Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Our study involved the first-ever evaluation of the performance of anther culture and wheat × maize hybridization techniques in producing haploids or doubled haploids as a result of spontaneous doubling of the chromosome number during androgenesis in plants from 30 wheat genotypes including ancient, local and modern types. The results indicated that the best induction rates of androgenic structures and haploid embryos for the hexaploid and tetraploid wheat genotypes were obtained with anther culture and wheat × maize hybridization, respectively. Whereas only one regenerated plant from 15 genotypes of tetraploid wheat was obtained, 13 plants were regenerated from 15 genotypes of hexaploid wheat. Moreover, haploid embryos obtained in wheat × maize hybridization 60 and 100% green plants regenerated in relation to the number of the cultured haploid embryos. Genotypes with high induction capacity to produce androgenic structure or haploid embryos did not have desired haploid plantlets regeneration capacity and vice-versa. However, with both methods, hexaploid wheat genotypes had a considerable ability to produce green plants. Doubled haploid plants were obtained from ancient and local wheat genotypes by both methods, but not from modern wheat. Those genotypes can be used as parents in future wheat breeding programs and new varieties may be obtained by selecting pure lines in wheat populations
Go to article

Authors and Affiliations

Gamze Gurtay
1
Imren Kutlu
2
Suleyman Avci
3

  1. Eskisehir Osmangazi University, Faculty of Agriculture, Department of Field Crops, 26160 Eskisehir, Turkey
  2. Eskisehir Osmangazi University, Faculty of Agriculture, Department of Biosystem Engineering, 26160 Eskisehir, Turkey
  3. 1Eskisehir Osmangazi University, Faculty of Agriculture, Department of Field Crops, 26160 Eskisehir, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Our cytomorphological study of various populations of Elsholtzia ciliata (Lamiaceae) collected from high-altitude sites of Kashmir Himalaya revealed two euploid cytomorphotypes, diploid (n=8) and tetraploid (n=16), growing sympatrically but inhabiting two different habitats. This is the first report of tetraploid (4×) E. ciliata from the Indian subcontinent. We found the course of meiois to be normal in diploids, but tetraploid individuals showed chromosome and meiotic irregularities: cytomixis at early prophase I, stickiness at metaphase I, and chromosome bridges at anaphase I. In tetraploids, 23 of the 26 pollen mother cells observed at metaphase I showed 0-6 quadrivalents, suggesting that the tetraploid is a segmental allopolyploid. Microsporogenesis was also abnormal in tetraploids, showing the formation of triads. All these anomalies are conducive to lower reproductive potential (40.70%) in tetraploids than in diploids (90.50%). Significant morphological differences between the two cytotypes are presented.

Go to article

Authors and Affiliations

Reyaz Ahmad Malik
Raghbir Chand Gupta
Santosh Kumari
Download PDF Download RIS Download Bibtex

Abstract

The article presents the main discoveries of Prof. Andrzej K. Tarkowski, which proved to be fundamental for modern mammalian developmental biology and also for progress in animal breeding and assisted reproduction. Among his achievements the most important are: the demonstration of regulative abilities of blastomeres isolated from early mammalian embryos, generation of first chimaeric mice, studies on mammalian parthenogenesis and establishment of blastomere electrofusion technique for production of tetraploid embryos. Studies on nucleocytoplasmic interactions in germ cells and early embryos contributed substantially to the development of mammalian cloning. Prof. Tarkowski’s work and discoveries provided a tremendous input to the contemporary developmental biology of mammals.

Go to article

Authors and Affiliations

Marek Maleszewski

This page uses 'cookies'. Learn more