Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Buckling and postbuckling response of thin-walled composite plates investigated experimentally and determinated analytically and numerically is compared. Real dimension specimens of composite plates weakened by cut-out subjected to uniform compression in laboratory buckling tests have been modelled in the finite element method and examined analytically based on P-w2 and P-w3 methods. All results were obtained during the experimental investigations and the numerical FEM analysis of a thin-walled composite plate made of a carbon-epoxy laminate with a symmetrical eight-layer arrangement of [90/-45/45/0]s. The instrument used for this purpose was a numerical ABAQUS® program.

Go to article

Authors and Affiliations

K. Falkowicz
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the authors discuss the numerical and experimental modal analysis of the cantilever thin-walled beams made of a carbon-epoxy laminate. Two types of beams were considered: circumferentially asymmetric stiffness (i.e., CAS) and circumferentially uniform stiffness (i.e., CUS) beams. The layer-up configurations of the laminate were chosen to get a vibration mode coupling effect in both analysed cases. The aim of the paper was to perform the numerical and experimental modal analysis of the composite structures, when a flapwise bending with torsion coupling effect or flapwise-chordwise bending coupling effect took place. Firstly, numerical studies by the finite element method was performed. The numerical simulations were carried out by the Lanczos method in the Abaqus software package. The natural frequencies and the corresponding free vibration modes were determined. Next, the experimental modal analyses of the CAS and CUS beams were performed. The test stand was consisted of a special grip, two beams with an adhered holder, the LMS Scadas III system with a modal hammer and an acceleration sensor. Finally, the results of both methods were compared.

Go to article

Authors and Affiliations

Jarosław Gawryluk
Marcin Bocheński
Andrzej Teter
Download PDF Download RIS Download Bibtex

Abstract

The most important task in tests of resistance of aircraft structures to the terorist threats is to determine the vulnerability of thin-walled structures to the blast wave load. For obvious reasons, full-scale experimental investigations are carried out exceptionally. In such cases, numerical simulations are very important. They make it possible to tune model parameters, yielding proper correlation with experimental data. Basing on preliminary numerical analyses - experiment can be planned properly. The paper presents some results of dynamic simulations of finite element (FE) models of a medium-size aircraft fuselage. Modeling of C4 detonation is also discussed. Characteristics of the materials used in FE calculations were obtained experimentally. The paper describes also the investigation of sensitivity of results of an explicit dynamic study to FE model parameters in a typical fluid-structure interaction (FSI) problem (detonation of a C4 explosive charge). Three cases of extent of the Eulerian mesh (the domain which contains air and a charge) were examined. Studies have shown very strong sensitivity of the results to chosen numerical models of materials, formulations of elements, assumed parameters etc. Studies confirm very strong necessity of the correlation of analysis results with experimental data. Without such a correlation, it is difficult to talk about the validation of results obtained from "explicit" codes.

Go to article

Authors and Affiliations

Adam Dacko
Jacek Toczyski
Download PDF Download RIS Download Bibtex

Abstract

The study is devoted to a parametric analysis of the stability and load carrying capacity of prismatic segment shells built of rectangular sections of cylindrical shells and subjected to compression. Segment shells (columns) with a constant crosssectional area (weight) have been analysed and all the results obtained have been compared with the results obtained for the cylindrical shell with a radius R and a thickness c; First, an influence of geometrical parameters of the cross-section of single-layer isotropic shells has been analysed and such profiles have been sought for which the load carrying capacity is significantly higher than in the case of the cylindrical shell. Then, for a selected shape of the shell (apart from higher load carrying capacity, this choice could be influenced by other factors such as, e.g. easiness of manufacturing), an effect of the arrangement and thickness of orthotropic layers of the shell (laminate) on the stability and load carrying capacity has been investigated. The analysis has shown that one can design a segment shell made of the same orthotropic material and characterised by higher resistance to buckling and load carrying capacity than a single-layer cylindrical orthotropic shell. The results are depicted in the form of plots.
Go to article

