Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to present and analyse the decision-making problem faced by a future house owner - selection of the optimal solution of building thermal insulation in relation to the selected criteria, both related to costs and future benefits. The problem of selecting the best solutions in the construction sector is widely discussed in the science literature. In this paper, the authors decided to solve the raised problem by using the Entropy method.

Go to article

Authors and Affiliations

P. Nowak
M. Skłodkowski
Download PDF Download RIS Download Bibtex

Abstract

The density, compressive strength, and thermal insulation properties of fly ash geopolymer paste are reported. Novel insulation material of glass bubble was used as a replacement of fly ash binder to significantly enhance the mechanical and thermal properties compared to the geopolymer paste. The results showed that the density and compressive strength of 50% glass bubble was 1.45 g/cm3 and 42.5 MPa, respectively, meeting the standard requirement for structural concrete. Meanwhile, the compatibility of 50% glass bubbles tested showed that the thermal conductivity (0.898 W/mK), specific heat (2.141 MJ/m3K), and thermal diffusivity (0.572 mm2/s) in meeting the same requirement. The improvement of thermal insulation properties revealed the potential use of glass bubbles as an insulation material in construction material.
Go to article

Authors and Affiliations

Noor Fifinatasha Shahedan
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Norsuria Mahmed
1 2
ORCID: ORCID
Liew Yun Ming
1 2
ORCID: ORCID
Shayfull Zamree Abd Rahim
1
ORCID: ORCID
Ikmal Hakem A Aziz
1
ORCID: ORCID
Aeslina Abdul Kadir
3
ORCID: ORCID
Andrei Victor Sandu
4
ORCID: ORCID
Mohd Fathullah Ghazali
1
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  3. Universiti Tun Hussein Onn Malaysia, Faculty of Civil and Environmental Engineering, Johor, Malaysia
  4. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

This paper describes preparation methodology and research results of newly developed materials from post-production fibrous waste that are resistant to high temperatures. Widely available raw materials were used for this purpose. Such approach has significant impact on the technological feasibility and preparation costs. Obtained materials were verified via applying of various tests including characterization of shrinkage, porosity, density and water absorption as well as X-ray analysis (XRD), followed by mechanical bending and compressive strength determination.

Based on the research results, the possible applications of materials as thermal insulators were indicated.

Go to article

Authors and Affiliations

K. Kogut
K. Kasprzyk
R. Kłoś
Download PDF Download RIS Download Bibtex

Abstract

Balconies are elements of some multi-storey buildings. Thermo-insulated fasteners are components that connect balcony slabs with the building structure. Their main task is the transfer of loads in connections of balcony slabs with the building while also minimizing thermal bridges. The article presents analytical calculations performed to develop the new type of thermal insulated fasteners and to determine their load-bearing capacity. The aim of this article is to demonstrate that analytical calculations based on commonly utilized principles of reinforced concrete and steel structure operation along enable the development of the effective design algorithm of insulated fasteners and allow for a quick analysis of various geometric variants of these fasteners. The article presents the adaptation of typical algorithms for calculation of steel and reinforced concrete structures for the analysis of non-typical load-bearing capacity states that occur during the calculation of insulated fasteners. The load-bearing capacities of individual fasteners are shown in M-V interaction diagrams (bending moment – shearing force).
Go to article

Authors and Affiliations

Tomasz Janiak
1
ORCID: ORCID

  1. Bydgoszcz University of Science and Technology, Faculty of Civil and Environmental Engineering and Architecture, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

A commercially available ASPEN PLUS simulation using a pipe model was employed to determine the maximum safe pipeline distances to subsequent booster stations as a function of carbon dioxide (CO2) inlet pressure, ambient temperature and ground level heat flux parameters under three conditions: isothermal, adiabatic and with account of heat transfer. In the paper, the CO2working area was assumed to be either in the liquid or in the supercritical state and results for these two states were compared. The following power station data were used: a 900 MW pulverized coal-fired power plant with 90% of CO2recovered (156.43 kg/s) and the monothanolamine absorption method for separating CO2from flue gases. The results show that a subcooled liquid transport maximizes energy efficiency and minimizes the cost of CO2transport over long distances under isothermal, adiabatic and heat transfer conditions. After CO2is compressed and boosted to above 9 MPa, its temperature is usually higher than ambient temperature. The thermal insulation layer slows down the CO2temperature decrease process, increasing the pressure drop in the pipeline. Therefore in Poland, considering the atmospheric conditions, the thermal insulation layer should not be laid on the external surface of the pipeline.

