Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study presents the summary of the knowledge of energy-active segments of steel buildings adapted to obtain electrical energy (EE) and thermal energy (TE) from solar radiation, and to transport and store TE. The study shows a general concept of the design of energy-active segments, which are separated from conventional segments in the way that allows the equipment installation and replacement. Exemplary solutions for the design of energy-active segments, optimised with respect to the principle of minimum thermal strain and maximum structural capacity and reliability were given [34]. The following options of the building covers were considered: 1) regular structure, 2) reduced structure, 3) basket structure, 4) structure with a tie, high-pitched to allow snow sliding down the roof to enhance TE and EE obtainment. The essential task described in the study is the optimal adaptation of energy-active segments in large-volume buildings for extraction, transportation and storage of energy from solar radiation.

Go to article

Authors and Affiliations

Z. Kowal
M. Siedlecka
R. Piotrowski
K. Brzezińska
K. Otwinowska
A. Szychowski
Download PDF Download RIS Download Bibtex

Abstract

The article shows the proposed solution of the objective function for the seasonal thermal energy storage system. In order to develop this function the technological and economic assumptions were used. In order to select the optimal system configuration mathematical models of the main elements of the system were built. Using these models, and based on the selected design point, the simulation of the entire system for randomly generated outside temperatures was made. The proposed methodology and obtained relationships can be readily used for control purposes, constituting model predicted control (MPC).
Go to article

Authors and Affiliations

Jarosław Milewski
Łukasz Szabłowski
Wojciech Bujalski
Download PDF Download RIS Download Bibtex

Abstract

The energy sector is a majorarea that is responsible for the country development. Almost 40% of the total energy requirement of an EU country is consumed by the building sector and 60% of which is only used for heating and cooling requirements. This is a prime concern as fossil fuel stocks are depleting and global warming is rising. This is where thermal energy storage can play a major role and reduce the dependence on the use of fossil fuels for energy requirements (heating and cooling) of the building sector. Thermal energy storage refers to the technology which is related to the transfer and storage of heat energy predominantly from solar radiation, alternatively to the transfer and storage of cold from the environment to maintain a comfortable temperature for the inhabitants in the buildings by providing cold in the summer and heat in the winter. This work is an extensive study on the use of thermal energy storage in buildings. It discusses different methods of implementing thermal energy storage into buildings, specifically the use of phase change materials, and also highlights the challenges and opportunities related to implementing this technology. Moreover, this work explains the principles of different types and methods involved in thermal energy storage.
Go to article

Authors and Affiliations

Priyam Deka
1
Andrzej Szlęk
1

  1. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this document is to present the topic of modeling district heating systems in order to enable optimization of their operation, with special focus on thermal energy storage in the pipelines. Two mathematical models for simulation of transient behavior of district heating networks have been described, and their results have been compared in a case study. The operational optimization in a DH system, especially if this system is supplied from a combined heat and power plant, is a difficult and complicated task. Finding a global financial optimum requires considering long periods of time and including thermal energy storage possibilities into consideration. One of the most interesting options for thermal energy storage is utilization of thermal inertia of the network itself. This approach requires no additional investment, while providing significant possibilities for heat load shifting. It is not feasible to use full topological models of the networks, comprising thousands of substations and network sections, for the purpose of operational optimization with thermal energy storage, because such models require long calculation times. In order to optimize planned thermal energy storage actions, it is necessary to model the transient behavior of the network in a very simple way – allowing for fast and reliable calculations. Two approaches to building such models have been presented. Both have been tested by comparing the results of simulation of the behavior of the same network. The characteristic features, advantages and disadvantages of both kinds of models have been identified. The results can prove useful for district heating system operators in the near future.

