Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A triple-band microstrip patch antenna is presented in this article with detail investigation of its working mechanism and performance characteristics. The antenna consists of a rectangular slot on the patch to achieve multiband operation. Three distinct frequencies of 2.4 GHz, 5.5 GHz and 7.5 GHz are achieved with return losses of 27 dB, 29 dB and 29 dB respectively. The Impedance Bandwidths are 70 MHz (2.52 GHz-2.44 GHz) at 2.4 GHz, 220 MHz (5.65 GHz-5.43 GHz) at 5.5 GHz and 250 MHz (7.57 GHz-7.32 GHz) at 7.5 GHz, which satisfy the requirements of Wi-Fi, Wi-MAX and satellite communications bands. The fabricated prototype of the antenna has total dimension of 53×53×1.6 mm3 over FR4 substrate. The antenna is simple and has sensible radiation characteristics with considerable gain. This work also focuses on developing a Link Budget model for its application in satellite communication. Most notably, it examines overall system efficiency and optimum path loss, distance analysis, system noise temperature, signal to noise power ratio, the size of antenna and the overall customer satisfactions. The highest gain of the antenna is achieved as 3.5 dB in the band (5.65 GHz-5.43 GHz), while the highest directivity and bandwidth are found as 8.7 dBi and 250 MHz respectively in the higher operating band. The affordable agreement between the simulated and measuring outcomes justifies that the antenna is often applicable for Wi-Fi (2.4 GHz), Wi-MAX (5.25 – 5.85 GHz) and satellite (7.24 – 7.57 GHz) communications.
Go to article

Authors and Affiliations

Md. Biplob Hossain
1
Md. Faruque Hossain
1

  1. Department of Electronics and Communication Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh
Download PDF Download RIS Download Bibtex

Abstract

The locally resonant phononic crystal (LRPC) composite double panel structure (DPS) made of a twodimensional periodic array of a two-component cylindrical LR pillar connected between the upper and lower composite plates is proposed. The plates are composed of two kinds of materials and periodically etched holes. In order to reveal the bandgap properties of structure theoretically, the band structures, displacement fields of eigenmodes and transmission power spectrums of corresponding 8 × 8 finite structure are calculated and displayed by using finite element method (FEM). Numerical results and further analysis demonstrate that if the excitation and response points are picked on different sides of the structure, a wide band gap with low starting frequency is opened, which can be treated as the coupling between dominant vibrations of pillars and plate modes. In addition, the influences of filled-in rubber, etched hole and viscidity of soft material on band gap are studied and understood with the help of “base-spring-mass” simplified model.

Go to article

Authors and Affiliations

Denghui Qian

This page uses 'cookies'. Learn more