Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to estimate the measurement uncertainty for a material produced by additive manufacturing. The material investigated was FullCure 720 photocured resin, which was applied to fabricate tensile specimens with a Connex 350 3D printer based on PolyJet technology. The tensile strength of the specimens established through static tensile testing was used to determine the measurement uncertainty. There is a need for extensive research into the performance of model materials obtained via 3D printing as they have not been studied sufficiently like metal alloys or plastics, the most common structural materials. In this analysis, the measurement uncertainty was estimated using a larger number of samples than usual, i.e., thirty instead of typical ten. The results can be very useful to engineers who design models and finished products using this material. The investigations also show how wide the scatter of results is.

Go to article

Authors and Affiliations

Stanisław Adamczak
Jerzy Bochnia
Bożena Kaczmarska
Download PDF Download RIS Download Bibtex

Abstract

This paper focused on the effect of pure torsion deformation and various torsion pitches on the mechanical properties of the commercial pure Al wires which has not been examined so far. The initial wires with diameter of 4 mm have been torsion deformed to different pitch length (PL). In order to investigate the effect of gradient microstructure caused by torsion deformation, three different pitch length of 15 mm, 20 mm and 30 mm are considered. The results revealed that the level of grain refinement is correlated with the amount of induced plastic shear strain by torsion deformation. For the wire with pitch length of 15 mm, the grain sizes decreased to about 106 μm and 47 μm in the wire center and edge from the initial size of about 150 μm of the annealed wire. The micro-hardness measurement results show a gradient distribution of hardness from the wire center to the wire surface that confirmed the increasing trend of plastic shear strain obtained by FE simulations. The hardness of annealed sample (35 HV) is increased up to 73 HV at the wire surface for the smallest pitch length. The yield and ultimate tensile strength of the torsion deformed wires are also increased up to about 85 MPa and 152 MPa from the initial values of 38 MPa and 103 MPa of the annealed one respectively while the maximum elongation reduced significantly.
Go to article

Authors and Affiliations

M. Sedighi
A. Vaezi
M. Pourbashiri
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to assess the innovation risk for an additive manufacturing process. The analysis was based on the results of static tensile tests obtained for specimens made of photocured resin. The assessment involved analyzing the measurement uncertainty by applying the FMEA method. The structure of the causes and effects of the discrepancies was illustrated using the Ishikawa diagram. The risk priority numbers were calculated. The uncertainty of the tensile test measurement was determined for three printing orientations. The results suggest that the material used to fabricate the tensile specimens shows clear anisotropy of the properties in relation to the printing direction.
Go to article

Authors and Affiliations

Stanisław Adamczak
Jerzy Bochnia
Bożena Kaczmarska
Download PDF Download RIS Download Bibtex

Abstract

The article presents tests results of the influence of deformation methods on the microstructure and properties of alloy WE43. There were direct extrusion tests and extrusion with KoBo method performed. An assessment of the influence of the methods of deformation on the microstructure and the mechanical properties of the achieved rods from alloy WE43 was conducted. There was an analysis of microstructure carried out with the use of light and scanning microscopy techniques in the initial state and after plastic deformation. Static tensile test was conducted in temperature of 350°C at a speed of 0.0001 m·s–1 and microhardness measurements were performed of HV0.2. On the basis of the achieved mechanical tests results it was stated that in the temperature of 350°C for samples deformed with the use of KoBo method there was an effect of superplastic flow found. The value of elongation achieved was 250% which was 3 times higher than in case of classic extrusion (80%).

Go to article

Authors and Affiliations

I. Bednarczyk
D. Kuc
M. Tkocz
A. Tomaszewska
Download PDF Download RIS Download Bibtex

Abstract

The scope of the paper is to determine the mechanical properties of the Precontraint 1302 polyester coated fabric under uniaxial and biaxial tensile tests. The results are compared for Precontraint 1302 fabric and other types of coated fabrics. The author applied an orthotropic model and a dense net model to reflect the polyester coated fabric performance under uniaxial and biaxial tensile tests. Material parameters are specified for both constitutive models. In order to observe the variation of immediate mechanical properties, the biaxial cyclic tests are performed for different load ratios. During uniaxial and 1:1 biaxial tensile tests it is barely observable to recognize warp or weft directions on the stress-strain curves. Load history acts strongly on the mechanical properties of the Precontraint 1302 polyester fabrics. The cyclic loads cause variation of immediate longitudinal stiffness with a comparison of values determined for unloaded coated fabrics. The paper can provide scientists, engineers, and designers an experimental and theoretical basis in the field of polyester coated fabrics.