Go to article

Authors and Affiliations

Michał Leśko
Wojciech Bujalski
Download PDF Download RIS Download Bibtex

Abstract

The aim of the article is a preliminary assessment of the possibility of using ATES (Aquifer Thermal Energy Storage) technology for the seasonal storage of heat and cold in shallow aquifers in Poland. The ATES technology is designed to provide low-temperature heat and cold to big-area consumers. A study by researchers from the Delft University of Technology in the Netherlands indicates very favorable hydrogeological and climate conditions in most of Poland for its successful development. To confirm this, the authors used public hydrogeological data, including information obtained from 1324 boreholes of the groundwater observation and research network and 172 information sheets of groundwater bodies (GWBs). Using requirements for ATES systems, well-described in the world literature, the selection of boreholes was carried out in the GIS environment, which allowed aquifers that meet the required criteria to be captured. The preliminary assessment indicates the possibility of the successful implementation of ATES technology in Poland, in particular in the northern and western parts of the country, including the cities of: Gdańsk, Warsaw, Wrocław, Bydgoszcz, Słupsk, and Stargard.

Go to article

Authors and Affiliations

Maciej Miecznik
Robert Skrzypczak
Download PDF Download RIS Download Bibtex

Abstract

Adsorption cooling and desalination technologies have recently received more attention. Adsorption chillers, using eco-friendly refrigerants, provide promising abilities for low-grade waste heat recovery and utilization, especially renewable and waste heat of the near ambient temperature. However, due to the low coefficient of performance (COP) and cooling capacity (CC) of the chillers, they have not been widely commercialized. Although operating in combined heating and cooling (HC) systems, adsorption chillers allow more efficient conversion and management of low-grade sources of thermal energy, their operation is still not sufficiently recognized, and the improvement of their performance is still a challenging task. The paper introduces an artificial intelligence (AI) approach for the optimization study of a two-bed adsorption chiller operating in an existing combined HC system, driven by low-temperature heat from cogeneration. Artificial neural networks are employed to develop a model that allows estimating the behavior of the chiller. Two crucial energy efficiency and performance indicators of the adsorption chiller, i.e., CC and the COP, are examined during the study for different operating sceneries and a wide range of operating conditions. Thus this work provides useful guidance for the operating conditions of the adsorption chiller integrated into the HC system. For the considered range of input parameters, the highest CC and COP are equal to 12.7 and 0.65 kW, respectively. The developed model, based on the neurocomputing approach, constitutes an easy-to-use and powerful optimization tool for the adsorption chiller operating in the complex HC system.
Go to article

