Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The Ti15Mo alloy has been studied towards long-term corrosion performance in saline solution at 37°C using electrochemical impedance spectroscopy. The physical and chemical characterization of the material were also investigated. The as-received Ti15Mo alloy exhibits a single β-phase structure. The thickness of single-layer structured oxide presented on its surface is ~4 nm. Impedance measurements revealed that the Ti15Mo alloy is characterized by spontaneous passivation in the solution containing chloride ions and formation of a double-layer structured oxide composed of a dense interlayer being the barrier layer against corrosion and porous outer layer. The thickness of this oxide layer, estimated based on the impedance data increases up to ~6 nm during 78 days of exposure. The observed fall in value of the log|Z|f = 0.01 Hz indicates a decrease in pitting corrosion resistance of Ti15Mo alloy in saline solution along with the immersion time. The detailed EIS study on the kinetics and mechanism of corrosion process and the capacitive behavior of the Ti15Mo electrode | passive layer | saline solution system was based on the concept of equivalent electrical circuit with respect to the physical meaning of the applied circuit elements. Potentiodynamic studies up to 9 V vs. SCE and SEM analysis show no presence of pitting corrosion what indicates that the Ti15Mo alloy is promising biomaterial to long-term medical applications.

Go to article

Authors and Affiliations

M. Szklarska
B. Łosiewicz
G. Dercz
M. Zubko
R. Albrecht
D. Stróż
Download PDF Download RIS Download Bibtex

Abstract

The effect of heat treatment on the corrosion resistance of Ti-6Al-4V alloy was investigated in the artificial saliva solution (MAS). It has been revealed that the thermal annealing treatment temperature favors the cathodic reactions and reduce the protective properties of passive film. The heat treatment causes the enrichment of β phase in vanadium. The lowest corrosion resistance in the artificial saliva revealed the Ti-6Al-4V alloy heated for 2 hours at 950°C. Heterogeneous distribution of vanadium within the β phase decreases the corrosion resistance of the Ti-6Al-4V.

Go to article

Authors and Affiliations

J. Ryba
M. Kawalec
E. Tyrała
H. Krawiec
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the present paper was to investigate the effect of shot peening on the condition of the surface layer and abrasion resistance of specimens made of Ti-6Al-4V titanium alloy produced by Direct Metal Laser Sintering (DMLS) process. The specimens have been produced by means of EOSINT M280 system dedicated for laser sintering of metal powders and their surfaces have been subjected to the shot peening process under three different working pressures (0.2, 0.3 and 0.4 MPa) and by means of three different media i.e. CrNi steel shot, crushed nut shells and ceramic balls. The specimens have been subjected to profilometric analysis, to SEM examinations, microhardness tests and to tribological tests on ball-on-disc stand in Ringer fluid environment. The general results of all tests indicate to favourable effect of shot peening process on the hardness and tribological performance of titanium alloy.

Go to article

Authors and Affiliations

R. Żebrowski
M. Walczak
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to indicate the influence of consolidation processes on microstructure and selected mechanical properties of powder metallurgy Ti-5Al-5Mo-5V-3Cr alloy, which was produced by blending of elemental powders method. Morphology of the mixture and its ingredients were examined using scanning electron microscopy. The consolidation of powders mixture was conducted using two approaches. The first consisted of the uniaxial hot pressing process, the second included two steps – uniaxial cold pressing process and sintering under argon protective atmosphere. Microstructural analysis was performed for both as-pressed compacts using light microscopy. Additionally, computed tomography studies were carried out, in order to examine the internal structure of compacts. Chosen mechanical properties, such as Vickers hardness and compression strength was also determined and compared. The conducted research proves that the proposed production method leads to obtain materials with no structural defects and relatively low porosity. Moreover, due to the proper selection of manufacturing parameters, favorable microstructures can be received, as well as mechanical properties, which are comparable to conventionally produced material with the corresponding chemical composition.

