Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an attempt was made to explain the causes of surface delamination in high carbon steel wires during the torsion test. For end wires with 1.7 mm diameter drawn at speeds of 5, 10, 15, 20, 25 m/s, technological tests were carried out. Then the susceptibility of the wire to plastic strain was determined. The microstructure analysis complemented the research. Analysis of the fracture torsion test showed that the wires drawn at speeds exceeding 15 m/s are delamination, which disqualify it as a material for a rope and a spring. The source of delamination in high carbon steel wires is their stronger strengthening, especially of the surface layer, which leads to a decrease in the orientation of the cementite laminaes and an increase in the degree of their fragmentation.

Go to article

Authors and Affiliations

M. Suliga
Download PDF Download RIS Download Bibtex

Abstract

The main target during management of a male pediatric patient with clinical signs of acute scrotum is the timely diagnosis, in order not to jeopardize the viability of the affected testicle. Thorough evaluation of the patient’s medical history, symptomatology, clinical and ultrasonographic findings, con-stitutes the basis of the diagnostic procedure. After comprehensive research of the relevant literature, we highlight the remaining difficulties in the evaluation of the clinical and ultrasonographic findings for the accurate diagnosis of the acute scrotum. In conclusion, it is worth emphasizing on the following: a. the most common diseases that come under the diagnosis of the acute scrotum may present with similar symptoms, b. in neglected cases the diagnostic approach becomes more difficult, constituting the evalua-tion of the pathognomonic clinical signs challenging, and c. inability to exclude the diagnosis of spermatic cord torsion should be an indication for the surgical exploration of the affected hemiscrotum.
Go to article

Authors and Affiliations

Ioanna Gkalonaki
1
ORCID: ORCID
Ioannis Patoulias
1
Michail Anastasakis
1
Christina Panteli
1
Dimitrios Patoulias
2

  1. First Department of Pediatric Surgery, Aristotle University of Thessaloniki, General Hospital “G. Gennimatas”, Thessaloniki, Greece
  2. First Department of Internal Medicine, General Hospital “Hippokration”, Thessaloniki, Greece
Download PDF Download RIS Download Bibtex

Abstract

This paper focused on the effect of pure torsion deformation and various torsion pitches on the mechanical properties of the commercial pure Al wires which has not been examined so far. The initial wires with diameter of 4 mm have been torsion deformed to different pitch length (PL). In order to investigate the effect of gradient microstructure caused by torsion deformation, three different pitch length of 15 mm, 20 mm and 30 mm are considered. The results revealed that the level of grain refinement is correlated with the amount of induced plastic shear strain by torsion deformation. For the wire with pitch length of 15 mm, the grain sizes decreased to about 106 μm and 47 μm in the wire center and edge from the initial size of about 150 μm of the annealed wire. The micro-hardness measurement results show a gradient distribution of hardness from the wire center to the wire surface that confirmed the increasing trend of plastic shear strain obtained by FE simulations. The hardness of annealed sample (35 HV) is increased up to 73 HV at the wire surface for the smallest pitch length. The yield and ultimate tensile strength of the torsion deformed wires are also increased up to about 85 MPa and 152 MPa from the initial values of 38 MPa and 103 MPa of the annealed one respectively while the maximum elongation reduced significantly.
Go to article

Authors and Affiliations

M. Sedighi
A. Vaezi
M. Pourbashiri
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the methodology that makes it possible to evaluate computational model and introduce current corrections to it. The methodology ensures proper interpretation of nonlinear results of numerical analyses of thin-walled structures. The suggested methodology is based on carrying out, in parallel to nonlinear numerical analysis, experimental research on some selected crucial zones of loadcarrying structures. Attention is drawn to the determinants concerning the performance of an adequate experiment. The author points out on indicating the role of model tests as a fast and economically justified research instruments practicable when designing thin-walled load-carrying structures.