Bibliography

  1.  S. Moser and S. Lassacher, “External use of industrial waste heat – An analysis of existing implementations in Austria”, J. Clean Prod. 264, 121531 (2020).
  2.  J. Krzywanski, K. Grabowska, F. Herman, P. Pyrka, M. Sosnowski, T. Prauzner, and W. Nowak, “Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks”, Energy Conv. Manag. 153, 313‒322 (2017).
  3.  B. Rezaie and M.A. Rosen, “District heating and cooling: Review of technology and potential enhancements”, Appl. Energy 93, 2‒10 (2012).
  4.  A.P. Roskilly and M. Ahmad Al-Nimr, “Sustainable Thermal Energy Management”, Energy Conv. Manag. 159, 396‒397 (2018).
  5.  H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J.E. Thorsen, F. Hvelplund, and B.V. Mathiesen, “4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems”, Energy 68, 1‒11 (2014).
  6.  M. Widziński, P. Chaja, A. Andersen, M. Jaroszewska, S. Bykuć, and J. Sawicki, “Simulation of an alternative energy system for district heating company in the light of changes in regulations of the emission of harmful substances into the atmosphere”, Int. J. Sustain. Energy Plan. Manag. 24, 43‒56 (2019).
  7.  M. Chorowski and P. Pyrka, “Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration”, Energy 92, 221‒229 (2015).
  8.  R. AL-Dadah, S. Mahmoud, E. Elsayed, P. Youssef, and F. Al-Mousawi, “Metal-organic framework materials for adsorption heat pumps”, Energy 190, 116356 (2020).
  9.  M. Sosnowski, “Evaluation of Heat Transfer Performance of a Multi-Disc Sorption Bed Dedicated for Adsorption Cooling Technology”, Energies 12, 4660 (2019).
  10.  A.S. Alsaman, A.A. Askalany, K. Harby, and M.S. Ahmed, “Performance evaluation of a solar-driven adsorption desalination-cooling system”, Energy 128, 196‒207 (2017).
  11.  A. Kulakowska, A. Pajdak, J. Krzywanski, K. Grabowska, A. Zylka, M. Sosnowski, M. Wesolowska, K. Sztekler, and W. Nowak, “Effect of Metal and Carbon Nanotube Additives on the Thermal Diffusivity of a Silica Gel-Based Adsorption Bed”, Energies 13, 1391 (2020).
  12.  J. Ling-Chin, H. Bao, Z. Ma, W. Taylor, and A. Paul Roskilly, “State-of-the-Art Technologies on Low-Grade Heat Recovery and Utilization in Industry”, in Energy Conversion – Current Technologies and Future Trends, eds. I.H. Al-Bahadly, IntechOpen, 2019.
  13.  K. Grabowska, J. Krzywanski, W. Nowak, and M. Wesolowska, “Construction of an innovative adsorbent bed configuration in the adsorption chiller – Selection criteria for effective sorbent-glue pair”, Energy 151, 317‒323 (2018).
  14.  K. Grabowska, M. Sosnowski, J. Krzywanski, K. Sztekler, W. Kalawa, A. Zylka, and W. Nowak, “The Numerical Comparison of Heat Transfer in a Coated and Fixed Bed of an Adsorption Chiller”, J. Therm. Sci. 27, 421‒426 (2018).
  15.  I.H. Al-Bahadly, Energy Conversion – Current Technologies and Future Trends, London, 2019.
  16.  J. Krzywanski, K. Grabowska, M. Sosnowski, A. Zylka, K. Sztekler, W. Kalawa, T. Wójcik, and W. Nowak, “An Adaptive Neuro-Fuzzy model of a Re-Heat Two-Stage Adsorption Chiller”, Therm. Sci. 23, 1053‒1063 (2019).
  17.  K.J. Chua, S.K. Chou, W.M. Yang, and J. Yan, “Achieving better energy-efficient air conditioning – A review of technologies and strategies”, Appl. Energy 104, 87‒104 (2013).
  18.  X.H. Li, X.H. Hou, X. Zhang, and Z.X. Yuan, “A review on development of adsorption cooling—Novel beds and advanced cycles”, Energy Conv. Manag. 94, 221‒232 (2015).
  19.  K. Sztekler, W. Kalawa, L. Mika, J. Krzywanski, K. Grabowska, M. Sosnowski, W. Nowak, T. Siwek, and A. Bieniek, “Modeling of a Combined Cycle Gas Turbine Integrated with an Adsorption Chiller”, Energies 13, 515 (2020).
  20.  Y.I. Aristov, I.S. Glaznev, and I.S. Girnik, “Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration”, Energy 46, 484‒492 (2012).
  21.  I.S. Girnik, A.D. Grekova, L.G. Gordeeva, and Yu.I. Aristov, “Dynamic optimization of adsorptive chillers: Compact layer vs. bed of loose grains”, Appl. Therm. Eng. 125, 823‒829 (2017).
  22.  U. Bau, N. Baumgärtner, J. Seiler, F. Lanzerath, C. Kirches, and A. Bardow, “Optimal operation of adsorption chillers: First implementation and experimental evaluation of a nonlinear model-predictive-control strategy”, Appl. Therm. Eng. 149, 1503‒1521 (2019).
  23.  M.B. Elsheniti, M.A. Hassab, and A.-E. Attia, “Examination of effects of operating and geometric parameters on the performance of a two-bed adsorption chiller”, Appl. Therm. Eng. 146, 674‒687 (2019).