Go to article

Authors and Affiliations

Andrzej Witkowski
Mirosław Majkut
Sebastian Rulik
Download PDF Download RIS Download Bibtex

Abstract

The results from the experimental research are presented in the abstract. The experimental research involved utilization of the sludge from the mine water treatment plant of Coal Quarry ČSA/Czechoslovak Army/ (hereinafter “ČSA”) and Coal Quarry Jana Švermy (hereinafter “JŠ”) in the segment of thermal insulation mortars. The mine water treatment is described below including chemical and mineralogical sludge composition as the additional component of the binding material in the polyurethane thermal insulation mortars. Furthermore the composition of experimental mixtures of the thermal insulation polyurethane mortar is presented in the work and its physical-mechanical properties. The monitored elements included the strength characteristics, heat conductivity coefficient λ, and water vapour diffusion coefficient μ.

Go to article

Authors and Affiliations

V. Václavík
J. Daxner
J. Valíček
V. Dombek
T. Dvorský
M. Kušnerová
B. Václavíková
Download PDF Download RIS Download Bibtex

Abstract

In this study, agar-based nanocomposite films containing ultra-porous silica aerogel particles were fabricated by gel casting using an aqueous agar/silica aerogel slurry. The silica aerogel particles did not show significant agglomeration and were homogeneously distributed in the agar matrix. Transmission electron microscopy observations demonstrated that the silica aerogel particles had a mesoporous microstructure and their pores were not incorporated into the agar polymer molecules. The thermal conductivities of the agar and agar/5 wt.% silica aerogel nanocomposite films were 0.36 and 0.20 W·m–1·K–1, respectively. The transmittance of the agar films did not decrease upon the addition of silica aerogel particles into them. This can be attributed to the anti-reflection effect of silica aerogel particles.

Go to article

Authors and Affiliations

Min-Jin Lee
Hyun-Ah Jung
Kyong-Jin Lee
Haejin Hwang
Download PDF Download RIS Download Bibtex

Abstract

In the article, the authors presented the results of microbiological air quality studies in selected buildings with additional thermal insulation applied from the inside using a silicate and lime system, as well as the results of a survey study concerning the comfort of use of said buildings. The microbiological air quality studies, conducted in buildings immediately prior to and after the application of additional thermal insulation using silicate and lime sheets, demonstrated a significant decrease in the number of mould spores in interior spaces. This was also reflected in the results of a survey study. The survey study was conducted with users of public and commercial buildings and municipal housing buildings in Krakow. Thanks to the additional insulation applied from inside using the silicate and lime system, all of the utilitarian parameters of internal spaces had improved. The most significant changes concerned parameters like comfort of use, the aesthetic of the spaces and breathing comfort. According to experts, the silicate and lime system was also rated highly in terms of the analysed parameters.

Go to article

Authors and Affiliations

Elżbieta Radziszewska-Zielina
ORCID: ORCID
Piotr Czerski
Wojciech Grześkowiak
Patrycja Kwaśniewska-Sip
Download PDF Download RIS Download Bibtex

Abstract

The modern cabin of heavy duty machines have to fulfil a number of requirements which deal with operators' work comfort. More and more often, the vibroacoustic and thermal comforts decide about the cabin quality. This paper presents principles of acoustic and thermal calculations as well as their use in combined assessment.

Go to article

Authors and Affiliations

Zygmunt Dziechciowski

This page uses 'cookies'. Learn more