Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The authors present a numerical study of a start-up of a boiler with a thick-walled element subjected to thermomechanical loading. The significance of calculations of real heat transfer coefficients has been demonstrated. Fluid dynamics, mechanical transient thermal and static structural calculations have been conducted in both separate and coupled modes. Strain-stress analyses prove that the effect of the heat transfer coefficient changing in time and place in comparison with a constant one as recommended by standards is the key factor of fatigue calculations.

Go to article

Authors and Affiliations

Krzysztof Wacławiak
Jerzy Okrajni
Download PDF Download RIS Download Bibtex

Abstract

Magnesium alloys thanks to their high specific strength have an extensive potential of the use in a number of industrial applications. The most important of them is the automobile industry in particular. Here it is possible to use this group of materials for great numbers of parts from elements in the car interior (steering wheels, seats, etc.), through exterior parts (wheels particularly of sporting models), up to driving (engine blocks) and gearbox mechanisms themselves. But the use of these alloys in the engine structure has its limitations as these parts are highly thermally stressed. But the commonly used magnesium alloys show rather fast decrease of strength properties with growing temperature of stressing them. This work is aimed at studying this properties both of alloys commonly used (of the Mg-Al-Zn, Mn type), and of that ones used in industrial manufacture in a limited extent (Mg-Al-Sr). These thermomechanical properties are further on complemented with the microstructure analysis with the aim of checking the metallurgical interventions (an effect of inoculation). From the studied materials the test castings were made from which the test bars for the tensile test were subsequently prepared. This test took place within the temperature range of 20°C – 300°C. Achieved results are summarized in the concluding part of the contribution.

Go to article

Authors and Affiliations

M. Cagala
P. Lichý
Download PDF Download RIS Download Bibtex

Abstract

The paper refers to earlier publications of the author, on identification of properties of thermomechanical, chemically hardened core/mold sands. In that earlier period, first version of the original DMA apparatus, produced by a Polish company Multiserw-Morek, was used. The Hot Distortion (HD) study results, published by the author in 2008, referred to phenomena accompanying a thermal shock in real conditions of thermal interaction of a liquid alloy on a mold, in reference to a shock possible to obtain in laboratory conditions, without use of liquid alloy as a heat source, with analysis of solutions applied in the DMA apparatus. This paper presents author’s observations on testing a new, innovative version of the LRu-DMA apparatus, containing a module allowing the Hot Distortion (HD) study. Temperature of specimens achieved in the case of the gas burner heating reaches values definitely above 800°C on the heated side and 610°C on the other side. Using an electric radiator, with maximal temperature of 900°C allows obtaining temperatures in between 225-300°C.
Go to article

Authors and Affiliations

Z. Ignaszak
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to present the results of the examinations of the structure and thermomechanical properties of PA6/NanoBent composite. NanoBent composites composed of minerals from the smectite group (mainly montmorillonite) were used for modification of polyamide 6. PA6 composite with content of 1, 3, 5% of NanoBent was prepared in a Theysohn TSK 75-N twin screw extruder. The samples were prepared using the injection technology by means of a Krauss-Maffei KM65-160 C1 injection molding machine. The samples of composites obtained at different injection temperatures and injection mold temperatures were used for the examinations. Degree of crystallinity was examined using the DSC method whereas the material structure was examined with an optical microscope. DSC studies showed a reduction in the value of the degree of crystallinity with the increasing content of nanofiller in the polymer material. The narrowing of the peak was recorded in the DSC thermograms for nanocomposites with greater percentage of the nanofiller. Dynamical properties of polyamide 6 nanocomposite were also determined in relation to temperature and frequency. The samples were bended at frequencies of 1 Hz and 10 Hz over the temperature range from –100°C to 180°C and the heating rate of 2K/min. A significant increase in storage modulus was observed for PA6 samples with the content of 5% of NanoBent obtained at the injection temperature of 270°C and mold temperature of 70°C. Smaller size of spherulites and arrangement of structural elements in clusters along the line of polymeric material flow in the mold cavity at higher contents of NanoBent were observed during structural examinations of the composites.
Go to article