The presented considerations are illustrated by an example of a structure whose geometrical complexity and ranges of deformation are characteristic for modern solutions applied in the load-carrying structures of airframes. As the representative example, one selected the area of the load-carrying structure that contains an extensive cut-out, in which the highest levels and stress gradients occur in the conditions of torsion evoking the post-buckling states within the permissible loads. The stress distributions within these ranges of deformations were used as the basis for determining the fatigue life of the structure.

Go to article

Authors and Affiliations

Tomasz Kopecki
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new method of calculation of the change of axial twisting angle of compressed helical spring’s end-coils in the case of rotary - free supports. The propriety of derived formulas was experimentally verified. The method is easy in application and gives results much closer to experiment than the presently used method that can be found in literature.

Go to article

Authors and Affiliations

Krzysztof Michalczyk
Download PDF Download RIS Download Bibtex

Abstract

Elastic instability of steel I-section members has been investigated with regard to axial compression, major axis bending as well as compression and major axis bending, based on the Vlasov theory of thin-walled members. Investigations presented in this paper deal with the energy method applied to the flexural-torsional buckling (FTB) problems of any complex loading case that for convenience of predictions is treated as a superposition of symmetric and antisymmetric components. Firstly, the review of energy equation formulations is presented for the elastic lateral-torsional buckling (LTB) of beams, then the most accurate beam energy equation, so-called the classical energy equation formulated for bisymmetric I-section beams is extended to cover also the beam-column out-of-plane stability problems, referred hereafter to FTB problems. Secondly, for the simple end boundary conditions, the shape functions of twist rotation and minor axis displacement are chosen such that they cover both symmetric and antisymmetric lateral-torsional buckling modes in relation to two lowest eigenvalues of the beam LTB in major axis bending. Finally, the explicit form of the general solution is presented being dependent upon the dimensionless bending moment equations for symmetric and antisymmetric components, and the load factor where the lower k index identifies the load case.
Go to article

Authors and Affiliations

Marian Antoni Giżejowski
1
Anna Maria Barszcz
1
Zbigniew Stachura
2

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw
Download PDF Download RIS Download Bibtex

Abstract

Wave motion in pipe bends is much more complicated than that in straight pipes, thereby changing considerably the propagation characteristics of guided waves in pipes with bends. Therefore, a better understanding of how guided waves propagate in pipe bends is essential for inspecting pipelines with bends. The interaction between a pipe bend and the most used non-dispersive torsional mode at low frequency in a small-bore pipe is studied in this paper. Experiments are conducted on a magnetostrictive system, and it is observed that T(0,1) bend reflections and mode conversions from T(0,1) to F(1,1) and F(2,1) occur in the pipe bend. The magnitude of the T(0,1) bend reflections increases with increasing propagation distance and excitation frequency. The amplitude of the mode-converted signals also increases with increasing propagation distance, but it decreases with increasing excitation frequency. Because of their longer bent path, the test signals for a pipe bend with a bending angle of 180X are much more complicated than those for one with a bending angle of 90X. Therefore, it is even more difficult to scan a bent pipe with a large bending angle. The present findings provide some insights into how guided waves behave in pipe bends, and they generalize the application of guided-wave inspection in pipelines.

Go to article

Authors and Affiliations

Wenjun Wu
Junhua Wang
Download PDF Download RIS Download Bibtex

Abstract

Many industrial rotating machines driven by asynchronous motors are often affected by detrimental torsional vibrations. In this paper, a method of attenuation of torsional vibrations in such objects is proposed. Here, an asynchronous motor under proper control can simultaneously operate as a source of drive and actuator. Namely, by means of the proper control of motor operation, it is possible to suppress torsional vibrations in the object under study. Using this approach, both transient and steady-state torsional vibrations of the rotating machine drive system can be effectively attenuated, and its precise operational motions can be assured. The theoretical investigations are conducted by means of a structural mechanical model of the drive system and an advanced circuit model of the asynchronous motor controlled using two methods: the direct torque control – space vector modulation (DTC-SVM) and the rotational velocity-controlled torque (RVCT) based on the momentary rotational velocity of the driven machine working tool. From the obtained results it follows that by means of the RVCT technique steady-state torsional vibrations induced harmonically and transient torsional vibrations excited by switching various types of control on and off can be suppressed as effectively as using the advanced vector method DTC-SVM.
Go to article