Go to article

Authors and Affiliations

K. Zyguła
ORCID: ORCID
M. Wojtaszek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Production of Ti-based alloys with non-toxic elements give the possibility to control the market of medical applications, using alloys with appropriate properties for human body, contributing to improving the health of the population. Determination of parameters of atomic and magnetic structure of functional biomaterials demonstrating interesting physical phenomena and being promising for medical applications in a wide range of thermodynamic parameters; exploration of the role of cluster aggregation in the formation of physical properties. Paper is about the obtaining of the new titanium system alloys, the determining their characteristics and structure, and obtaining information concerning phase transitions and some mechanical properties. Ti15Mo7ZrxTa (5 wt.%, 10 wt.% and 15 wt.%) alloys developed shows a predominant β phase highlighted by optical microstructure and XRD patterns. A very low young modulus of alloys was obtained (43-51 GPa) which recommends them as very good alloys for orthopedic applications.
Go to article

Authors and Affiliations

I. Baltatu
1
ORCID: ORCID
A.V. Sandu
1 2 3
ORCID: ORCID
M.S. Baltatu
1 2
ORCID: ORCID
M. Benchea
4
ORCID: ORCID
D.C. Achitei
1 2
ORCID: ORCID
F. Ciolacu
5
ORCID: ORCID
M.C. Perju
1 2
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
L. Benea
6
ORCID: ORCID

  1. “Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, 41 “D. Mangeron” Street, 700050, Iasi, Romania
  2. University Malaysia Perlis, Centre of Excellence Geopolymer & Green Technology School of Materials Engineering, Kompleks Pengajian Jejawi 2,02600 Arau, Perlis
  3. Romanian Inventors Forum, Str. Sf. P. Movila 3, L11, 700089, Iasi, Romania
  4. “Gheorghe Asachi” Technical University of Iasi, Faculty of Mechanical Engineering, 61-63 “D. Mangeron” Street, 700050, Iasi, Romania
  5. “Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, 73 Blvd. D. Mangeron, Iasi, 700050, Romania
  6. Dunărea de Jos University of Galati, Faculty of Engineering, 47 Domneasca St., 800008, Galati, Romania
Download PDF Download RIS Download Bibtex

Abstract

This article proposes these of vibratory machining to Ti-6Al-4V titanium alloy as finishing treatment. Titanium alloy was used in the aerospace industry, military, metallurgical, automotive and medical processes, extreme sports and other. The three-level three-factor Box-Behnken experiment examined the influence of machining time of vibratory machining, the type of mass finishing media used and the initial state of the surface layer on the mass loss, geometric structure of the surface, micro hardness and the optimal process parameters were determined. Considerations were given the surfaces after milling, after cutting with a band saw and after the sanding process. The experiment used three types of mass finishing media: polyester, porcelain and metal. Duration of vibratory machining treatment was assumed to be 20, 40, 60 minutes. The form profiles before and after vibratory machining were determined with the Talysurf CCI Lite - Taylor Hobson optical profiler. Future tests should concern research to carry out tests using abrasive pastes with a larger granulation of abrasive grains, to carry out tests for longer processing times and to determine the time after which the parameters of geometrical structure of the surface change is unnoticeable.

Go to article

Authors and Affiliations

D. Bańkowski
ORCID: ORCID
S. Spadło
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a method based on the use of fuzzy logic for the rapid selection of optimal induction sintering parameters. The prepared fuzzy controller uses expert knowledge developed from the results of induction sintering tests of Ti-5Al-5Mo-5V-3Cr alloy green compacts produced from a mixture of elemental powders. The analysis of the influence of the applied sintering parameters on the material characteristics was based on the evaluation of the microstructure state and the measurement of the relative density of the samples after sintering. In this way, a universal tool for estimating the sintering parameters of titanium powder-based green compacts was obtained. It was shown that with the help of fuzzy logic it is possible to analyze the influence of the parameters of the manufacturing process of metal powder materials on the quality of the obtained products.
Go to article

Authors and Affiliations

K. Zyguła
1
ORCID: ORCID
M. Wojtaszek
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present research investigates the nitriding kinetics of the near-beta-titanium alloy of Ti-Al-Nb-Fe-Zr-Mo-V system at 750, 800, and 850°C in gaseous nitrogen at 10 5 Pa for 2, 4, and 8 h. The parabolic coefficient kp of the layer’s growth rate and the nitriding activation energy E are set as the kinetic parameters of the nitrided layer’s growth. The activation energy for the formation of a nitride layer is ~108 kJ/mol. The authors discuss the morphology of the nitride layers as well as their roughness and surface hardness. The study determines the effective diffusion coefficient for the growth of diffusion layers in the temperature range of 750...850°C: Def = D0 × exp (– E/RT), where D0 = 0.0177 m 2/s; E = 215.7 kJ/mol. The friction coefficient of the disk from near-beta-titanium alloy with a bronze block is lowered by significantly more than 10 times after gas nitriding, and the temperature in the friction zone is reduced by 2.5 times.
Go to article

