Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Water is the main source of daily life for everyone and everywhere in the world. Sufficient water distribution depends on the place and design of water tank in certain areas. Water storage tanks are relatively flexible structures and they can tolerate greater settlements than other engineering structures. Deformation of tanks may cause severe damages to tank or even loss of life and injury to people, so monitoring the structural deformation and dynamic response of water tank and its supporting system to the large variety of external loadings has a great importance for maintaining tank safety and economical design of manmade structures. This paper presents an accurate geodetic observations technique to investigate the inclination of an elevated circular water tank and the deformation of its supporting structural system (supporting columns and circular horizontal beams) using reflector-less total station. The studied water tank was designed to deliver water to around 55000 person and has a storage capacity about 750 m3. Due to the studied water tank age, a non-uniform settlement of tank foundation and movement of pumps and electric machines under tank’s body will cause stress and strain for tanks membrane and settlement of sediments. So the studied water tank can tend to experience movement vertically, horizontally or both. Three epochs of observations were done (July 2014, September 2014 and December 2014). The results of the practical measurements, calculations and analysis of the interesting deformation of the studied elevated tanks and its supporting system using least squares theory and computer programs are presented. As a results of monitoring the water storage tank, circular reinforced concrete beams and columns at three monitoring epochs. The body of water storage tank has an inclination to the east direction and the value of inclination is increased with the time.

Go to article

Authors and Affiliations

Zaki Zeidan
Ashraf A.A. Beshr
Sara Sameh
Download PDF Download RIS Download Bibtex

Abstract

A method of the improvement of the total station observations 3D adjustment by using precise geoid model is presented. The novel concept of using the plumb line direction obtained from the precise geoid model in combined GPS/total station data adjustment is applied. It is concluded that results of the adjustment can be improved if data on plumb line direction is used. Theoretical background shown in the paper was proved with an experiment based on the total station and GPS measurements referred to GRS80 geocentric reference system and with the use of GUGIK2001 geoid model for Poland.
Go to article

Authors and Affiliations

Edward Osada
Kateryna Sergieieva
Viktor Lishchuk
Download PDF Download RIS Download Bibtex

Abstract

Robotic total stations are a group of surveying instruments that can be used to measure moving prisms. These devices can generate significant errors during kinematic surveys. This is due to the different speeds of the total station’s measurement subsystems, which results in the observations of the point location being performed in different places of the space. Total stations which are several years old may generate errors of up to a few dozen centimeters. More modern designs, with much lower delays of the mechanical and electronic subsystems, theoretically allow to significantly reduce the values of the errors. This study involved the performance of kinematic tests on the modern robotic total station Leica MS50 in order to determine the values of measurement errors, and also to define the possibility of using them for the above-mentioned applications.

Go to article

Authors and Affiliations

G. Lenda
A. Uznański
M. Strach

This page uses 'cookies'. Learn more