Go to article

Authors and Affiliations

Andrzej Ambroziak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Q235 steel is widely used in engineering and construction. Therefore, it is important to identify the damage mechanism and the acoustic emission (AE) response of the material to ensure the safety of structures. In this study, an AE monitor system and an in situ tensile test with an optical microscope were used to investigate the AE response and insight into the damage process of Q235 steel. The surface of the specimen was polished and etched before the test in order to improve the quality of micrographs. Two kinds of AE responses, namely a burst and a continuous signal, were recorded by the AE monitor system during the test. Based on the in situ test, it was observed that the damage of Q235 steel was induced by the crystal slip and the inclusion fracture. Since the crystal slip was an ongoing process, continuous AE signals were produced, while burst AE signals were possibly produced by the inclusion fracture which occurred suddenly with released higher energy. In addition, a great number of AE signals with high amplitude were observed during the yielding stage and then the number and amplitude decreased.

Go to article

Authors and Affiliations

Ying Zhang
Yue Li
Huan Sheng Lai
Chunmei Bai
Kang Lin Liu
Download PDF Download RIS Download Bibtex

Abstract

In this paper, as a purpose to apply the supersaturated solid-solutionized Al-9Mg alloy to the structural sheet parts of automotive, tensile tests were conducted under the various conditions and a constitutive equation was derived from the tensile test results. Al-9Mg alloy was produced using a special Mg master alloy containing Al2Ca during the casting process and extruded into the sheet. In order to study the deformation behavior of Al-9Mg alloy in warm temperature forming environments, tensile tests were conducted under the temperature of 373 K-573 K and the strain rate of 0.001/s~0.1/s. In addition, by using the raw data obtained from tensile tests, a constitutive equation of the Al-9Mg alloy was derived for predicting the optimized condition of the hot stamping process. Al-9Mg alloy showed uncommon deformation behavior at the 373 K and 473 K temperature conditions. The calculated curves from the constitutive equation well-matched with the measured curves from the experiments particularly under the low temperature and high strain rate conditions.
Go to article

Bibliography

[1] P.F. Bariani, S. Bruschi, A, Ghiotti, F. Michieletto, CIRP Annals 62, 251-254 (2013). DOI: https://doi.org/10.1016/j.cirp.2013.03.050
[2] B.-H. Lee, S.-H. Kim, J.-H. Park, H.-W. Kim, J.-C. Lee, Materials Science and Engineering: A 657, 115-122 (2016). DOI: https://doi.org/10.1016/j.msea.2016.01.089
[3] D. Li, A. Ghosh, Materials Science and Engineering: A 352, 279- 286 (2003). DOI: https://doi.org/10.1016/S0921-5093(02)00915-2
[4] N.-S. Kim, K.-H. Choi, S.-Y. Yang, S.-H. Ha, Y.-O. Yoon, B.-H. Kim, H.-K. Lim, S.K. Kim, S.-K. Hyun, Metals 11, 288 (2021). DOI: https://doi.org/10.3390/met11020288
[5] H. Wang, Y. Luo, P. Friedman, M. Chen, L. Gao, Transactions of Nonferrous Metals Society of China 22, 1-7 (2012). DOI: https://doi.org/10.1016/S1003-6326(11)61131-X
[6] D. Li, A.K. Ghosh, Journal of Materials Processing Technology 145, 281-293 (2004). DOI: https://doi.org/10.1016/j.jmatprotec.2003.07.003
[7] R .C. Picu, Acta Materialia 52, 3447-3458 (2004). DOI: https://doi.org/10.1016/j.actamat.2004.03.042
[8] C.-H. Cho, H.-W. Son, J.-C. Lee, K.-T. Son, J.-W. Lee, S.-K. Hyun, Materials Science and Engineering: A 779, 139151 (2020). DOI: https://doi.org/10.1016/j.msea.2020.139151
[9] S.-Y. Yang, D.-B. Lee, K.-H. Choi, N.-S. Kim, S.-H. Ha, B.- H. Kim, Y.-O. Yoon, H.-K. Lim, S.K. Kim, Y.-J. Kim, Metals 11, 410 (2021). DOI: https://doi.org/10.3390/met11030410
[10] Q. Dai, Y. Deng, H. Jiang, J. Tang, J. Chen, Materials Science and Engineering: A, 766, 138325 (2019). DOI: https://doi.org/10.1016/j.msea.2019.138325
[11] L. Hua, F. Meng, Y. Song, J. Liu, X. Qin, L. Suo, J. of Materi Eng and Perform 23, 1107-1113 (2014). DOI: https://doi.org/10.1007/s11665-013-0834-2
[12] Y.Q. Cheng, H. Zhang, Z.H. Chen, K.F. Xian, Journal of Materials Processing Technology 208, 29-34 (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.095
[13] L.C. Tsao, H.Y. Wu, J.C. Leong, C.J. Fang, Materials & Design 34, 179-184 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.07.060
[14] K.C. Chan, G.Q. Tong, Materials Letters 51, 389-395 (2001).
[15] https://www.sentesoftware.co.uk/site-media/flow-stress-curve
Go to article