Authors and Affiliations

Paweł Hańczur
1 2
Tomasz Szolc
1
ORCID: ORCID
Robert Konowrocki
1
ORCID: ORCID

  1. Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
  2. Schneider Electric Polska Sp. z o.o, ul. Konstruktorska 12, 02-673 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The influence of sheeting made by sandwich panels on the lateral-torsional buckling resistance of hot rolled purlin was studied in this paper. The actual shear and torsional stiffness as well as resistance of connections between sandwich panel and purlins were considered in analysis. Parameters of these factors were determined using the finite element method, as well as by own experimental tests. Simple models with beam elements were used in LBA analysis to calculate the critical moments of the purlins. Advanced models with GMNIA analysis using shell elements was performed to simulate the behaviour of the purlins stabilized by sandwich panels. The results show that the stiffness of sheeting made by sandwich panels is insufficient to ensure the full protection of purlin against lateral-torsional buckling. The connections resistance also limited the ability of purlins stabilisation. Nevertheless including sandwich panels in purlin stability analysis results in a significant increase in their LTB resistance.
Go to article

Authors and Affiliations

Marcin Górski
1
Aleksander Kozłowski
2

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, ul. Poznańska 2, 35-084 Rzeszów, Poland
  2. Rzeszów University of Technology, Faculty of Civil and Environmental Engineeringand Architecture, ul. Poznańska 2, 35-084 Rzeszów
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the experimental research and numerical simulations of reinforced concrete beams under torsional load. In the experimental tests Digital Image Correlation System (DIC System) Q-450 were used. DIC is a non-contact full-field image analysis method, based on grey value digital images that can determine displacements and strains of an object under load. Numerical simulations of the investigated beams were performed by using the ATENA 3D – Studio program. Creation of numerical models of reinforced concrete elements under torsion was complicated due to difficulties in modelling of real boundary conditions of these elements. The experimental research using DIC can be extremely useful in creating correct numerical models of investigated elements. High accuracy and a wide spectrum of results obtained from experimental tests allow for the modification of the boundary conditions assumed in the numerical model, so that these conditions correspond to the real fixing of the element during the tests.

Go to article

Authors and Affiliations

B. Turoń
D. Ziaja
L. Buda-Ożóg
B. Miller
Download PDF Download RIS Download Bibtex

Abstract

Development of contemporary building industry and related search for new aesthetical and functional solutions of monumental buildings in the centers of large cities resulted in the interest in glass as a structural material. Attractiveness of glass as a building material may be derived from the fact, that it combines transparency and aesthetical look with other functional features. Application of glass results in modern look of building facades, improves the indoor comfort without limiting the availability of natural daylight. Wide implementation of the new high performance float flat glass manufacturing technology, in conjunction with increasing expectations of the construction industry relating to new glass functions, has led to significant developments in glass structures theory, cf. [1, 3, 4, 5, 9, 10]. Many years of scientific research conducted in European Union countries have been crowned with a report CEN/TC 250 N 1050 [2], compiled as a part of the work of European Committee for Standardization on the second edition of Eurocodes - an extension of the first edition by, among others, the recommendations for the above mentioned design of glass structures, in particular modern procedures for the design of glass building structures. The procedures proposed in the pre-code [2] are not widely known in Poland, and their implementation in the design codes should be verified at the country level. This task is undertaken in this paper.