  24.  J. Krzywanski, K. Grabowska, M. Sosnowski, A. Żyłka, K. Sztekler, W. Kalawa, T. Wójcik, and W. Nowak, “Modeling of a re-heat two- stage adsorption chiller by AI approach”, MATEC Web Conf. 240, 1‒3 (2018).
  25.  S. Narayanan, S. Yang, H. Kim, and E.N. Wang, “Optimization of adsorption processes for climate control and thermal energy storage”, Int. J. Heat Mass Transf. 77, 288‒300 (2014).
  26.  I.I. El-Sharkawy, H. AbdelMeguid, and B.B. Saha, “Towards an optimal performance of adsorption chillers: Reallocation of adsorption/ desorption cycle times”, Int. J. Heat Mass Transf. 63, 171‒182 (2013).
  27.  Q.W. Pan, R.Z. Wang, and L.W. Wang, “Comparison of different kinds of heat recoveries applied in adsorption refrigeration system”, Int. J. Refrig. 55, 37‒48 (2015).
  28.  R.P. Sah, B. Choudhury, R.K. Das, and A. Sur, “An overview of modelling techniques employed for performance simulation of low–grade heat operated adsorption cooling systems”, Renew. Sust. Energ. Rev. 74, 364‒376 (2017).
  29.  L. Rutkowski, Computational Intelligence: Methods and Techniques, Springer Science & Business Media (2008).
  30.  J. Szczepański, J. Klamka, K.M. Węgrzyn-Wolska, I. Rojek, and P. Prokopowicz, “Computational Intelligence and Optimization Techniques in Communications and Control”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 181‒184 (2020).
  31.  B. Paprocki, A. Pregowska, and J. Szczepanski, “Optimizing information processing in brain-inspired neural networks”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 225‒233 (2020).
  32.  A. Cichocki, T. Poggio, S. Osowski, and V. Lempitsky, “Deep Learning: Theory and Practice”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 757‒759 (2018).
  33.  T. Poggio and Q. Liao, “Theory I: Deep networks and the curse of dimensionality”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 761‒773 (2018).
  34.  T. Poggio and Q. Liao, “Theory II: Deep learning and optimization”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 775‒787 (2018).
  35.  M. Figurnov, A. Sobolev, and D. Vetrov, “Probabilistic adaptive computation time”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 811‒820 (2018).
  36.  V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 799‒810 (2018).
  37.  S.C. Cagan, M. Aci, B.B. Buldum, and C. Aci, “Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 729‒739 (2019).
  38.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 199‒206 (2020).
  39.  S. Osowski and K. Siwek, “Local dynamic integration of ensemble in prediction of time series”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 517‒525 (2019).
  40.  J. Kurek, B. Świderski, S. Osowski, M. Kruk, and W. Barhoumi, “Deep learning versus classical neural approach to mammogram recognition”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 831‒840 (2018).
  41.  Q. Zhao, Y. Qiu, G. Zhou, and A. Cichocki, “Comparative study on the classification methods for breast cancer diagnosis”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 841‒848 (2018).
  42.  V. Osin, A. Cichocki, and E. Burnaev, “Fast multispectral deep fusion networks”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 875‒889 (2018).
  43.  J. Jakubowski and J. Chmielińska, “Detection of driver fatigue symptoms using transfer learning”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 869‒874 (2018).
  44.  P. Prokopowicz, D. Mikołajewski, K. Tyburek, and E. Mikołajewska, “Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 191‒198 (2020).
  45.  B. Cieniawska, K. Pentoś, and D. Łuczycka, “Neural modeling and optimization of the coverage of the sprayed surface”, Bull. Pol. Acad. Sci. Tech. Sci. 68(3), 601‒608 (2020).
  46.  Y. Li, B. Zhang, and X. Xu, “Decoupling control for permanent magnet in-wheel motor using internal model control based on back- propagation neural network inverse system”, Bulletin of the Polish Academy of Sciences: Technical Science 66(6), 961‒972 (2018).
  47.  R. Korupczyński and J. Trajer, “Assessment of wind energy resources using artificial neural networks – case study at Łódź Hills”, Bull. Pol. Acad. Sci. Tech. Sci. 67, 115‒124 (2019).
  48.  J. Krzywanski, H. Fan, Y. Feng, A.R. Shaikh, M. Fang, and Q. Wang, “Genetic algorithms and neural networks in optimization of sorbent enhanced H2 production in FB and CFB gasifiers”, Energy Conv. Manag. 171, 1651‒1661 (2018).
