Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the present paper it is proposed to consider the computer cooling capacity using the thermosyphon loop. A closed thermosyphon loop consists of combined two heaters and a cooler connected to each other by tubes. The first heater may be a CPU processor located on the motherboard of the personal computer. The second heater may be a chip of a graphic card placed perpendicular to the motherboard of personal computer. The cooler can be placed above the heaters on the computer chassis. The thermosyphon cooling system on the use of computer can be modeled using the rectangular thermosyphon loop with minichannels heated at the bottom horizontal side and the bottom vertical side and cooled at the upper vertical side. The riser and a downcomer connect these parts. A one-dimensional model of two-phase flow and heat transfer in a closed thermosyphon loop is based on mass, momentum, and energy balances in the evaporators, rising tube, condenser and the falling tube. The separate two-phase flow model is used in calculations. A numerical investigation for the analysis of the mass flux rate and heat transfer coefficient in the steady state has been accomplished.

Go to article

Authors and Affiliations

Jarosław Mikielewicz
Henryk Bieliński
Download PDF Download RIS Download Bibtex

Abstract

This research explored different types of two-phase flow patterns that influenced heat transfer rate by assessing rectangular two-phase closed thermosyphon (RTPCT) made from glass with the sides of equal length of 25.2 mm, aspect ratio 5 and 20, evaporation temperature of 50, 70, and 90 °C, working substance addition rate of 50% by volume of evaporator, and water inlet temperature at condensation of 20 °C. Upon testing with aspect ratios 5, three flow patterns emerged which were: bubble flow, slug flow and churn flow respectively. As per the aspect ratio 20, four flow patterns were discovered which were: bubble flow, slug flow, churn flow and annular flow, respectively. Aspect ratio 5 pertains characteristic which resulted in a shorter evaporation rate of the RTPCT than that of the aspect ratio 20, thus, a shorter flow distance from the evaporator section to heat releaser was observed. Therefore, flow patterns at aspect ratio 5 exhibited a faster flow velocity than that of the aspect ratio 20. Furthermore, changes of flow pattern to the one that is important for heat transfer rate can be easily achieved. Churn flow was the most important type of the flow for heat transfer, followed by slug flow. Moreover, with aspect ratio 20, annular flow was the most important flow for the heat transfer, followed by churn flow, respectively. Throughout the test, average heat flux as obtained from the aspect ratio 5 were 1.51 and 0.74 kW/m2 which were higher than those of the aspect ratio 20. The highest heat flux at the operating temperature of the evaporator section was 90 °C, which was equivalent to 2.60 and 1.52 kW/m2, respectively.

Go to article

Authors and Affiliations

Teerapat Chompookham
Surachet Sichamnan
Nipon Bhuwakietkumjohn
Thanya Parametthanuwat
Download PDF Download RIS Download Bibtex

Abstract

The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

Go to article

Authors and Affiliations

Henryk Bieliński
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on the computer cooling capacity using the thermosyphon loop with minichannels and minipump. The one-dimensional separate model of two-phase flow and heat transfer in a closed thermosyphon loop with minichannels and minipump has been used in calculations. The latest correlations for minichannels available in literature have been applied. This model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser and the falling tube. A numerical analysis of the mass flux and heat transfer coefficient in the steady state has been presented.

Go to article

Authors and Affiliations

Jarosław Mikielewicz
Henryk Bieliński
Download PDF Download RIS Download Bibtex

Abstract

Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.
Go to article

Authors and Affiliations

Leonard Vasiliev
Leonid Vasiliev
Alexander Zhuravlyov
Aleksander Shapovalov
Aleksei Rodin
Download PDF Download RIS Download Bibtex

Abstract

An approach – relaying on application of nanofluid as a working fluid, to improve performance of the two-phase thermosyphon heat exchanger (TPTHEx) has been proposed. The prototype heat exchanger consists of two horizontal cylindrical vessels connected by two risers and a downcomer. Tube bundles placed in the lower and upper cylinders work as an evaporator and a condenser, respectively. Distilled water and nanofluid water-Al2O3solution were used as working fluids. Nanoparticles were tested at the concentration of 0.01% and 0.1% by weight. A modified Peclet equation and Wilson method were used to estimate the overall heat transfer coefficient of the tested TPTHEx. The obtained results indicate better performance of the TPTHEx with nanofluids as working fluid compared to distilled water, independent of nanoparticle concentration tested. However, increase in nanoparticle concentration results in overall heat transfer coefficient decrease of the TPTHEx examined. It has been observed that, independent of nanoparticle concentration tested, decrease in operating pressure results in evaporation heat transfer coefficient increase.

Go to article

Authors and Affiliations

Janusz T. Cieśliński
Download PDF Download RIS Download Bibtex

Abstract

The flat horizontal polymer loop thermosyphon with flexible transport lines is suggested and tested. The thermosyphon envelope consists of a polyamide composite with carbon based high thermal conductive micro-, nanofilaments and nanoparticles to increase its effective thermal conductivity up to 11 W/(m°C). Rectangular capillary mini grooves inside the evaporator and condenser of thermosyphon are used as a mean of heat transfer enhancement. The tested working fluid is R600. Thermosyphon evaporator and condenser are similar in design, have a long service life. In this paper three different methods (transient, quasi-stationary, and stationary) have been used to determine the thermophysical properties of polymer composites used as an envelope of thermosyphon, which make it possible to design a wide range of new heat transfer equipment. The results obtained contribute to establish the viability of using polymer thermosyphons for ground heat sinks (solar energy storage), gas-liquid heat exchanger applications involving seawater and other corrosive fluids, efficient cooling of superconductive magnets impregnated with epoxy/carbon composites to prevent wire movement, enhance stability, and diminish heat generation.

Go to article

Authors and Affiliations

Alexander Zhuravlyov
Leonard Vasiliev
Leonid Grakovich
Mikhail Rabetsky
LEONID VASSILIEV JR.

This page uses 'cookies'. Learn more