Authors and Affiliations

Marian Królak
Zbigniew Kolakowski
Tomasz Kubiak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine how the change of glass laminate fibres to flax fibres will affect the stability of thin-walled angle columns. Numerical analyses were conducted by the finite element method. Short L-shaped columns with different configurations of reinforcing fibres and geometric parameters were tested. The axially compressed structures were simply supported on both ends. The lowest two bifurcation loads and their corresponding eigenmodes were determined. Several configurations of unidirectional fibre arrangement were tested. Moreover, the influence of a flange width change by ±100% and a column length change by ±33% on the bifurcation load of the compressed structure was determined. It was found that glass laminate could be successfully replaced with a bio-laminate with flax fibres. Similar results were obtained for both materials. For the same configuration of fibre arrangement, the flax laminate showed a lower sensitivity to the change in flange width than the glass material. However, the flax laminate column showed a greater sensitivity to changes in length than the glass laminate one. In a follow-up study, selected configurations will be tested experimentally.
Go to article

Bibliography

[1] S.V. Joshi, L.T. Drzal, A.K Mohanty, and S. Arora. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3):371–376, 2004. doi: 10.1016/j.compositesa.2003.09.016.
[2] P. Wambua, J. Ivens .and I.Verpoest. Natural fibers: can they replace glass in fiber reinforced plastics? Composites Science and Technology, 63(9):1259–1264, 2003. doi: 10.1016/S0266-3538(03)00096-4.
[3] D.B. Dittenber and H.V.S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8):1419–1429, 2012. doi: 10.1016/j.compositesa.2011.11.019.
[4] A. Stamboulis, C.A. Baillie, and T. Peijs. Effects of environmental conditions on mechanical and physical properties of flax fibers. Composites Part A: Applied Science and Manufacturing, 32(8):1105–1115, 2001. doi: 10.1016/S1359-835X(01)00032-X.
[5] L. Pil, F. Bensadoun, J. Pariset, and I. Verpoest. Why are designers fascinated by flax and hemp fiber composites? Composites Part A: Applied Science and Manufacturing, 83:193–205, 2016. doi: 10.1016/j.compositesa.2015.11.004.
[6] H.Y. Cheung, M.P. Ho, K.T. Lau, F. Cardona, And D. Hui. Natural fiber-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 40(7):655–663, 2009. doi: 10.1016/j.compositesb.2009.04.014.
[7] M.I. Misnon, Md M. Islam, J.A. Epaarachchi, and K.T. Lau. Potentiality of utilising natural textile materials for engineering composites applications. Materials & Design, 59:359–368, 2014. doi: 10.1016/j.matdes.2014.03.022.
[8] T. Gurunathan, S. Mohanty, and S.K. Nayak. A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77:1–25, 2015. doi: 10.1016/j.compositesa.2015.06.007.
[9] H.L. Bos, M.J.A. Van Den Oever, and O.C.J.J. Peters. Tensile and compressive properties of flax fibers for natural fiber reinforced composites. Journal of Materials Science, 37:1683–1692, 2002. doi: 10.1023/A:1014925621252.
[10] C. Baley. Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase. Composites Part A: Applied Science and Manufacturing, 33(7):939–948, 2002. doi: 10.1016/S1359-835X(02)00040-4.
[11] C. Baley, M. Gomina, J. Breard, A. Bourmaud, and P. Davies. Variability of mechanical properties of flax fibers for composite reinforcement. A review. Industrial Crops and Products, 145:111984, 2020. doi: 10.1016/j.indcrop.2019.111984.
[12] I. El Sawi, H. Bougherara, R. Zitoune, and Z. Fawaz. Influence of the manufacturing process on the mechanical properties of flax/epoxy composites. J ournal of Biobased Materials and Bioenergy, 8(1):69–76, 2014. doi: 10.1166/jbmb.2014.1410.
[13] K. Strohrmann and M. Hajek. Bilinear approach to tensile properties of flax composites in finite element analyses. Journal of Materials Science, 54:1409–1421, 2019. doi: 10.1007/s10853-018-2912-1.
[14] Z. Mahboob, Y. Chemisky, F. Meraghni, and H. Bougherara. Mesoscale modelling of tensile response and damage evolution in natural fiber reinforced laminates. Composites Part B: Engineering, 119:168–183, 2017. doi: 10.1016/j.compositesb.2017.03.018.