  49.  J. Krzywanski, M. Wesolowska, A. Blaszczuk, A. Majchrzak, M. Komorowski, and W. Nowak, “The Non-Iterative Estimation of Bed- to-Wall Heat Transfer Coefficient in a CFBC by Fuzzy Logic Methods”, Procedia Eng. 157, 66‒71 (2016).
  50.  W. Muskała, J. Krzywański, R. Rajczyk, M. Cecerko, B. Kierzkowski, W. Nowak, and W. Gajewski, “Investigation of erosion in CFB boilers”, Rynek Energii 87, 97‒102 (2010).
  51.  W. Muskała, J. Krzywański, R. Sekret, and W. Nowak, “Model research of coal combustion in circulating fluidized bed boilers” Chem. Process Eng. 29, 473‒492 (2008).
  52.  A. Zylka, J. Krzywanski, T. Czakiert, K. Idziak, M. Sosnowski, K. Grabowska, T. Prauzner, and W. Nowak, “The 4th Generation of CeSFaMB in numerical simulations for CuO-based oxygen carrier in CLC system”, Fuel 255, 115776 (2019).
  53.  A. Błaszczuk and J. Krzywański, “A comparison of fuzzy logic and cluster renewal approaches for heat transfer modeling in a 1296 t/h CFB boiler with low level of flue gas recirculation”, Arch. Thermodyn. 38, 91‒122 (2017).
  54.  J. Krzywanski, M. Wesolowska, A. Blaszczuk, A. Majchrzak, M. Komorowski, and W. Nowak, “Fuzzy logic and bed-to-wall heat transfer in a large-scale CFBC”, Nt. J. Numer. Methods Heat Fluid Flow 28, 254‒266 (2018).
  55.  Machine learning software, Neural Designer. [Online] https://www.neuraldesigner.com/ (accessed on Jun 11, 2019).
  56.  J. Krzywanski, A. Blaszczuk, T. Czakiert, R. Rajczyk, and W. Nowak, “Artificial intelligence treatment of NOX emissions from CFBC in air and oxy-fuel conditions”, CFB-11: Proceedings of the 11th International Conference on Fluidized Bed Technology, 2014, pp. 619‒624.
  57.  J. Krzywański and W. Nowak, “Neurocomputing approach for the prediction of NOx emissions from CFBC in air-fired and oxygen-enriched atmospheres”, J. Power Technol.97, 75‒84 (2017).
  58.  Z. Salam, J. Ahmed, and B.S. Merugu, “The application of soft computing methods for MPPT of PV system: A technological and status review”, Appl. Energy107, 135‒148 (2013).
  59.  J. Krzywanski, “A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods”, Energies 12, 4441 (2019).
  60.  J. Krzywanski and W. Nowak, “Modeling of heat transfer coefficient in the furnace of CFB boilers by artificial neural network approach”, Int. J. Heat Mass Transf. 55, 4246‒4253 (2012).
  61.  J. Krzywanski and W. Nowak, “Modeling of bed-to-wall heat transfer coefficient in a large-scale CFBC by fuzzy logic approach”, Int. J. Heat Mass Transf. 94, 327‒334 (2016).
  62.  A.K. Kar, “Bio inspired computing – A review of algorithms and scope of applications”, Expert Syst. Appl.59, 20‒32 (2016).
  63.  C.Y. Tso, C.Y.H. Chao, and S.C. Fu, “Performance analysis of a waste heat driven activated carbon based composite adsorbent – Water adsorption chiller using simulation model”, Int. J. Heat Mass Transf. 55, 7596‒7610 (2012).
  64.  L. Yang and W. Wang, “The heat transfer performance of horizontal tube bundles in large falling film evaporators”, Int. J. Refrig. 34, 303‒316 (2011).
  65.  W. Kalawa, K. Grabowska, K. Sztekler, J. Krzywański, M. Sosnowski, S. Stefański, T. Siwek, and W. Nowak, “Progress in design of adsorption refrigeration systems. Evaporators”, EPJ Web Conf. 213, 02035 (2019).
  66.  B.B. Saha, S. Koyama, J.B. Lee, K. Kuwahara, K.C.A. Alam, Y. Hamamoto, A. Akisawa, and T. Kashiwagi, “Performance evaluation of a low-temperature waste heat driven multi-bed adsorption chiller”, Int. J. Multiph. Flow 29, 1249‒1263 (2003).
  67.  J. Jeon, S. Lee, D. Hong, and Y. Kim, “Performance evaluation and modeling of a hybrid cooling system combining a screw water chiller with a ground source heat pump in a building”, Energy 35, 2006‒2012 (2010).
  68.  B.B. Saha, E.C. Boelman, and T. Kashiwagi, “Computer simulation of a silica gel-water adsorption refrigeration cycle – the influence of operating conditions on cooling output and COP”, ASHRAE Trans.: Res. 101, 348‒357 (1995).
  69.  K. Habib, B.B. Saha, A. Chakraborty, S. Koyama, and K. Srinivasan, “Performance evaluation of combined adsorption refrigeration cycles”, Int. J. Refrig. 34, 129‒137 (2011).
  70.  B.B. Saha, S. Koyama, T. Kashiwagi, A. Akisawa, K.C. Ng, and H.T. Chua, “Waste heat driven dual-mode, multi-stage, multi-bed regenerative adsorption system”, Int. J. Refrig. 26, 749‒757 (2003).
  71.  A. Li, A.B. Ismail, K. Thu, K.C. Ng, and W.S. Loh, “Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight”, Appl. Energy 130, 702‒711 (2014).
Go to article