Authors and Affiliations

Seung Y. Yang
1 2
ORCID: ORCID
Bong H. Kim
1
ORCID: ORCID
Da B. Lee
1
Kweon H. Choi
1
ORCID: ORCID
Nam S. Kim
1
ORCID: ORCID
Seong H. Ha
1
Young O. Yoon
1
Hyun K. Lim
1
ORCID: ORCID
Shae Kim
1
Young J. Kim
2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Advanced Process and Materials R&D Group, KITECH, 156 Gaetbeol Rd., Yeonsu-gu, Incheon, 21999, Korea
  2. Sungkyunkwan University, Advanced Materials Science & Engineering, SKKU, Suwon, Korea
Download PDF Download RIS Download Bibtex

Abstract

This study is to find the extent of variation in mechanical properties between plate and pipe welds fabricated out of the same FSW process parameters. Common thickness of 3 mm along with similar tool specifications is used to fabricate the weld. Process parameters of tool rotational speed 2000 rpm and weld speed 94 mm/min that was defined as optimal for pipe weld is used as common process parameters. Welds are analyzed for hardness and tensile properties. Yield strength and ultimate tensile strength varied about 8.1% and 11.2% respectively between plate and pipe welds. The hardness of the stir zones varied about 11.6% between plate and pipe welds.
Go to article