Authors and Affiliations

A.G. Luk’yanenko
1
ORCID: ORCID
I.M. Pohrelyuk
1
ORCID: ORCID
V.M. Fedirko
1
ORCID: ORCID
A.G. Molyar
2
V.S. Trush
1
ORCID: ORCID
T.M. Kravchyshyn
1

  1. G.V. Karpenko Physico-Mechanics Institute of the NAS of Ukraine, Department of Material Science Bases of Surface Engineering, 5, Naukova Str., 79060 Lviv, Ukraine
  2. G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Department of Physics of Strength and Ductility of Inhomogeneous Alloys,36 Academician Vernadsky Boulevard, 03142 Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The article shows the effect of the increased carbon content on the microstructure and properties of two-phase titanium alloy Ti-6Al-4V. Alloys with different carbon content (0.2 and 0.5 wt.%) were produced in vacuum induction furnace with cooper crucible. It was shown that the addition of carbon at the level of 0.2 wt.% increases hardness and strength properties, affects structural stability, results in grain refinement as well as improves creep and oxidation resistance. However, it has a negative effect on plastic deformation. Increasing the carbon content to the 0.5 wt.% causes the further improvement in the creep and oxidation resistance and microstructure refinement of the tested alloys, resulting also in decrease such properties as plasticity, hot deformability and in case of the susceptibility to cold plastic deformation to unacceptable level.

Go to article

Authors and Affiliations

A. Szkliniarz
W. Szkliniarz
Download PDF Download RIS Download Bibtex

Abstract

To investigate the effect of cyclic heat treatment on the microstructure evolution of titanium alloys, TA15 alloys were subjected to different numbers of heat treatment cycles at various temperatures in the (α + β) two-phase region. The resulting microstructure and hardness of the alloy were characterized by using the metallographic microscopy, scanning electron microscopy, and Vickers hardness testing. The morphology of the initial TA15 alloy was nearly equiaxed structure. The α phase content, thickness of the oxygen-rich α layer, and hardness of the TA15 alloy increased with the number of cycles. The morphology of the TA15 alloy changed into the Widmannstatten structure when the alloy underwent six cycles of heat treatment between 970 and 800°C. The thickness of the oxygen-rich α layer and hardness of the alloy increased with the lower limit temperature of the cyclic heat treatment. Compared with the number of cycles, the lower limit temperature of the cyclic heat treatment was a more significant factor on the microstructure evolution of the TA15 titanium alloy.
Go to article

Authors and Affiliations

Dan-Ya Zhang
1
Zhi-Sheng Nong
2
Tian-Xing Wang
2

  1. Shenyang Aerospace University, Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang110136, China
  2. Shenyang Aerospace University, School of Materials Science and Engineering, Shenyang 110136, China
Download PDF Download RIS Download Bibtex

Abstract

Titanium alloys are difficult-to-machine materials due to their complex mechanical and thermophysical properties. An essential factor in ensuring the quality of the machined surface is the analysis and recommendation of vibration processes accompanying cutting. The analytical description of these processes for machining titanium alloys is very complicated due to the complex adiabatic shear phenomena and the specific thermodynamic state of the chip-forming zone. Simulation modeling chip formation rheology in Computer-Aided Forming systems is a practical method for studying these phenomena. However, dynamic research of the cutting process using such techniques is limited because the initial state of the workpiece and tool is a priori assumed to be "rigid", and the damping properties of the fixture and machine elements are not taken into account at all. Therefore, combining the results of analytical modeling of the cutting process dynamics with the results of simulation modeling was the basis for the proposed research methodology. Such symbiosis of different techniques will consider both mechanical and thermodynamic aspects of machining (specific dynamics of cutting forces) and actual conditions of stiffness and damping properties of the “Machine-Fixture-Tool-Workpiece” system.
Go to article