Authors and Affiliations

A. Gnatowski
1
ORCID: ORCID
R. Gołębski
1
ORCID: ORCID
K. Stachowiak
1
ORCID: ORCID

  1. Czestochowa University of Technology, Department of Technology and Automation, 19c Armii Krajowej Ave, 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Shape memory alloys are characterised by interesting properties, i.e. shape memory effect and pseudoelasticity, which enable their increasing application. Thermomechanical aspects of martensitic and reverse transformations in TiNi shape memory alloy subjected to tension tests were investigated. The stress-strain characteristics obtained during the tests were completed by the temperature characteristics. The temperature changes were calculated on the basis of thermograms determined by an infrared camera. Taking advantages from the infrared technique, the temperature distributions on the specimen’s surface were found. Heterogeneous temperature distributions, related to the nucleation and development of the new martensite phase, were registered and analysed. A significant temperature increase, up to 30 K, was registered during the martensitic transformation. The similar effects of the heterogeneous temperature distribution were observed during unloading, while the reverse transformation, martensite into austenite took place, accompanied by significant temperature decrease.

Go to article

Authors and Affiliations

E.A. Pieczyska
S.P. Gadaj
W.K. Nowacki
H. Tobushi
Download PDF Download RIS Download Bibtex

Abstract

This work presents a numerical simulation of aviation structure joined by friction stir welding, FSW, process. The numerical simulation of aviation structure joined by FSW was created. The simulation uses thermomechanical coupled formulation. Th model required creation of finite elements representing sheets, stiffeners and welds, definition of material models and boundary conditions. The thermal model took into account heat conduction and convection assigned to appropriate elements of the structure. Time functions were applied to the description of a heat source movement. The numerical model included the stage of welding and the stage of releasing clamps. The output of the simulation are residual stresses and deformations occurring in the panel. Parameters of the global model (the panel model) were selected based on the local model (the single joint model), the experimental verification of the local model using the single joint and the geometry of the panel joints.

Go to article

Authors and Affiliations

P. Lacki
K. Adamus
J. Winowiecka
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present metrology and control methods and techniques for electromagnetically actuated microcantilevers. The electromagnetically actuated cantilevers belong to the micro electro mechanical systems (MEMS), which can be used in high resolution force and mass change investigations. In the described experiments, silicon cantilevers with an integrated Lorentz current loop were investigated. The electromagnetically actuated cantilevers were characterized using a modified optical beam deflection (OBD) system, whose architecture was optimized in order to increase its resolution. The sensitivity of the OBD system was calibrated using a reference cantilever, whose spring constant was determined through thermomechanical noise analysis registered interferometrically. The optimized and calibrated OBD system was used to observe the resonance and bidirectional static deflection of the electromagnetically deflected cantilevers. After theoretical analysis and further experiments, it was possible to obtain setup sensitivity equal to 5.28 mV/nm.
Go to article