[15] Z. Mahboob, I. El Sawi, R. Zdera, Z. Fawaz, and H. Bougherara. Tensile and compressive damaged response in Flax fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 92:118–133, 2017. doi: 10.1016/j.compositesa.2016.11.007.
[16] C. Nicolinco, Z. Mahboob, Y. Chemisky, F. Meraghni, D. Oguamanam, and H. Bougherara. Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework. Composites Part A: Applied Science and Manufacturing, 140:106153, 2021. doi: 10.1016/j.compositesa.2020.106153.
[17] R.T. Durai Prabhakaran, H. Teftegaard, C.M. Markussen, and B. Madsen. Experimental and theoretical assessment of flexural properties of hybrid natural fiber composites. Acta Mechanica, 225:2775–2782, 2014. doi: 10.1007/s00707-014-1210-5.
[18] M. Fehri, A. Vivet, F. Dammak, M. Haddar, and C. Keller. A characterization of the damage process under buckling load in composite reinforced by flax fibers. Journal of Composites Science, 4(3):85, 2020. doi: 10.3390/jcs4030085.
[19] V. Gopalan, V. Suthenthiraveerappa, J.S. David, J. Subramanian,A.R. Annamalai, and C.P. Jen. Experimental and numerical analyses on the buckling characteristics of woven flax/epoxy laminated composite plate under axial compression. Polymers, 13(7):995, 2021. doi: 10.3390/polym13070995.
[20] J. Gawryluk and A. Teter. Experimental-numerical studies on the first-ply failure analysis of real, thin-walled laminated angle columns subjected to uniform shortening. Composite Structures, 269:114046, 2021. doi: 10.1016/j.compstruct.2021.114046.
[21] J. Gawryluk. Impact of boundary conditions on the behavior of thin-walled laminated angle column under uniform shortening. Materials, 14(11):2732, 2021. doi: 10.3390/ma14112732.
[22] J. Gawryluk. Post-buckling and limit states of a thin-walled laminated angle column under uniform shortening. Engineering Failure Analysis, 139:106485, 2022. doi: 10.1016/j.engfailanal.2022.106485.
[23] ABAQUS 2020 HTML Documentation, DassaultSystemes.
[24] T. Kubiak and L. Kaczmarek, Estimation of load-carrying capacity for thin-walled composite beams. Composite Structures, 119:749–756, 2015. doi: 10.1016/j.compstruct.2014.09.059.
[25] T. Kubiak, S. Samborski, and A. Teter. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Composite Structures, 133:921–929, 2015. doi: 10.1016/j.compstruct.2015.08.023.
[26] M. Urbaniak, A. Teter, and T. Kubiak. Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression. Composite Structures, 134:199–208, 2015. doi: 10.1016/j.compstruct.2015.08.076.
[27] A. Teter and Z. Kolakowski. On using load-axial shortening plots to determine the approximate buckling load of short, real angle columns under compression. Composite Structures, 212:175–183, 2019. doi: 10.1016/j.compstruct.2019.01.009.
[28] A. Teter, Z. Kolakowski, and J. Jankowski. How to determine a value of the bifurcation shortening of real thin-walled laminated columns subjected to uniform compression? Composite Structures, 247, 12430, 2020 doi: 10.1016/j.compstruct.2020.112430.
Go to article

Authors and Affiliations

Jarosław Gawryluk
1
ORCID: ORCID

  1. Department of Applied Mechanics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of experimental research on the fabrication of thin-walled panels with longitudinal stiffening ribs by the single point incremental sheet forming technique. The bead-stiffened panels were made of Alclad 2024-T3 aluminium alloy sheets commonly used in aircraft structures. The influence of forming parameters and tool strategy on surface quality and the possibility of obtaining stiffening ribs with the required profile and depth was tested through experimental research. Two tool path strategies, spiral with continuous sinking and multi-step z-level contouring, were considered. The results of the experiments were used to verify the finite element-based numerical simulations of the incremental forming process. It was found that the main parameter which influences the formability of test sheets is the tool path strategy; the tool path strategy with multi-step z-level contouring allowed the rib to be formed to a depth of 3.53 mm without risk of cracking. However a greater depth of rib equal of 5.56 mm was achieved with the continuous tool path. The tool path strategy was also the main parameter influencing the surface finish of the drawpiece during the single point incremental forming process.
Go to article