Bibliography

[1] D. Ulutan and T. Ozel. Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3):250–280, 2011. doi: 10.1016/j.ijmachtools.2010.11.003.
[2] J.P. Davim (ed.). Machining of Titanium Alloys. Springer-Verlag, Berlin, 2014. doi: 10.1007/978-3-662-43902-9.
[3] M. Motyka, W. Zaja, and J. Sieniawski. Titanium Alloys – Novel Aspects of Their Manufacturing and Processing. IntechOpen, 2019.
[4] J.P. Davim (ed.). Surface Integrity in Machining. Springer, London, 2010. doi: 10.1007/978-1-84882-874-2.
[5] K. Cheng (ed.). Machining Dynamics. Fundamentals, Applications and Practices. Springer, London, 2009. doi: 10.1007/978-1-84628-368-0.
[6] T.L. Schmitz and K.S. Smith. Machining Dynamics. Frequency Response to Improved Productivity. Springer, New York, 2009. doi: 10.1007/978-0-387-09645-2.
[7] W. Cheng and J.C. Outeiro. Modelling orthogonal cutting of Ti-6Al-4 V titanium alloy using a constitutive model considering the state of stress. The International Journal of Advanced Manufacturing Technology, 119:4329–4347, 2022. doi: 10.1007/s00170-021-08446-9.
[8] M. Sima, and T. Özel. Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V. I nternational Journal of Machine Tools and Manufacture, 50(11):943–960, 2010. doi: 10.1016/j.ijmachtools.2010.08.004.
[9] V. Stupnytskyy and I. Hrytsay. Comprehensive analysis of the product’s operational properties formation considering machining technology. Archive of Mechanical Engineering, 67(2):149–167, 2020. doi: 10.24425/ame.2020.131688.
[10] V. Stupnytskyy, I. Hrytsay, and Xianning She. Finite element analysis of thermal and stress-strain state during titanium alloys machining. In: Advanced Manufacturing Processes II. Lecture Notes in Mechanical Engineering, 629–639, Springer, 2021. doi: 10.1007/978-3-030-68014-5_61.
[11] M.K. Gupta, M.E. Korkmaz, M. Sarıkaya, G.M. Krolczyk, M. Günay and S. Wojciechowski. Cutting forces and temperature measurements in cryogenic assisted turning of AA2024-T351 alloy: An experimentally validated simulation approach. Measurement, 188:110594, 2022. doi: 10.1016/j.measurement.2021.110594.
[12] Y.-P. Liu and Y. Altintas. Predicting the position-dependent dynamics of machine tools using progressive network. Precision Engineering, 73: 409–422, 2022. doi: 10.1016/j.precisioneng.2021.10.010.
[13] A. Pramanik and G. Littlefair. Machining of titanium alloy (Ti-6Al-4V)—theory to application. Machining Science and Technology, 19(1):1–49, 2015. doi: 10.1080/10910344.2014.991031.
[14] W. Cheng, J. Outeiro, J.-P. Costes, R. M’Saoubi, H. Karaouni, L. Denguir, V. Astakhov, and F. Auzenat. Constitutive model incorporating the strain-rate and state of stress effects for machining simulation of titanium alloy Ti6Al4V. Procedia CIRP, 77:344–347, 2018. doi: 10.1016/j.procir.2018.09.031.
[15] S. Wojciechowski, P. Twardowski, and M. Pelic. Cutting forces and vibrations during ball end milling of inclined surfaces. P rocedia CIRP, 14:113–118, 2014. doi: 10.1016/j.procir.2014.03.102.
[16] D. Chen, J. Chen, and H. Zhou. The finite element analysis of machining characteristics of titanium alloy in ultrasonic vibration assisted machining. Journal of Mechanical Science and Technology, 35:3601–3618, 2021. doi: 10.1007/s12206-021-0731-9.
[17] Q. Yang, Z. Liu, Z. Shi, and B. Wang. Analytical modeling of adiabatic shear band spacing for serrated chip in high-speed machining. The International Journal of Advanced Manufacturing Technology. 71:1901–1908, 2014. doi: 10.1007/s00170-014-5633-x.
[18] A.Í.S. Antonialli, A.E. Diniz, and R. Pederiva. Vibration analysis of cutting force in titanium alloy milling. International Journal of Machine Tools and Manufacture. 50(1):65–74, 2010. doi: 10.1016/j.ijmachtools.2009.09.006.
[19] G. Korendyasev. An approach to modeling self-oscillations during metal machining based on a finite-element model with small amount of computing resources. Vibroengineering PROCEDIA, 32:6–12, 2020. doi: 10.21595/vp.2020.21437.
[20] J. Klingelnberg. Dynamics of machine tools. In: Klingelnberg, J. (ed.): Bevel Gear, pages 311–320, Springer Vieweg, 2016. doi: 10.1007/978-3-662-43893-0_8.
[21] Y. Petrakov, M. Danylchenko, and A. Petryshyn. Prediction of chatter stability in turning. Eastern-European Journal of Enterprise Technologies, 5(1):58–64, 2019. doi: 10.15587/1729-4061.2019.177291.
[22] S.K. Choudhury, N.N. Goudimenko, and V.A. Kudinov. On-line control of machine tool vibration in turning. International Journal of Machine Tools and Manufacture. 37(6):801–811, 1997. doi: 10.1016/S0890-6955(96)00031-4.
[23] A. Liljerehn. Machine Tool Dynamics. A constrained state-space substructuring approach. Ph.D. Thesis, Göteborg, Sweden, 2016.
[24] G.R. Johnson and W.N. Cook. A constitutive model and data for metals subjected to large strains. High rates and high temperatures. In 7th International Symposium on Ballistics, pages 541–547, Hague, Netherlands, 19–21 April 1983.
[25] Y. Zhang, J.C. Outeiro, and T. Mabrouki. On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP, 31:112–117, 2015. doi: 10.1016/j.procir.2015.03.052.
[26] D. Yan, T. Wu, Y. Liu, and Y. Gao. An efficient sparse-dense matrix multiplication on a multicore system. In 17th International Conference on Communication Technology (ICCT), pages 1880–1883, Chengdu, China, 27-30 October 2017. doi: 10.1109/ICCT.2017.8359956.
[27] M. Binder, F. Klocke, and D. Lung. Tool wear simulation of complex shaped coated cutting tools. Wear, 330–331:600–607, 2015. doi: 10.1016/j.wear.2015.01.015.
[28] D. Alleyne and P. Cawley. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. The Journal of the Acoustical Society of America, 89(3):1159–1168, 1991. doi: 10.1121/1.400530.
[29] C.M. Harris and A.G. Piersol. Harris' Shock and Vibration Handbook. McGraw-Hill, 2002.
[30] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials and Design, 30(3):741–747, 2009. doi: 10.1016/j.matdes.2008.05.015.
Go to article