Bibliography

[1] Binnig, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930. https://doi.org/10.1103/PhysRevLett.56.930
[2] Judy, J. W. (2001). Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Materials and Structures, 10(6), 1115–1134. https://doi.org/10.1088/0964-1726/10/6/301
[3] Algamili, A. S., Khir, M. H. M., Dennis, J. O., Ahmed, A. Y., Alabsi, S. S., Hashwan, S. S. B., & Junaid, M. M. (2021). A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Research Letters, 16(1), 1–21. https://doi.org/10.1186/s11671-021-03481-7
[4] Woszczyna, M., Gotszalk, T., Zawierucha, P., Zielony, M., Ivanow, Tzv., Ivanowa, K., Sarov, Y., Nikolov, N., Mielczarski, J., Mielczarska, E., & Rangelow, I. W. (2009). Thermally driven piezoresistive cantilevers for shear-force microscopy. Microelectronic Engineering, 86(4), 1212–1215. https://doi.org/10.1016/j.mee.2009.01.043
[5] Shen, B., Allegretto, W., Hu, M., & Robinson, A. M. (1996). CMOS micromachined cantileverin- cantilever devices with magnetic actuation. IEEE Electron Device Letters, 17(7), 372–374. https://doi.org/10.1109/55.506371
[6] Adhikari, R., Kaundal, R., Sarkar, A., Rana, P., & Das, A. K. (2012). The cantilever beam magnetometer: A simple teaching tool for magnetic characterization. American Journal of Physics, 80(3), 225–231. https://doi.org/10.1119/1.3679840
[7] Hsieh, C. H., Dai, C. L., & Yang, M. Z. (2013). Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors. Sensors, 13(11), 14728–14739. https://doi.org/10.3390/s131114728
[8] Rhoads, J. F., Kumar, V., Shaw, S. W., & Turner, K. L. (2013). The non-linear dynamics of electromagnetically actuated microbeam resonators with purely parametric excitations. International Journal of Non-Linear Mechanics, 55, 79–89. https://doi.org/10.1016/j.ijnonlinmec.2013.04.003
[9] Lee, B., Prater, C. B.,&King,W. P. (2012). Lorentz force actuation of a heated atomic force microscope cantilever. Nanotechnology, 23(5), 055709. https://doi.org/10.1088/0957-4484/23/5/055709
[10] Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491–505. https://doi.org/10.1038/nmeth.1218
[11] Hoogenboom, B. W., Frederix, P. L. T. M., Yang, J. L., Martin, S., Pellmont, Y., Steinacher, M., Zäch, S., Langenbach, E., Heimbeck, H.-J., Engel, A., & Hug, H. J. (2005). A Fabry–Perot interferometer for micrometer-sized cantilevers. Applied Physics Letters, 86(7), 074101-1. https://doi.org/10.1063/1.1866229
[12] Meyer, G., & Amer, N. M. (1988). Novel optical approach to atomic force microscopy. Applied Physics Letters, 53(12), 1045–1047. https://doi.org/10.1063/1.100061
[13] Boisen, A., Dohn, S., Keller, S. S., Schmid, S., & Tenje, M. (2011). Cantilever-like micromechanical sensors. Reports on Progress in Physics, 74(3), 036101. https://doi.org/10.1088/0034-4885/74/3/036101
[14] Gimzewski, J. K., Gerber, Ch., Meyer, E., & Schlittler, R. R. (1994). Observation of a chemical reaction using a micromechanical sensor. Chemical Physics Letters, 217(5), 589–594. https://doi.org/ 10.1016/0009-2614(93)E1419-H
[15] Wu, G., Ji, H., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M. F., Chakraborty, A. K., & Majumdar, A. (2001). Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proceedings of the National Academy of Sciences, 98(4), 1560–1564. https://doi.org/10.1073/pnas.98.4.1560 [16] Nieradka, K., Kapczynska, K., Rybka, J., Lipinski, T., Grabiec, P., Skowicki, M.,&Gotszalk, T. (2014). Microcantilever array biosensors for detection and recognition of Gram-negative bacterial endotoxins. Sensors and Actuators B: Chemical, 198, 114–124. https://doi.org/10.1016/j.snb.2014.03.023
[17] Helm, M., Servant, J. J., Saurenbach, F., & Berger, R. (2005). Read-out of micromechanical cantilever sensors by phase shifting interferometry. Applied Physics Letters, 87(6), 064101. https://doi.org/10.1063/1.2008358
[18] Putman, C. A. J., de Grooth, B. G., van Hulst, N. F., & Greve, J. (1992). A theoretical comparison between interferometric and optical beam deflection technique for the measurement of cantilever displacement in AFM. Ultramicroscopy, 42, 1509–1513. https://doi.org/10.1016/0304-3991(92) 90474-X
[19] Putman, C. A. J., de Grooth, B. G., van Hulst, N. F., & Greve, J. (1992). A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. Journal of Applied Physics, 72(1), 6–12. https://doi.org/10.1063/1.352149
[20] Hu, Z., Seeley, T., Kossek, S.,&Thundat, T. (2004). Calibration of optical cantilever deflection readers. Review of Scientific Instruments, 75(2), 400–404. https://doi.org/10.1063/1.1637457
[21] Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., & Yamada, H. (2005). Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy. Review of Scientific Instruments, 76(5), 053704. https://doi.org/10.1063/1.1896938
[22] Nieradka, K., Kopiec, D., Małozi˛ec, G., Kowalska, Z., Grabiec, P., Janus, P., Sierakowski, A., Domanski, K., & Gotszalk, T. (2012). Fabrication and characterization of electromagnetically actuated microcantilevers for biochemical sensing, parallel AFM and nanomanipulation. Microelectronic Engineering, 98, 676–679. https://doi.org/10.1016/j.mee.2012.06.019
[23] Miyatani, T., & Fujihira, M. (1997). Calibration of surface stress measurements with atomic force microscopy. Journal of Applied Physics, 81(11), 7099–7115. https://doi.org/10.1063/1.365306
[24] Mishra, R., Grange, W., & Hegner, M. (2012). Rapid and reliable calibration of laser beam deflection system for microcantilever-based sensor setups. Journal of Sensors, 2021, 617386. https://doi.org/10.1155/2012/617386
[25] Naeem, S., Liu, Y., Nie, H. Y., Lau, W. M., & Yang, J. (2008). Revisiting atomic force microscopy force spectroscopy sensitivity for single molecule studies. Journal of Applied Physics, 104(11), 114504. https://doi.org/10.1063/1.3037206
[26] Lee, J., Beechem, T., Wright, T. L., Nelson, B. A., Graham, S., & King, W. P. (2006). Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 15(6), 1644–1655. https://doi.org/10.1109/JMEMS.2006.886020
[27] Skwierczynski, J. M., Małozi˛ec, G., Kopiec, D., Nieradka, K., Radojewski, J., & Gotszalk, T. (2011). Radio frequency modulation of semiconductor laser as an improvement method of noise performance of scanning probe microscopy position sensitive detectors. Optica Applicata, 41(2), 323–331.
[28] Butt, H.-J., & Jaschke, M. (1995). Calculation of thermal noise in atomic force microscopy. Nanotechnology, 6(1), 1. https://doi.org/10.1088/0957-4484/6/1/001
[29] Ohler, B. (2007). Cantilever spring constant calibration using laser Doppler vibrometry. Review of Scientific Instruments, 78(6), 063701. https://doi.org/10.1063/1.2743272
[30] Cleveland, J. P., Manne, S., Bocek, D.,&Hansma, P. K. (1993).Anondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Review of Scientific Instruments, 64(2), 403–405. https://doi.org/10.1063/1.1144209
[31] Lévy, R., & Maaloum, M. (2002). Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology, 13(1), 33. https://doi.org/10.1088/095-4484/13/1/307
[32] Rast, S.,Wattinger, C., Gysin, U.,&Meyer, E. (2000). The noise of cantilevers. Nanotechnology, 11(3), 169. https://doi.org/10.1088/0957-4484/11/3/306
Go to article