Go to article

Authors and Affiliations

M. Gwóźdź
Download PDF Download RIS Download Bibtex

Abstract

This paper presents probabilistic assessment of load-bearing capacity and reliability for different STM of beams loaded with a torsional and bending moment. Three beams having different reinforcement arrangement obtained on the basis of STM but the same overall geometry and loading pattern were analysed. Stochastic modelling of this beams were performed in order to assess probabilistic load-bearing capacity. In the analysis, the random character of input data - concrete and steel was assumed. During the randomization of variables the Monte Carlo simulation with the reduce the number of simulations the Latin Hypercube Sampling (LHS) method was applied. The use of simulation methods allows for approximation of implicit response functions for complex in description and non-linear reinforced concrete structures. On the basis of the analyses and examples presented in the paper, it has been shown that the adoption of different ST models determines the different reliability of the analysed systems and elements.

Go to article

Authors and Affiliations

Lidia Buda-Ożóg
ORCID: ORCID
Katarzyna Sieńkowska
ORCID: ORCID
Izabela Skrzypczak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this work is to characterize the performance of an interferometric fibre sensor which has been designed in order to register rotational phenomena, both in seismological observatories and engineering constructions. It is based on a well-known Sagnac effect which enables to detect one-axis rotational motions in a direct way and without any reference system. The presented optical fibre sensor – FOSREM allows to measure a component of rotation in a wide range of signal amplitude form 10–8 rad/s to 10 rad/s, as well as frequency from 0 Hz to the upper frequency from 2.56 Hz to 328.12 Hz. The laboratory investigation of our system indicated that it keeps theoretical sensitivity equal to 2·10–8 rad/s/Hz1/2 and accuracy no less than 3·1–8 to 1.6·10–6 rad/s in the above mentioned frequency band. Moreover, system size that equals 0.36×0.36×0.16 m and opportunity to remotely control the system via Internet by special server make FOSREM a mobile and autonomous device.

Go to article

Authors and Affiliations

A. Kurzych
Jerzy K. Kowalski
ORCID: ORCID
Bartosz Sakowicz
ORCID: ORCID
Z. Krajewski
L.R. Jaroszewicz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The high-pressure torsion (HPT) of Ti-Fe alloys with different iron content has been studied at 7 GPa, 5 anvil rotations and rotation speed of 1 rpm. The alloys have been annealed before HPT in such a way that they contained different amounts of α/α' and β phases. In turn, the β phase contained different concentration of iron. The 5 anvil rotations correspond to the HPT steady-state and to the dynamic equilibrium between formation and annihilation of microstructure defects. HPT leads to the transformation of initial α/α' and β-phases into mixture of α and high-pressure ω-phase. The α → ω and β → ω phase transformations are martensitic, and certain orientation relationships exist between α and ω as well as β and ω phases. However, the composition of ω-phase is the same in all samples after HPT and does not depend on the composition of β-phase (which is different in different initial samples). Therefore, the martensitic (diffusionless) transformations are combined with a certain HPT-driven mass-transfer. We observed also that the structure and properties of phases (namely, α-Ti and ω-Ti) in the Ti – 2.2 wt. % Fe and Ti – 4 wt. % Fe alloys after HPT are equifinal and do not depend on the structure and properties of initial α'-Ti and β-Ti before HPT.

Go to article

Authors and Affiliations

B. Straumal
A. Kilmametov
A. Gornakova
A. Mazilkin
B. Baretzky
A. Korneva
P. Zięba
Download PDF Download RIS Download Bibtex

Abstract

The work concerns numerical – experimental studies on pre- and post-buckling of thin-walled, steel, cylindrical shells, with the open section, subjected to constrained torsion. Two geometrically varied structures are considered: an open section cylindrical shell without stiffeners and one that is reinforced by closed section stringers. The shells have five different length to diameter ratios. Numerical simulations were carried out and the neuralgic zone stress distributions in pre- and post-buckling responses, were determined. Torsion experiments were performed and the results were compared to the numerical conclusions, with reasonably high level of agreement. The exactness of the experiment was proven for selected cases, establishing the basis for FEM numerical model estimation.