Authors and Affiliations

B. Krasowski
1
ORCID: ORCID
A. Kubit
2
ORCID: ORCID
T. Trzepieciński
2
ORCID: ORCID
J. Slota
3
ORCID: ORCID

  1. Carpatian State School in Krosno, Krosno, Poland
  2. Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, 12 Powstańców Warszawy Av., 35-959, Rzeszów, Poland
  3. Technical University of Košice, Košice, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The analysis of buckling, post-buckling behaviour and load carrying capacity of prismatic composite pole structures is conducted. The asymptotic expansion established by Byskov-Hutchinson is used in the second order approximation. The thin-walled tubular columns are simply supported at the ends and subject to the uniform compression. Several types of cross-sections with and without intermediate stiffeners are considered. The present paper is the continuation of a previous paper by the authors (1999) where the modal interaction of thin-walled composite beamcolumns was investigated.
Go to article

Authors and Affiliations

Marian Królak
Zbigniew Kołakowski
Katarzyna Kowal-Michalska
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, an analysis uf lower bound estimation of the load carrying capacity of structures with intermediate stiffeners is undertaken. Thin-walled structures with intermediate stiffeners in the elastic range, being under axial compression and a bending moment, are examined on the basis of the Byskov and Hutchinson's method [4] and the co-operation between all the walls of the considered structures is shown. The structures are assumed to be simply supported at the ends. The study is based on the numerical method 01· the transition matrix using Godunov's orthogonalization [2]. Instead of the finite strip method, the exact transition matrix method is used in this case. In the presented method for lower bound estimation uf the load carrying capacity of structures, it is postulated that the reduced local critical load should be determined taking into account the global pre-critical bending within the first order non-linear approximation to the theory of the interactive buckling of the structure. The results are compared to those obtained from the design code and the data reported by other authors. The present paper is a continuation of papers [9], [ 11], [ 19], where the interactive buckling of thin-walled beam-columns with central intermediate stiffeners in the first and the second order approximation was considered. The most important advantage of this method is that it enables us to describe a complete range of behaviour ot· thin-walled structures from all global (flexural. flexural-torsional, lateral, distortional and their combinations) to local stability. In the solution obtained, the effects of interaction of modes, the transformation of buckling modes with an increase in load, the shear lag phenomenon and also the effect of cross-sectional distortions arc included.
Go to article

Authors and Affiliations

Andrzej Teter
Zbigniew Kolakowski
Download PDF Download RIS Download Bibtex

Abstract

The work includes the results of numerical, analytical-numerical and experimental study into the influence of load eccentricities with regard to major axis on post-buckling behaviour and load-carrying capacity of thin-walled cold-formed steel lipped channel section columns. The study was solved by using the finite element method (code Ansys) with taking into consideration a full material characteristics in logarithmic strain system and geometric nonlinearities. The analytical-numerical solution was based on Koiter’s theory with an application of finite difference method (FDM). Some chosen results of numerical simulations have been compared to experimental results. The deformations of columns were registered by means of Digital Image Correlation Aramis System (DICAS) to observe the maps and the magnitude of displacements for adequate point of a load. The analyses showed that the decrease in maximum load in a dependency on the eccentricity value can be even 3 times minor in a comparison to the load-carrying capacity of axially loaded column.
Go to article

Authors and Affiliations

Leszek Czechowski
1
ORCID: ORCID
Maria Kotełko
1
ORCID: ORCID
Jacek Jankowski
1
ORCID: ORCID
Viorel Ungureanu
2
ORCID: ORCID
Annabella Sanduly
1
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Mechanical Engineering, Stefanowskiego 1/15 street, 90-537 Lodz, Poland
  2. Department of Steel Structures and Structural Mechanics, Politehnica University of Timisoara, Romania

This page uses 'cookies'. Learn more