Authors and Affiliations

Vadym Stupnytskyy
1
ORCID: ORCID
She Xianning
1
ORCID: ORCID
Yurii Novitskyi
1
ORCID: ORCID
Yaroslav Novitskyi
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

AlCrFeCuCoNi high entropy particles were alloyed on Ti-6Al-4V surface using Plasma transferred arc (PTA) process. PTA alloyed surfaces were investigated for their phase formation, microhardness improvement and wear behaviour. The various wear mechanism and their corresponding surface roughness were studied. The results revealed that the dual phase of BCC and FCC microstructure along with some intermetallic compounds were grown in the alloyed region through the PTA technique and good metallurgical bonding of the alloyed region with the base material were achieved. The PTA alloyed region exhibited a hardness of 718 HV0.2 which is 2.2 times higher than the hardness of base material. The PTA alloyed samples showed higher wear resistance due to the solid solution strengthening as the HEA has high entropy of mixing that leads to the reduction of free energy of the alloyed region. It exhibited better interconnection of the coated material and superior metallurgical bonding to the base material. Frictional heat produced during the wear test has promoted the formation of FeO, Cr2O3, CuO, NiO and Al2O3 oxide film on the PTA alloyed sample. These oxide films act as a barrier between two mating surfaces and improve the tribo performance of the PTA alloyed sample.
Go to article

Authors and Affiliations

G. Prabu
1
Muthukannan Duraiselvam
1

  1. National Institute of Technology, Department of Production Engineering, Tiruchirappalli, India
Download PDF Download RIS Download Bibtex

Abstract

The versatile application of titanium alloy in the aerospace industry and it’s hard to machine characteristics focus towards the additive manufacturing. The Ti-6Al-4V alloy is manufactured using the electron beam source with a novel method of prepositioned titanium alloy wires. The tribology of the additive manufactured titanium alloy under dry sliding condition is experimented and analysed using Taguchi technique. The targeted objective of minimum tribological responses are attained with the identified optimal parameters as load – 9.81 N, sliding velocity – 3 m/s, sliding distance – 3000 m for minimum specific wear rate and load – 9.81 N, sliding velocity – 3 m/s, sliding distance – 1000 m for minimum coefficient of friction. Among the parameters tested, load is found to be the dominant factor on the tribology of additively manufactured titanium alloy. The morphological analysis on the worn surface and debris revealed the existence of abrasion, delamination and adhesion wear mechanisms. The increase in the load dominantly showed the appearance of delamination mechanism.
Go to article