Go to article

Authors and Affiliations

Tomasz Kopecki
Hubert Dębski
Download PDF Download RIS Download Bibtex

Abstract

The paper describes a novel online identification algorithm for a two-mass drive system. The multi-layer extended Kalman Filter (MKF) is proposed in the paper. The proposed estimator has two layers. In the first one, three single extended Kalman filters (EKF) are placed. In the second layer, based on the incoming signals from the first layer, the final states and parameters of the two-mass system are calculated. In the considered drive system, the stiffness coefficient of the elastic shaft and the time constant of the load machine is estimated. To improve the quality of estimated states, an additional system based on II types of fuzzy sets is proposed. The application of fuzzy MKF allows for a shorter identification time, as well as improves the accuracy of estimated parameters. The identified parameters of the two-mass system are used to calculate the coefficients of the implemented control structure. Theoretical considerations are supported by simulations and experimental tests.
Go to article

Authors and Affiliations

Kacper Śleszycki
1
ORCID: ORCID
Karol Wróbel
1
ORCID: ORCID
Krzysztof Szabat
1
ORCID: ORCID
Seiichiro Katsura
2
ORCID: ORCID

  1. Wrocław University of Science and Technology, Institute of Electrical Machines, Drives and Measurements, Wrocław, Poland
  2. Keio University, Department of System Design Engineering, Tokyo, Japan
Download PDF Download RIS Download Bibtex

Abstract

Variation in powertrain parameters caused by dimensioning, manufacturing and assembly inaccuracies may prevent model-based virtual sensors from representing physical powertrains accurately. Data-driven virtual sensors employing machine learning models offer a solution for including variations in the powertrain parameters. These variations can be efficiently included in the training of the virtual sensor through simulation. The trained model can then be theoretically applied to real systems via transfer learning, allowing a data-driven virtual sensor to be trained without the notoriously labour-intensive step of gathering data from a real powertrain. This research presents a training procedure for a data-driven virtual sensor. The virtual sensor was made for a powertrain consisting of multiple shafts, couplings and gears. The training procedure generalizes the virtual sensor for a single powertrain with variations corresponding to the aforementioned inaccuracies. The training procedure includes parameter randomization and random excitation. That is, the data-driven virtual sensor was trained using data from multiple different powertrain instances, representing roughly the same powertrain. The virtual sensor trained using multiple instances of a simulated powertrain was accurate at estimating rotating speeds and torque of the loaded shaft of multiple simulated test powertrains. The estimates were computed from the rotating speeds and torque at the motor shaft of the powertrain. This research gives excellent grounds for further studies towards simulation-to-reality transfer learning, in which a virtual sensor is trained with simulated data and then applied to a real system.
Go to article

Authors and Affiliations

Aku Karhinen
1
ORCID: ORCID
Aleksanteri Hamalainen
1
Mikael Manngard
2
Jesse Miettinen
1
Raine Viitala
1

  1. Department of Mechanical Engineering, Aalto University, 02150, Espoo, Finland
  2. Novia University of Applied Sciences, Juhana Herttuan puistokatu 21, 20100 Turku, Finland
Download PDF Download RIS Download Bibtex

