti2AlC reinforced TiAl composites fabricated by powder metallurgy,” Mater. Sci. Eng. A, vol. 611, pp. 257–262, 2014, doi: 10.1016/j.msea.2014.06.009.
  18.  W. Zhang, D. Chai, G. Ran, and J.E. Zhou, “Study on microstructure and tensile properties of in situ fiber reinforced aluminum matrix composites,” Mater. Sci. Eng. A, vol. 476, no. 1/2, pp.  157–161, 2008, doi: 10.1016/j.msea.2007.05.018.
  19.  S. Ghanaraja, K.L.V. Kumar, K.S. Ravikumar, and B.M. Madhusudan, “Mechanical Properties of Al2O3 Reinforced Cast and Hot Extruded Al based Metal Matrix Composites,” Mater. Today: Proc., vol. 4, no. 2, Part A, pp. 2771–2776, 2017, doi: 10.1016/j.matpr.2017.02.155.
  20.  M. Sharififar and S. Mousavi, “Tensile deformation and fracture behavior of CuZn5 brass alloy at high temperature,” Mater. Sci. Eng. A, vol. 594, no. 1, pp. 118–124, 2014, doi: 10.1016/j.msea.2013.11.051.
  21.  D. Hull and D. J. Bacon, Introduction to Dislocations,4th Ed., 2001, Oxford.
  22.  H. Luo, J. Teng, S. Chen, Y. Wang, and H. Zhang, “Flow stress and processing map of a PM 8009Al/SiC particle reinforced composite during hot compression,” J. Mater. Eng. Perform., vol. 26, no.  10, pp. 4789–4796, 2017, doi: 10.1007/s11665-017-2963-5.
  23.  E. Bouchaud, L. Kubin, and H. Octor, “Ductility and dynamic strain ageing in rapidly solidified aluminium alloys. Metall Trans 22A:1021‒1028,” Metall. Trans. A, vol. 22, no. 5, pp. 1021–1028, 1991, doi: 10.1007/BF02661095.
  24.  D.M. Li and A. Bakker, “Temperature and strain rate dependence of the portevin-le chatelier effect in a rapidly solidified Al alloy,” Metall. Mater. Trans., vol. 26, no. 11, pp. 2873–2879, 1995, doi: 10.1007/BF02669645.
  25.  L. Yuan, W. Shi, Z. Zheng, and D. Shan, “Effect of the aspect ratio of whisker on work-hardening rate of as forged 2024Al/Al18B4O33w composite,” Mater. Charact., vol. 104, pp. 73–80, 2015, doi: 10.1016/j.matchar.2015.04.006.
  26.  W.J. Li, K.K. Deng, X. Zhang, C.J. Wang, J.W. Kang, K.B. Nie, and W. Liang, “Microstructures, tensile properties and work-hardening behavior of SiCp/Mg-Zn-Ca composites,” J. Alloy. Compd., vol. 695, pp. 2215–2223, 2016, doi: 10.1016/j.jallcom.2016.11.070.
  27.  T.S. Srivatsan, M. Al-Hajri, C. Smith, and M. Petraroli, “The tensile response and fracture behavior of 2009 aluminum alloy metal matrix composite,” Mater. Sci. Eng. A, vol. 346, no. 1–2, pp.  91–100, 2003, doi: 10.1016/S0921-5093(02)00481-1.
  28.  M. Vedani, F. D’Errico, and E. Gariboldi, “Mechanical and fracture behaviour of aluminium-based discontinuously reinforced composites at hot working temperatures,” Compos. Sci. Technol, vol.  66, no. 2, pp. 343–349, 2006, doi: 10.1016/j.compscitech.2005.04.045.
  29.  J.Y. Bai, C.L. Fan, S.B. Lin, C.L. Yang, and B.L. Dong, “Mechanical Properties and Fracture Behaviors of GTA-Additive Manufactured 2219-Al After an Especial Heat Treatment,” J. Mater. Eng. Perform., vol. 26, no. 4, pp. 1808–1816, 2017, doi: 10.1007/s11665-017-2627- 5.
  30.  B.Q. Han, K.C. Chan, T.M. Yue, and W.S. Lau, “High temperature deformation behavior of Al 2124-SiCp composite,” J. Mater. Process. Tech., vol. 63, no. 1–3, pp. 395–398, 1997, doi: 10.1016/S0924-0136(96)02653-2.
