Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper the authors present the test carried out to obtain the uniform velocity distribution at the outlet cross section of flow fan. In the investigations the inner flat vane mounted inside of the impeller has been applied. For various angular position of the inner vane, one obtained different flow structures as well as different velocity distributions. The analysis of the obtained results is presented in form of graphs shown in 10 figures, juxtaposing flow phenomena with velocity distributions. Numerical flow simulation with the use of Flo++ program based on the Finite Volume Method was carried out.

Go to article

Authors and Affiliations

Jolanta Stacharska-Targosz
Monika Chmielowiec
Download PDF Download RIS Download Bibtex

Abstract

Laminar mixed convection heat transfer in a vented square cavity separated by a porous layer filled with different nanofluids (Fe3O4, Cu, Ag and Al2O3) has been investigated numerically. The governing equations of mixed convection flow for a Newtonian nanofluid are assumed to be two-dimensional, steady and laminar. These equations are solved numerically by using the finite volume technique. The effects of significant parameters such as the Reynolds number (10 ≤ Re ≤ 1000), Grashof number (103 ≤ Gr ≤ 106), nanoparticle volume fraction (0.1 ≤ ϕ ≤ 0.6), porous layer thickness (0 ≤ γ ≤ 1) and porous layer position (0.1 ≤ δ ≤ 0.9) are studied. Numerical simulation details are visualized in terms of streamline, isotherm contours, and average Nusselt number along the heated source. It has been shown that variations in Reynolds and Darcy numbers have an impact on the flow pattern and heat transfer within a cavity. For higher Reynolds (Re >100), Grashof (Gr > 105) numbers and nanoparticles volume fractions the heat transfer rate is enhanced and it is optimal at lower values of Darcy number (Da = 10-5). In addition, it is noticed that the porous layer thickness and location have a significant effect on the control of the heat transfer rate inside the cavity. Furthermore, it is worth noticing that Ag nanoparticles presented the largest heated transfer rate compared to other nanoparticles.
Go to article

Authors and Affiliations

Hamdi Messaoud
1
Sahi Adel
1
Ourrad Ouerdia
2

  1. Université de Bejaia, Laboratoire de Physique Théorique, Faculté de Technologie, Algeria
  2. Université de Bejaia, Laboratoire de Physique Théorique, Faculté des Sciences Exactes, Algeria

This page uses 'cookies'. Learn more