Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The effect of titanium nitride (TiN) thickness as the support layer for carbon nanotubes (CNTs) growth was investigated by depositing three different thicknesses: 20 nm, 50 nm and 100 nm. This TiN support layer was deposited on SiO2 pads before depositing nickel (Ni) as the catalyst material. The Ni distribution on different TiN thicknesses was studied under hydrogen environment at 600°C. Then, the samples were further annealed at 600°C in acetylene and hydrogen environment for CNTs growth. The results show that, the optimum TiN thickness was obtained for 50 nm attributed by the lowest D to G ratio (0.8).
Go to article

Authors and Affiliations

Muhammad M. Ramli
1 2
ORCID: ORCID
N.H. Osman
2 3
ORCID: ORCID
D. Darminto
4
ORCID: ORCID
M.M.A.B. Abdullah
1
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Electronic Engineering Technology, Perlis, Malaysia
  3. Universiti Putra Malaysia, Faculty of Science, Department of Physic, Applied Electromagnetic Laboratory, 43400 Serdang, Selangor, Malaysia
  4. Institut Teknologi Sepuluh Nopember, Faculty of Science and Analytical Data, Department of Physic, Campus ITS Sukolilo-Surabaya 60111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Titanium nitride (TiN) is regarded as a potential biomaterial for blood-contact applications. TiN thin films were fabricated by pulsed

laser deposition with the Nd:YAG laser on biologically applied polyurethane. Transmission electron microscopy (TEM) study of 250 nm thick films revealed columnar structure. Such films were observed to be brittle, which led to crack formation and secondary nucleation of microcolumn. TEM studies showed a kinetic mechanism of growth (columnar) in films of 250 nm thickness. It was stated that thinner films were much smoother and uniform than the thicker ones, which could be associated with the surface diffusion mechanism to appear. In order to improve the coatings elasticity, the thickness was reduced to 50 nm, which limited the deposition mechanism operation to the early stage. TEM cross-section observation revealed elastic properties of thin films. A biological test showed that TiN surface film produced on polyurethane is characterized by good biocompatibility and decreased surface affinity for cell adhesion. Films of 0.25 and 0.5 1m thick of TiN were selected for theoretical finite element modelling (FEM) using ADINA program. The micro cracks formation predicted in simulation was verified by phenomena observed in microstructure examinations.

Go to article

Authors and Affiliations

R. Ebner
J.M. Lackner
W. Waldhauser
R. Major
E. Czarnowska
R. Kustosz
P. Lacki
B. Major
Download PDF Download RIS Download Bibtex

Abstract

The general area of understanding is inclusions in steel both metallic and nonmetallic in nature. This work has also used the concepts of inclusions in steel in general other than Ti however mainly the research works done on precipitation, solute segregation, grain developments and equilibrium aspects of important inclusions like Ti in steel have been probed. Interaction of inclusions with slag oxides has also been incorporated. Interdependence of elements common in-between many inclusions has been marked. TiN, TixOy and MnS inclusions have been very outstanding in the confines of present research. Ratios and effective concentration have been highlighted in certain cases around the topic. Type of steels, compositions of the constituent elements and temperature correlation has been spotted in certain environments. A suggestive relation with the steel properties has also been inferred. Hardness, corrosion behaviour and strength stand out to be the parameters of vital importance when considering Ti inclusions in the form of either TiN or TixOy. Certain inclusions like MnS seem to nucleate on TiN inclusions and there is a correlation evident certainly in case of complex alloys.
Go to article

Authors and Affiliations

Ali R. Sheikh
1
ORCID: ORCID

  1. AGH University of Science and Technology, Poland

This page uses 'cookies'. Learn more