Authors and Affiliations

A. Manjunath
1
ORCID: ORCID
V. Anandakrishnan
2
ORCID: ORCID
S. Ramachandra
1
ORCID: ORCID
K. Parthiban
1
ORCID: ORCID
S. Sathish
3
ORCID: ORCID

  1. Gas Turbine Research Establishment, Defence Research & Development Organization, Bangalore, Karnataka-560093, India
  2. Department of Production Engineering, National Institute of Technology Tiruchirapalli, Tiruchirappalli – 620015, Tamil Nadu, India
  3. Department of Mechatronics Engineering, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal – 637215, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study on anodizing titanium alloy Ti-6Al-7Nb in electrolyte of dilute sulfuric acid. The effects of the parameters – voltage, anodizing time, and electrode distance on the anodic film properties have been investigated. The anodic layers are found to become more compact with the increase of the applied voltage in the electrolytic cell. The microstructure, chemical element distribution and mechanical properties, i.e. microroughness and microhardness of the anodic coatings obtained at different operating conditions have been evaluated.

Go to article

Authors and Affiliations

Deyan Veselinov
Hristo Skulev
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the influence of ZrO2 coating on Ti6Al7Nb titanium alloy depending on the method of deposition. The coatings were made by sol-gel method and atomic layer deposition (ALD). Wettability tests, pitting corrosion assessment and electrochemical impedance spectroscopy (EIS) were carried out in the paper. Complementary macro- and microscopic observations, roughness analysis by profilometric method and atomic force microscopy (AFM) were made. Based on the results obtained, it can be concluded that the type of method of depositing the layer on the surface of the material has a significant influence on its properties and that it should be taken into account during the process of the material improvement. Drawing on the findings presented, it can be inferred that roughness has a significant impact upon the surface wetttability of the tested surfaces and their related corrosion resistance. The obtainment of hydrophobic surfaces is for smaller rougidity values.

Go to article

Authors and Affiliations

A. Woźniak
O. Bialas
M. Adamiak
Download PDF Download RIS Download Bibtex

Abstract

The article describes how different friction coefficients under certain cutting conditions and parameters affect the formation of the stress-strain and thermal states of the product when titanium alloy machining. A new research methodology is used for the study. Firstly, in the initial data for simulation, each time a different declared coefficient of friction is proposed, and every such task of the cutting process modelling is solved for various cutting parameters. The second stage analyzes how these coefficients influence the stress-strain and thermodynamic state of the workpiece and tool during cutting, as well as the tool wear dynamics. In the third stage of the study, ways for ensuring these analytically-grounded tribological cutting conditions are proposed. The analysis of different wear criteria in the simulation models of titanium alloys cutting is carried out. Experimental studies confirm simulation results.
Go to article