Bibliography

[1] G . Mathers, The welding of aluminium and its alloys. Woodhead publishing (2002).
[2] T.H. Tra, ASEAN Engineering Journal 4, 73-81 (2011).
[3] A. Ismail, M. Awang, M.A. Rojan, S.H. Samsudin, ARPN J. Eng. Appl. Sci. 11 (1), 277-280 (2006).
[4] P. Manikkavasagan, G. Rajamurugan, K.S. Kumar, D. Yuvaraj, In: Mater. Sci. Forum. 302-305 (2015).
[5] K.A. Prabha, P.K. Putha, B.S. Prasad, Mater. Today-Proc 5 (9), 18535-18543 (2018). https://doi.org/10.1016/j.matpr.2018.06.196
[6] K. Elangovan, V. Balasubramanian, J. Mater. Process Tech. 200 (1), 163-175 (2008). DOI: https://doi.org/10.1016/j.jmatprotec.2007.09.019
[7] D. Maneiah, K.P. Rao, K.B. Raju, Int. J. Adv. Res. Technol. 4 (12), 53-57 (2017). DOI: https://doi.org/10.22161/ijaers.4.12.10
[8] S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi, A.G. Rao, Def. Technol. 11 (3), 308-317 (2015). DOI: https://doi.org/10.1016/j.dt.2015.06.001
[9] A. Ismail, M. Awang, H. Fawad, K. Ahmad, in: Proceedings of the 7th Asia Pacific IIW International Congress, Singapore, 78-81 (2013).
[10] I . Sabry, A. Khourshid, H. Hindawy, A. Elkassas, Engineering and Technology in India, 2 (1), 1-14 (2017). DOI: https://doi.org/10.15740/HAS/ETI/8.1&2/1-14
[11] M. Akbari, P. Asadi, Mater. Res. Express 6 (6), 066545 (2019). DOI: https://doi.org/10.1088/2053-1591/ab0d72
[12] S.M. Senthil, R. Parameshwaran, S. Ragu Nathan, M. Bhuvanesh Kumar, K. Deepandurai, Struct. Multidiscip. O. 62 (4), 1117-1133 (2020). DOI: https://doi.org/10.1007/s00158-020-02542-2
[13] S.M. Senthil, R. Parameshwaran, S.R. Nathan, S. Karthi, Russ. J. Nondestruct. 55 (12), 957-966 (2019). DOI: https://doi.org/10.1134/S1061830919120106
[14] I . Mumvenge, S.A. Akinlabi, P.M. Mashinini, O.S. Fatoba, J. Okeniyi, E.T. Akinlabi, in: IOP Conf. Ser- Mat. Sci., 012035 (2018). DOI: https://doi.org/10.1088/1757-899X/413/1/012035
[15] A. Ismail, M. Awang, F. Ab Rahman, B.A. Baharudin, P.Z.M. Khalid, D.A. Hamid, in: Engineering Applications for New Materials and Technologies, 439-444 (2018). DOI: https://doi.org/10.1007/978-3-319-72697-7_35
[16] J.S. Sashank, P. Sampath, P.S. Krishna, R. Sagar, S. Venukumar, S. Muthukumaran, Mater. Today-Proc, 5 (2), 8348-8353 (2018). DOI: https://doi.org/10.1016/j.matpr.2017.11.527
[17] J. Tang, Y.J. Shen, Manuf. Process 29, 29-40 (2017). DOI: https://doi.org/10.1016/j.jmapro.2017.07.005
Go to article

Authors and Affiliations

S.M. Senthil
1
ORCID: ORCID
S. Ragu Nathan
2
R. Parameshwaran
1
ORCID: ORCID
M. Bhuvanesh Kumar
3

  1. Kongu Engineering College, Erode, India
  2. Sree Vidyan Ikethan Engineering College, Tirupati, India
  3. National Institute of Technology, Tiruchirappalli, India
Download PDF Download RIS Download Bibtex

Abstract

CrCuFeNi2Tix high-entropy alloys (HEAs) (x = 0.1 ~ 0.7) are prepared and studied in this paper to investigate the effect of titanium on the microstructure, phase composition, and mechanical properties of the CrCuFeNi2Tix-based system. Microstructural studies using scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that the addition of titanium could induce the formation of a body-centered cubic lattice (BCC) and intermetallic compounds (Ni3Ti) of the CrCuFeNi2Tix-based system. The practical formation of the phases meet the theory of the atomic size difference δ, mixing enthalpy ΔHmix, mixing entropy ΔSmix, valence electron concentration (VEC), and electronegativity difference Δχ. Additionally, the tensile and hardness properties of the CrCuFeNi2Tix-based system are investigated in this study. Generally, CrCuFeNi2Tix HEAs show low stiffness and good flexibility in mechanical properties. When the x value is relatively small, the HEAs show good ductility in the tensile test, which is the result of a face-centered cubic lattice (FCC) in the phase composition at this stage; when the x value becomes larger, due to the formation of the intermetallic compounds Ni3Ti, the HEAs show high hardness
Go to article

Authors and Affiliations

Long Chen
1 2
ORCID: ORCID

  1. Northwestern Polytechnical University, The School of Mechanical Engineering, Xi’an, China
  2. Shenzhen University, College of Electronics and Information Engineering, Shenzhen, China
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results on the effects of die-casting process on the strength parameters of castings of the aluminium AlSi9Cu3 alloy

belonging to the group of EN AB-46000, made on renovated high pressure die-casting machine. Specimens for quality testing were taken

from the places of the casting most loaded during the service. The aim of a research was to prove how the new die-casting process control

capabilities influence on the tensile strength of the cast material defined as a value of the breaking force of the specimens. It has been

found that it is possible to specify a set of recommended settings valves of second (II) and third (III) phase, which are responsible for

filling the metal mould on die-casting pressure machine. From the point of view of the finished cast element, it was noticed that exceeding

the prescribed values of valve settings does not bring further benefits and even causes unnecessary overload and reduce the durability of

the mold. Moreover, it was noticed that reduction of the predetermined setting of the second phase (II) valve leads to the formation of

casting defects again.