Abstract

Elastic lateral-torsional buckling of double-tee section structural steelworks has been widely investigated with regard to the major axis bending of single structural elements as a result of certain loading conditions. No specific attention has been paid to the general formulation in which an arbitrary span load pattern was associated with unequal end moments as a result of the moment distribution between structural members of the load bearing system.Anumber of analytical solutionswere developed on the basis of the Vlasov theory of thin-walled members. Since the accurate closed-form solutions of lateral-torsional buckling (LTB) of beams may only be obtained for simple loading and boundary conditions, more complex situations are treated nowadays by using numerical finite element methods (FEM). Analytical and numerical methods are frequently combined for the purpose of: a) verification of approximate analytical formulae or b) presentation the results in the form of multiple curve nomograms to be used in design practice. Investigations presented in this paper deal with the energy method applied to LTB of any complex loading condition of elements of simple end boundary conditions, bent about the major axis. Firstly, a brief summary of the second-order based energy equation dealt with in this paper is presented and followed by its approximate solution using the so-called refined energy method that in the case of LTB coincides with the Timoshenko’s energy refinement. As a result, the LTB energy equation shape functions of twist rotation and minor axis displacement are chosen such that they cover both the symmetric and antisymmetric lateral-torsional buckling modes. The latter modes are chosen in relation to two lowest LTB eigenmodes of beams under uniform major axis bending. Finally, the explicit form of the general solution is presented as being dependent upon the dimensionless bending moment equations for symmetric and antisymmetric components, and the in-span loads. Solutions based on the present investigations are compared for selected loading conditions with those obtained in the previous studies and verified with use of the LTBeam software. Conclusions are drawn with regard to the application of obtained closed-form solutions in engineering practice.
Go to article

Authors and Affiliations

Anna Barszcz
1
ORCID: ORCID
Marian Giżejowski
1
ORCID: ORCID
Malwina Pękacka
2

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Warsaw University of Technology Graduate, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study of the damping of nonlinear vibrations in a two-mass model of mechanical system containing a torsion damper. The starting of the system by harmonic excitation is considered on the assumption of uniformly varying frequency and constant amplitude of the forced moment. Simultaneous structural friction phenomena (passive damping) and piezoelectric effect (active damping) have been considered as well. The problem is considered on the assumption of a uniform unit pressure distribution between the contacting surfaces of friction discs and plunger. The aim of the analysis is to asses the influence of angular acceleration, unitary pressure, external load and electric parameters on the resonance curves of the starting vibrations. The equations of motion of the tested system were solved by means of the Krylov-Bogolubov-Mitropolski method and digital simulation method.
Go to article

Authors and Affiliations

Zbigniew Skup
Download PDF Download RIS Download Bibtex

Abstract

Steel prismatic elements of equal flanges double-tee section subject to major axis bending and compression, unrestrained in the out-of-plane direction between the supports, are vulnerable to buckling modes associated with minor axis flexural and torsional deformations. When end bending moments are acting alone on the quasi-straight member, the sensitivity to lateral-torsional buckling (LTB) is very much dependent upon the ratio of section minor axis to major axis moments of inertia, and additionally visibly dependent upon the major axis moment gradient ratio. In the case of major axis bending with the presence of a compressive axial force, even of rather small value in relation to the section squash resistance, there is a drastic reduction of structural elements in their realistic lengths to maintain a tendency to fail in the out-of-plane mode, governed by the large twist rotation. Increasing the load effects ratio of dimensionless axial force to dimensionless maximum major axis bending moment, the buckling mode goes away from that of lateral-torsional one, starting to become that closer to the minor axis flexural buckling (FBZ) mode. Different aspects of the flexural-torsional buckling (FTB) resistance of the typical rolled H-section beam-column with regard to the General Method (GM) formulation, developed by the authors elsewhere and based on the parametric finite element analysis, are dealt with in this paper. Investigations are concerned with different member slender ratio, different moment gradient ratios and different load effects ratio. Final conclusions are related to practical applications of the proposed format of General Method in relation to the effect of large displacements on the FTB resistance reduction factor described through the dimensionless measure of action effects and the FTB relative slenderness ratio of quasi-straight beam-columns.
Go to article

Authors and Affiliations

Marian Antoni Giżejowski
1
Radosław Bronisław Szczerba
2
Zbigniew Stachura
2
Marcin Daniel Gajewski
2