Authors and Affiliations

Jarosław Krzywanski
1
ORCID: ORCID
Karol Sztekler
2
ORCID: ORCID
Marcin Bugaj
3
ORCID: ORCID
Wojciech Kalawa
2
ORCID: ORCID
Karolina Grabowska
1
ORCID: ORCID
Patryk Robert Chaja
4
ORCID: ORCID
Marcin Sosnowski
1
ORCID: ORCID
Wojciech Nowak
2
ORCID: ORCID
Łukasz Mika
2
ORCID: ORCID
Sebastian Bykuć
4
ORCID: ORCID

  1. Jan Dlugosz University in Czestochowa, Faculty of Science and Technology, ul. A. Krajowej 13/15, 42-200 Czestochowa, Poland
  2. AGH University of Science and Technology, Faculty of Energy and Fuels, ul. A. Mickiewicza 30, 30-059 Cracow, Poland
  3. Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, ul. Nowowiejska 24, 00-665 Warsaw, Poland
  4. Institute of Fluid-Flow Machinery Polish Academy of Sciences, Department of Distributed Energy, ul. Fiszera 14, 80-952 Gdansk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The phase change materials (PCM) are widely used in several applications, especiallyi n the latent heat thermal energy storage system (LHTESS). Due to the very low thermal conductivity of PCMs. A small mass fraction of hybrid nanoparticles TiO 2–CuO (50%–50%) is dispersed in PCM with five mass concentrations of 0%, 0.25%, 0.5%, 0.75% and 1 mass % to improve its thermal conductivity. This article is focused on thermal performance of the hybrid nano-PCM (HNPCM) used for the LHTESS. A numerical model based on the enthalpy-porosity technique is developed to solve the Navier-Stocks and energy equations. The computations were conducted for the melting and solidification processes of the HNPCM in a shell and tube latent heat storage (LHS). The developed numerical model was validated successfully with experimental data from the literature. The results showed that the dispersed hybrid nanoparticles improved the effective thermal conductivity and density of the HNPCM. Accordingly, when the mass fraction of a HNPCM increases by 0.25%, 0.5%, 0.75% and 1 mass %, the average charging time improves by 12.04 %, 19.9 %, 23.55%, and 27.33 %, respectively. Besides, the stored energy is reduced by 0.83%, 1.67%, 2.83% and 3.88%, respectively. Moreover, the discharging time was shortened by 18.47%, 26.91%, 27.71%, and 30.52%, respectively.
Go to article