Go to article

Authors and Affiliations

M. Stachowicz
Ł. Pałyga
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

The article presents tests results of metalforming of magnesium alloy AZ61. Materials for tests were ingots sized  40×90 mm from magnesium alloy marked with symbol AZ61. Before the shaping process the ingots underwent heat treatment. As a result of conduction of the deformation processes there were rods achieved with diameter of 8 mm. There were axisymmetrical compression tests conducted on the samples taken from rods in temperature range from RT to 350ºC in order to determine the plasticity and formability of the alloy AZ61. Static tensile test was conducted in room temperature (RT), in 300ºC and in 350ºC. With the use of light and electron microscopy techniques the changes which occurred in the microstructure of AZ61alloy in initial condition and after plastic deformation (classic extrusion, KoBo method extrusion) were described. The deformation of alloy AZ61 using the KoBo method contributes to an increase in strength and plastic properties. The effect of superplastic flow was found at a temperature of 350ºC, where a 300% increase in plastic properties – elongation value was obtained. The analysis of the microstructure showed a significant grain size reduction in the microstructure of alloy AZ61 after deformation by the KoBo method and after an axisymmetric compression test, where grains of an average diameter of d = 13 µm were obtained.

Go to article

Authors and Affiliations

I. Bednarczyk
Download PDF Download RIS Download Bibtex

Abstract

This research aims to determine the influence of the cyclic process of freezing and defrosting on the mechanical properties of the chosen glass fibres and PTFE-coated woven fabrics. The specimens were subjected to freezing at about -20˚C for 4 h and thawing by full immersion into the water at about +20˚C for 4 h. The fabric samples after 25 and 50 frozen cycles were air-dried at room temperature for one week and then subjected to uniaxial tensile tests. The same tests have been performed on a reference group of specimens, which were not exposed to temperature change. The authors determined the tensile strength, and longitudinal stiffnesses resulting from performed tests. Although the investigated coated woven fabrics expressed a reduction in the tensile strength in water soaking conditions, the performed frozen cycles don’t show a significant decrease in strength under uniaxial tensile tests.
Go to article

Authors and Affiliations

Andrzej Ambroziak
1
ORCID: ORCID
Paweł Kłosowski
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, St. Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a comparison of three strain measurement methods. The mechanical parameters of S355 grade steel (yield strength, tensile strength, modulus of elasticity) were determined in tensile tests. Strains were measured using high resolution measuring instruments: an extensometer, a strain gauge and an ARAMIS 3D DIC system. In this paper, these three instruments have been used simultaneously in tensile tests for the first time. The results indicate that the values of the Young’s modulus obtained using different techniques were similar when each instrument measured strain on the same side of the sample. Small differences were connected with different gauge lengths and their locations. The values of the Young’s modulus determined on the opposite sides of the samples were more varied even when the same method was used (strain gauge measurements). For this reason, it is recommended to use double-sided averaging instruments when the Young’s modulus is determined. The strain-curves obtained from the strain gauge measurements were incomplete and they came to an end at the end of the yield plateau due to the fact that they were damaged when the values of strain were relatively high. The extensometer was used up to the point where the strain reached 0.3% and then the strain was measured based on the distance between the machine clamps. The stress-strain curves obtained from the DIC system were complete because the system was able to monitor the sample until the very end of the tests.
Go to article

Authors and Affiliations

Marcin Chybiński
1
ORCID: ORCID
Janusz Dębiński
1
ORCID: ORCID
Adam Glema
1
ORCID: ORCID
Justyna Grzymisławska
1
ORCID: ORCID
Dariusz Jezierski
1
ORCID: ORCID
Łukasz Polus
1
ORCID: ORCID
Wojciech Szymkuć
1
ORCID: ORCID

  1. Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 5 Street, 60-965 Poznan, Poland

This page uses 'cookies'. Learn more