  31.  P. Yu et al., “Interfacial reaction during the fabrication of Ni60Nb40 metallic glass particles-reinforced Al based MMCs,” Mater. Sci. Eng. A, vol. 444, no. 1–2, pp. 206–213, 2007, doi: 10.1016/j.msea.2006.08.077.
  32.  Y.K. Xu, M. Han, X. Jian, and E. Ma, “Mg-based bulk metallic glass composites with plasticity and gigapascal strength,” Acta Mater., vol. 53, no. 6, pp. 1857–1866, 2005, doi: 10.1016/j.actamat.2004.12.036.
  33.  J. Fan, K. Zhnag, and L. Shi, “Interface Characterization of the SiCp/Al Composites Made by Powder Metallurgy,” J. Mater. Sci. Technol., vol. 15, no. 2, pp. 147–150, 1999, https://www.jmst.org/EN/abstract/abstract5749.shtml.
  34.  J.-Ch., Lee, and, J.-Y. Byun, S.-B. Park, and H.-I. Lee, “Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite,” Acta Mater., vol. 46, pp.  1771–1780, 1998, doi: 10.1016/S1359-6454(97)00265-6.
  35.  J.K. Park and J.P. Lucas, “Moisture effect on SiCp/6061 Al MMC: Dissolution of interfacial Al4C3,” Scripta Mater., vol. 37, no. 4, pp. 511–516, 1997, doi: 10.1016/S1359-6462(97)00133-4.
  36.  J. Long-tao et al., “Microstructure and tensile properties of TiB2p/6061Al composites,” Trans. Nonferrous Met. Soc. China, vol. 19, no. 8, pp. 542–546, 2009, doi: 10.1016/S1003-6326(10)60105-7.
  37.  B. Ogel and R. Gurbuz, “Microstructural characterization and tensile properties of hot pressed Al–SiC composites prepared from pure Al and Cu powders,” Mater. Sci. Eng. A, vol. 301, no. 2, pp.  213–220, 2001, doi: 10.1016/S0921-5093(00)01656-7.
  38.  Y. Qiao et al., “Effect of hydrogen charging on microstructural evolution and corrosion behavior of Ti-4Al-2V-1Mo-1Fe alloy,” J. Mater. Sci. Technol., vol. 60, pp. 168–176, 2021, doi: 10.1016/j.jmst.2020.06.010.
  39.  Y.X. Qiao et al., “Corrosion Behavior of a Nickel-Free High-Nitrogen Stainless Steel With Hydrogen Charging,” JOM, vol. 73, no. 4, pp. 1165–1172, 2021, doi: 10.1007/s11837-021-04569-2.
  40.  J. Wu, Y. Qiao, Y. Chen, L. Yang, X. Cao, and S. Jin, “Correlation between Corrosion Films and Corrosion-Related Defects Formed on 316 Stainless Steel at High Temperatures in Pressurized Water,” J. Mater. Eng. Perform., vol. 30, pp. 3577–3585, 2021, doi: 10.1007/ s11665-021-05688-2.
  41.  S. Lesz, B. Hrapkowicz, K. Gołombek, M. Karolus, and P. Janiak, “Synthesis of Mg-based alloys with a rare-earth element addition by mechanical alloying,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e137586, 2021, doi: 10.24425/bpasts.2021.137586.
Go to article

Authors and Affiliations

Shuang Chen
1
Guoqiang Chen
1
Pingping Gao
1 2
Chunxuan Liu
2
Anru Wu
1
Lijun Dong
1
Zhonghua Huang
1
Chun Ouyang
1 3 4
Hui Zhang
5

  1. Hunan Provincial Key Laboratory of Vehicle Power and Transmission System, Hunan Institute of Engineering, Xiangtan 411104, China
  2. Hunan Gold Sky Aluminum Industry High-tech Co., Ltd., Changsha 410205, China
  3. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang Jiangsu 21200, China
  4. CETC Maritime Electronics Research Institute Co., Ltd., Ningbo Zhejiang 315000, China
  5. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

This page uses 'cookies'. Learn more