Bibliography

[1] L.F. Cabeza, A. Castell, C. Barreneche, A. de Gracia, and A. Fernández. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews, 15(3):1675–1695, 2011. doi: 10.1016/j.rser.2010.11.018.
[2] K. Nedjem, M. Teggar, K.A.R. Ismail, and D. Nehari. Numerical investigation of charging and discharging processes of a shell and tube nano-enhanced latent thermal storage unit. Journal of Thermal Science and Engineering Applications, 12(2):021021, 2020. doi: 10.1115/1.4046062.
[3] K. Hosseinzadeh, M.A. Efrani Moghaddam, A. Asadi, A.R. Mogharrebi, and D.D. Ganji. Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy storage system by numerical simulation. Renewable Energy, 154:497–507, 2020. doi: 10.1016/j.renene.2020.03.054.
[4] M.M. Joybari, S. Seddegh, X. Wang, and F. Haghighat. Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system. Renewable Energy,} 140:234–244, 2019. doi: 10.1016/j.renene.2019.03.037.
[5] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, and A.T. Mohammad. Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied Thermal Engineering, 53(1):147–156, 2013. doi: 10.1016/j.applthermaleng.2013.01.011.
[6] X. Yang, Z. Lu, Q. Bai, Q. Zhang, L. Jin, and J. Yan. Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Applied Energy, 202:558–570, 2017. doi: 10.1016/j.apenergy.2017.05.007.
[7] C. Zhao, M. Opolot, M. Liu, F. Bruno, S. Mancin, and K. Hooman. Numerical study of melting performance enhancement for PCM in an annular enclosure with internal-external fins and metal foams. International Journal of Heat and Mass Transfer, 150:119348, 2020. doi: 10.1016/j.ijheatmasstransfer.2020.119348.
[8] M. Longeon, A. Soupart, J.-F. Fourmigué, A. Bruch, and P. Marty. Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 112:175–184, 2013. doi: 10.1016/j.apenergy.2013.06.007.
[9] S. Seddegh, S.S.M. Tehrani, X. Wang, F. Cao, and R.A. Taylor. Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Applied Thermal Engineering, 130:1349–1362, 2018. doi: 10.1016/j.applthermaleng.2017.11.130.
[10] I. Al Siyabi, S. Khanna, T. Mallick, and S. Sundaram. An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system. Journal of Energy Storage, 23:57–68, 2019. doi: 10.1016/j.est.2019.03.010.
[11] S. Sebti, S. Khalilarya, I. Mirzaee, S. Hosseinizadeh, S. Kashani, and M. Abdollahzadeh. A numerical investigation of solidification in horizontal concentric annuli filled with nano-enhanced phase change material (NEPCM). World Applied Sciences Journal, 13(1):9–15, 2011.
[12] N. Dhaidan, J. Khodadadi, T.A. Al-Hattab, and S. Al-Mashat. Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. International Journal of Heat and Mass Transfer, 67:455–468, 2013. doi: 10.1016/j.ijheatmasstransfer.2013.08.002.
[13] Q. Ren, F. Meng, and P. Guo. A comparative study of PCM melting process in a heat pipe-assisted LHTES unit enhanced with nanoparticles and metal foams by immersed boundary-lattice Boltzmann method at pore-scale. International Journal of Heat and Mass Transfer, 121:1214–1228, 2018. doi: 10.1016/j.ijheatmasstransfer.2018.01.046.
[14] C. Nie, J. Liu, and S. Deng. Effect of geometric parameter and nanoparticles on PCM melting in a vertical shell-tube system. Applied Thermal Engineering, 184:116290, 2020. doi: 10.1016/j.applthermaleng.2020.116290.
[15] M. Gorzin, M.J. Hosseini, M. Rahimi, and R. Bahrampoury. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger. Journal of Energy Storage, 22:88–97, 2019. doi: 10.1016/j.est.2018.12.023.
[16] M. Khatibi, R. Nemati-Farouji, A. Taheri, A. Kazemian, T. Ma, and H. Niazmand. Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units. Journal of Energy Storage, 33:102055, 2020. doi: 10.1016/j.est.2020.102055.
[17] P. Manoj Kumar, K. Mylsamy, and P.T. Saravanakumar. Experimental investigations on thermal properties of nano-SiO 2/paraffin phase change material (PCM) for solar thermal energy storage applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(19):2420–2433, 2020. doi: 10.1080/15567036.2019.1607942.
[18] P. Manoj Kumar, K. Mylsamy, K. Alagar, and K. Sudhakar. Investigations on an evacuated tube solar water heater using hybrid-nano based organic phase change material. International Journal of Green Energy, 17(13):872–883, 2020. doi: 10.1080/15435075.2020.1809426.
[19] S. Ebadi, S.H. Tasnim, A.A. Aliabadi, and S. Mahmud. Melting of nano-PCM inside a cylindrical thermal energy storage system: Numerical study with experimental verification. Energy Conversion and Management, 166:241–259, 2018. doi: 10.1016/j.enconman.2018.04.016.
[20] J.M. Mahdi and E.C. Nsofor. Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins. Applied Energy, 211:975–986, 2018. doi: 10.1016/j.apenergy.2017.11.082.
[21] M.J. Hosseini, A.A. Ranjbar, K. Sedighi, and M. Rahimi. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. International Communications in Heat and Mass Transfer, 39(9):1416–1424, 2012. doi: 10.1016/j.icheatmasstransfer.2012.07.028.
[22] S. Harikrishnan, K. Deepak, and S. Kalaiselvam. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. Journal of Thermal Analysis and Calorimetry, 115:1563–1571, 2014. doi: 10.1007/s10973-013-3472-x.
[23] ANSYS. Fluent. (2017), Copyright 2017 SAS IP, Inc.
[24] Z. Khan, Z.A. Khan, and P. Sewell. Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application. International Journal of Heat and Mass Transfer, 144:118619, 2019. doi: 10.1016/j.ijheatmasstransfer.2019.118619.
[25] J.C. Maxwell. Electricity and Magnetism. Clarendon Press, Oxford, 1873.
[26] S. Ghadikolaei, K. Hosseinzadeh, and D.D. Ganji. Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe 3O 4-Ag) dependent on shape factor. Journal of Molecular Liquids, 262:376–388, 2018. doi: 10.1016/j.molliq.2018.04.094.
[27] S.S. Ghadikolaei, M. Yassari, H. Sadeghi, K. Hosseinzadeh, and D.D. Ganji. Investigation on thermophysical properties of TiO 2–Cu/H 2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technology, 322:428–438, 2017. doi: 10.1016/j.powtec.2017.09.006.
[28] A.D. Brent, V.R. Voller, and K. Reid. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, 13(3):297–318, 1988. doi: 10.1080/10407788808913615.
[29] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. CRC Press, 1980.
[30] M.L. Benlekkam, D. Nehari, and N. Cheriet. Numerical investigation of latent heat thermal energy storage system. Recueil de Mécanique, 3:229-235, 2018. doi: 10.5281/zenodo.1490505.
[31] M.A. Kibria, M.R. Anisur, M.H. Mahfuz, R. Saidur, and I.H.S.C. Metselaar. Numerical and experimental investigation of heat transfer in a shell and tube thermal energy storage system. International Communications in Heat and Mass Transfer, 53:71–78, 2014. doi: 10.1016/j.icheatmasstransfer.2014.02.023.
[32] M.J. Hosseini, M. Rahimi, and R. Bahrampoury. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. International Communications in Heat and Mass Transfer, 50:128–136, 2014. doi: 10.1016/j.icheatmasstransfer.2013.11.008.
Go to article