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with coupled flexural-torsional vibrations of straight prismatic elastic bars made of a linearly elastic isotropic and homogeneous material. One of the aims is to develop an effective method of modelling vibrations of train rails of cross-sections being mono-symmetric, taking into account warping due to torsion as well as transverse shear deformations. The Librescu-Song 1D model has been appropriately adapted to the above research aims by incorporating all the inertia terms corresponding to the kinematic hypotheses. The finite element(FE) program has been written and its correctness has been verified. The results concerning natural vibrations compare favourably with those predicted by 3D FE modelling using dense meshes. The paper proves that neglecting warping due to torsion leads to omitting several eigen-modes of vibrations, thus showing that the popular Timoshenko-like models are useless for the vibration analysis of bars of mono-symmetric cross sections.
Go to article

Authors and Affiliations

Sławomir Czarnecki
1
ORCID: ORCID
Tomasz Lewiński
2
ORCID: ORCID

  1. PhD., Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. Prof., DSc., PhD., Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the phenomenon of principal stress rotation in cohesive subsoil resulting from its loading or unloading and the impact of this phenomenon on the values of soil shear strength parameters: undrained shear strength τfu, effective cohesion c’, effective angle of internal friction φ’. For this purpose, tests in a triaxial apparatus and torsional shear hollow cylinder apparatus on selected undisturbed cohesive soils: sasiCl, saclSi, clSi, Cl, characterized by different index properties were carried out. Soil shear strength parameters were determined at angle of principal stress rotation α equal to 0° and 90° in tests in triaxial apparatus and α equal to 0°, 15°, 30°, 45°, 60°, 75°, 90° in tests in torsional shear hollow cylinder apparatus. The results of laboratory tests allow to assess the influence of the principal stress rotation on the shear strength parameters that should be used to determine the bearing capacity of the subsoil.
Go to article

Authors and Affiliations

Grzegorz Wrzesiński
1
ORCID: ORCID

  1. Warsaw University of Life Sciences, Institute of Civil Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In investigations constituting Part I of this paper, the effect of approximations in the flexural-torsional buckling analysis of beam-columns was studied. The starting point was the formulation of displacement field relationships built straightforward in the deflected configuration. It was shown that the second-order rotation matrix obtained with keeping the trigonometric functions of the mean twist rotation was sufficiently accurate for the flexural-torsional stability analysis. Furthermore, Part I was devoted to the formulation of a general energy equation for FTB being expressed in terms of prebuckling stress resultants and in-plane deflections through the factor k 1. The energy equation developed there was presented in several variants dependent upon simplified assumptions one may adopt for the buckling analysis, i.e. the classical form of linear eigenproblem analysis (LEA), the form of quadratic eigenproblem analysis (QEA) and refined (non-classical) forms of nonlinear eigenproblem analysis (NEA), all of them used for solving the flexural-torsional buckling problems of elastic beamcolumns. The accuracy of obtained analytical solutions based on different approximations in the elastic flexural–torsional stability analysis of thin-walled beam-columns is examined and discussed in reference to those of earlier studies. The comparison is made for closed form solutions obtained in a companion paper, with a scatter of results evaluated for k 1 = 1 in the solutions of LEA and QEA, as well as for all the options corresponding to NEA. The most reliable analytical solution is recommended for further investigations. The solutions for selected asymmetric loading cases of the left support moment and the half-length uniformly distributed span load of a slender unrestrained beam-column are discussed in detail in Part II. Moreover, the paper constituting Part II investigates how the buckling criterion obtained for the beam-column laterally and torsionally unrestrained between the end sections might be applied for the member with discrete restraints. The recommended analytical solutions are verified with use of numerical finite element method results, considering beam-columns with a mid-section restraint. A variant of the analytical form of solutions recommended in these investigations may be used in practical application in the Eurocode’s General Method of modern design procedures for steelwork.
Go to article

Authors and Affiliations

Marian Giżejowski
1
ORCID: ORCID
Anna Barszcz
1
ORCID: ORCID
Paweł Wiedro
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland

This page uses 'cookies'. Learn more