Bibliography

[1] M. Motyka, W. Ziaja, and J. Sieniawski. Titanium Alloys – Novel Aspects of Their Manufacturing and Processing. IntechOpen, London, 2019.
[2] A.Í.S. Antonialli, A.E. Diniz, and R. Pederiva. Vibration analysis of cutting force in titanium alloy milling. International Journal of Machine Tools and Manufacture, 50(1):65–74, 2010. doi: 10.1016/j.ijmachtools.2009.09.006.
[3] Q. Yang, Z. Liu, Z. Shi, and B. Wang. Analytical modeling of adiabatic shear band spacing for serrated chip in high-speed machining. The International Journal of Advanced Manufacturing Technology, 71:1901–1908, 2014. doi: 10.1007/s00170-014-5633-x.
[4] V.P. Astakhov. Metal Cutting Mechanics. CRC Press, Boca Raton, 1998.
[5] V.P. Astakhov and J.C. Outeiro. Metal cutting mechanics, finite element modelling. In J.P. Davim (ed), Machining. Fundamentals and Recent Advances, chapter 1, pages 1–27. Springer-Verlag London, 2008. doi: 10.1007/978-1-84800-213-5_1.
[6] F. Novikov and E. Benin. Determination of conditions ensuring cost price reduction of machinery. Economics of Development, 3(63):69–74, 2012.
[7] J.P. Davim (ed.). Machining of Titanium Alloys. Springer-Verlag Berlin, Heidelberg, 2014.
[8] F. Klocke, W. König, and K. Gerschwiler. Advanced machining of titanium- and nickel-based alloys. In: E. Kuljanic (ed.) Advanced Manufacturing Systems and Technology. CISM Courses and Lectures, vol. 372, chapter 1, pages 7–42. Springer, Vienna, 1996. doi: 10.1007/978-3-7091-2678-3_2.
[9] V.P. Astakhov. Tribology of Metal Cutting. Elsevier, London, 2006.
[10] J.P. Davim (ed.). Tribology in Manufacturing Technology. Springer, Berlin, Heidelberg, 2013. doi: 10.1007/978-3-642-31683-8.
[11] S.G. Larsson. The cutting process – A tribological nightmare. Technical Report, Seco Corp., Bern, Switzerland, December 2014. http://cbnexpert.blogspot.com/2014).
[12] P.L.B. Oxley. Mechanics of Machining: An Analytical Approach to Assessing Machinability, John Wiley & Sons, New York, 1989.
[13] A. Moufki, D. Dudzinski, and G. Le Coz. Prediction of cutting forces from an analytical model of oblique cutting, application to peripheral milling of Ti-6Al-4V alloy. The International Journal of Advanced Manufacturing Technology, 81:615–626, 2015. doi: 10.1007/s00170-015-7018-1.
[14] M.J. Bermingham, S. Palanisamy, and M.S. Dargusch. Understanding the tool wear mechanism during thermally assisted machining Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 62:76–87, 2012, doi: 10.1016/j.ijmachtools.2012.07.001.
[15] O.C. Zienkiewicz, R.L. Taylor, and D.D. Fox. The Finite Element Method for Solid and Structural Mechanics. 7th edition. Butterworth-Heinemann, Oxford, 2014.
[16] F. Klocke. Manufacturing Processes 1. Cutting. Springer-Verlag, Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-11979-8.
[17] D.A. Stephenson and J.S. Agapiou. Metal Cutting Theory and Practice. 3rd edition. CRC Press, Boca Raton, 2016.
[18] H. Shi. Metal Cutting Theory. New Perspectives and New Approaches. Springer, 2018.
[19] V. Stupnytskyy and I. Hrytsay. Simulation study of cutting-induced residual stress. In: Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering: 341-350, 2020. doi: 10.1007/978-3-030-22365-6_34.
[20] N.G. Burago and V.N. Kukudzhanov. About damage and localization of strains. Problems of Strength and Plasticity, 63:40–48, 2001. doi: 10.13140/RG.2.1.4749.9923.
[21] P.Ståhle, A. Spagnoli, and M. Terzano. On the fracture processes of cutting. Procedia Structural Integrity, 3:468–476, 2017. doi: 10.1016/j.prostr.2017.04.063.
[22] E. Gdoutos. Fracture Mechanics Criteria and Applications. Springer Netherlands, 1990.
[23] S.L.M.R. Filho, R.B.D. Pereira, C.H. Lauro, and L.C. Brandao. Investigation and modelling of the cutting forces in turning process of the Ti-6Al-4V and Ti-6Al-7Nb titanium alloys. The International Journal of Advanced Manufacturing Technology, 101:2191–2203, 2019. doi: 10.1007/s00170-018-3110-7.
[24] A. Pramanik and G. Littlefair. Wire EDM mechanism of MMCs with the variation of reinforced particle size. Materials and Manufacturing Processes, 31(13):1700–1708, 2016. doi: 10.1080/10426914.2015.1117621.
[25] V. Stupnytskyy and I. Hrytsay. Comprehensive analysis of the product’s operational properties formation considering machining technology. Archive of Mechanical Engineering, 67(2):149–167, 2020. doi: 10.24425/ame.2020.131688.
[26] T. Obikawa and E. Usui. Computational Mmachining of titanium alloy—finite element modeling and a few results. Journal of Manufacturing Science and Engineering, 118(2):208–215, 1996. doi: 10.1115/1.2831013.
[27} M. Rahman, Z.-G. Wang, and Y.-S. Wong. A review on high-speed machining of titanium alloys. JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 49(1):11-20, 2006. doi: 10.1299/jsmec.49.11.
[28] G. Chen, C. Ren, X. Yang, X. Jin, and T. Guo. Finite element simulation of high-speed machining of titanium alloy (Ti–6Al–4V) based on ductile failure model. The International Journal of Advanced Manufacturing Technology, 56:1027–1038, 2011. doi: 10.1007/s00170-011-3233-6.
[29] T. Tamizharasan and N. Senthilkumar. Optimization of cutting insert geometry using DEFORM-3D: numerical simulation and experimental validation. International Journal of Simulation Modelling, 11(2):65–76, 2012. doi: 10.2507/IJSIMM11(2)1.200.
[30] E. Usui, T. Shirakashi, and T.Kitagawa. Analytical prediction of cutting tool wear. Wear, 100 (1-3):129–151, 1984. doi: 10.1016/0043-1648(84)90010-3.
[31] J.F. Archard. Contact and rubbing of flat surfaces. Journal of Applied Physics, 24:981–988, 1953. doi: 10.1063/1.1721448.
[32] A.G. Suslov. To the problem of friction and wear of machinery. Journal of Friction and Wear, 5:801-807, 1990.
[33] P.J. Blau. Amontons’ laws of friction. In: Q.J. Wang, Y.W. Chung. (eds) Encyclopedia of Tribology. Springer, Boston, 2013. doi: 10.1007/978-0-387-92897-5_166.
[34] P.D. Hartung, B.M. Kramer, and B.F. von Turkovich. Tool wear in titanium machining. CIRP Annals, 31(1):75–80, 1982. doi: 10.1016/S0007-8506(07)63272-7.
[35] A.G. Kisel’, D.S. Makashin, K.V. Averkov, and A.A. Razhkovskii. Effectiveness and physical characteristics of machining fluid. Russian Engineering Research, 38:508–512, 2018. doi: 10.3103/S1068798X18070092.
[36] D.V. Evdokimov and M.A. Oleynik. Research of the friction coefficient of titanium and instrumental alloys. Dry and boundary friction. News of Samara Scientific Center of the Russian Academy of Sciences, 22(1):43-46, 2020. doi: 10.37313/1990-5378-2020-22-1-43-46 (in Russian).
[37] Y. Su, L. Li, G. Wang, and X. Zhong. Cutting mechanism and performance of high-speed machining of a titanium alloy using a super-hard textured tool. Journal of Manufacturing Processes, 34(A):706-712, 2018. 10.1016/j.jmapro.2018.07.004.
[38] R.B. Da Silva, J.M. Vieira, R.N. Cardoso, H.C. Carvalho, E.S. Costa, A.R. Machado and R.F. De Ávila. Tool wear analysis in milling of medium carbon steel with coated cemented carbide inserts using different machining lubrication/cooling systems. Wear, 271(9-10):2459–2465, 2011. 10.1016/j.wear.2010.12.046.
[39] S.Y. Hong, I. Markus, and W.-C. Jeong. New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V. International Journal of Machine Tools and Manufacture, 41(15):2245–2260, 2001. doi: 10.1016/S0890-6955(01)00041-4.
[40] V. Stupnytskyy and I. Hrytsay. Computer-aided conception for planning and researching of the functional-oriented manufacturing process. In: Tonkonogyi V. et al. (eds): Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering, pages 309–320. Springer, Cham, 2020. doi: 10.1007/978-3-030-40724-7_32.
Go to article