Authors and Affiliations

Mohamed Lamine Benlekkam
1 2
ORCID: ORCID
Driss Nehari
3
ORCID: ORCID

  1. Department of Science and Technology, University of Tissemsilt, Tissemsilt, Algeria
  2. Laboratory of Smart Structure, University of Ain Temouchent, Ain Temouchent, Algeria
  3. Laboratory of Hydrology and Applied Environment, University of Ain Temouchent, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a theoretical analysis of thermal energy storage filled with phase change material (PCM) that is aimed at optimization of an adsorption chiller performance in an air-conditioning system. The equations describing a lumped parameter model were used to analyze internal heat transfer in the cooling installation. Those equations result from the energy balances of the chiller, PCM thermal storage unit and heat load. The influence of the control of the heat transfer fluid flow rate and heat capacity of the system components on the whole system operation was investigated. The model was used to validate the selection of Rubitherm RT62HC as a PCM for thermal storage. It also allowed us to assess the temperature levels that are likely to appear during the operation of the system before it will be constructed.
Go to article

Authors and Affiliations

Jarosław Karwacki
1
Roman Kwidziński
1
Piotr Leputa
1 2

  1. The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Heat Transfer Department, Fiszera 14, 80-231 Gdansk, Poland
  2. ENERGA Ciepło Ostrołeka Sp. z o.o., Celna 13, 07-410 Ostrołeka, Poland

This page uses 'cookies'. Learn more