Authors and Affiliations

Daniel Kopiec
1
Wojciech Majstrzyk
2
Bartosz Pruchnik
1
Ewelina Gacka
1
Dominik Badura
1
Andrzej Sierakowski
2
Paweł Janus
2
Teodor Gotszalk
1

  1. Wrocław University of Technology, Faculty of Microsystems Electronics and Photonics, Department of Nanometrology, Janiszewskiego 11/17, Wrocław 50-372, Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Fotonics, Lotników 32/46, Warsaw 02-668, Poland
Download PDF Download RIS Download Bibtex

Abstract

Shape memory polymers (SMP) are new multifunctional materials raising increasing interest in various functional applications. Among them, polyurethane shape memory polymers (PU-SMP) are particularly attractive due to their combination of shape memory, high strength and biocompatible properties. Developing new applications for PU-SMP requires comprehensive research on their characteristics. This work involved investigating the structure and mechanical behavior as well as characterizing the energy storage and dissipation of a thermoplastic PU-SMP with a glass transition temperature (Tg) of 25_C during tensile loading-unloading. The process of energy storage and dissipation in the PU-SMP was investigated based on the stress-strain curves recorded by a quasi-static testing machine and the temperature changes, accompanying the deformation process, obtained by using a fast and sensitive infrared camera. The results showed that the thermomechanical behavior of the examined PU-SMP depends significantly on the strain rate. At a higher strain rate, there are higher stress and related temperature changes, which lead to greater energy dissipation. However, the energy storage values estimated during the deformation process turned out to be not significant, indicating that the work supplied to the PU-SMP structure during loading is mainly converted into heat. It should also be noted that the structural investigation revealed no crystalline phase in the investigated PU-SMP.
Go to article

Authors and Affiliations

Maria Staszczak
1
ORCID: ORCID
Arkadiusz Gradys
2
ORCID: ORCID
Karol Golasiński
1
ORCID: ORCID
Elżbieta A. Pieczyska
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawi´nskiego 5B, 02-106 Warsaw, Poland
  2. Multidisciplinary Research Center, Cardinal Stefan Wyszy´ nski University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland

This page uses 'cookies'. Learn more