Authors and Affiliations

Vadym Stupnytskyy
1
ORCID: ORCID
Xianning She
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This paper studied the effect of laser welding technology on dissimilar metal welding joints of TA15 titanium alloy and Inconel 718 nickel-based alloy. The research results indicate that the laser welding of TA15 titanium alloy and Inconel 718 nickel-based alloy directly was difficult to form well, which due to the intermetallic compounds caused the joint brittle. When the pure Cu foil was used as the filling layer, the quality of the welding joints can be improved effectively. The experimental results also indicate that there were brittle intermetallic-compounds in the laser welding seam, and the laser power had an important influence on the performance and mechanical properties of the dissimilar metal joint. The maximum average tensile strength of the welding joint of 2300 W was increased to 252.32 MPa. Scanning electron microscope(SEM) results show that the fracture morphology was river pattern, a typical morphological of cleavage fracture, and the mode was brittle fracture.
Go to article

Authors and Affiliations

Qi An
1 2
ORCID: ORCID
Dongting Wu
1
ORCID: ORCID
Peng Liu
3
ORCID: ORCID
Yong Zou
4
ORCID: ORCID

  1. Shandong University, Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Jinan, 250061, China
  2. Shandong University, School of Materials Science and Engineering, Jinan, 250061, China
  3. Shandong Jianzhu University, School of Materials Science and Engineering, Jinan, 250101, China
  4. Shandong University, Jinan Shandong Engineering & Technology Research Center for Modern Welding, 250061, China

This page uses 'cookies'. Learn more