Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Thermoacoustic converters are devices for direct conversion of acoustic energy into thermal energy in the form of temperature difference, or vice versa – for converting thermal energy into an acoustic wave. In the first case, the device is called a thermoacoustic heat pump, in the second – thermoacoustic engine. Thermoacoustic devices can use (or produce) a standing or travelling acoustic wave. This paper describes the construction and properties of a single-stage thermoacoustic engine with a travelling wave. This kind of engine works using the Stirling cycle. It uses gas as a working medium and does not contain any moving parts. The main component of the engine is a regenerator equipped with two heat exchangers. Most commonly, a porous material or a set of metal grids is used as a regenerator. An acoustic wave is created as a result of the temperature difference between a cold and a hot heat exchanger. The influence of working gas, and such parameters as static pressure and temperature at heat exchanger on the thermoacoustic properties of the engine, primarily its efficiency, was investigated. The achieved efficiency was up to 1.4% for air as the working medium, which coincides with the values obtained in other laboratories. The efficiency for argon as working gas is equal to 0.9%.

Go to article

Authors and Affiliations

Andrzej Dobrucki
Bartłomiej Kruk
Download PDF Download RIS Download Bibtex

Abstract

In order to simplify the motor structure, to reduce the difficulty of rotor pre-pressure application and to obtain better output performance, a new internal cone type rotating traveling wave ultrasonic motor is proposed. The parametric model of the internal cone type ultrasonic motor was established by the ANSYS finite element software. The ultrasonic motor consists of an internal cone type vibrator and a tapered rotor. The dynamic analysis of the motor vibrator is carried out, and two in-plane third-order bending modes with the same frequency and orthogonality are selected as the working modes. The other advantages of this motor are that pre-pressure can be imposed by the weight of the rotor. The prototype was trial-manufactured and experimentally tested for its vibration characteristics and output performance. When the excitation frequency is 22260.0 Hz, the pre-pressure is 0.1 N and the peak-to-peak excitation voltage is 300 V, the maximum output torque of the prototype is 1.06 N·mm, and the maximum no-load speed can reach 441.2 rpm. The optimal pre-pressure force under different loads is studied, and the influence of the pre-pressure force on the mechanical properties of the ultrasonic motor is analyzed. It is instructive in the practical application of this ultrasonic motor.
Go to article

Authors and Affiliations

Ye Chen
1
Junlin Yang
1
Liang Li
2
Shihao Xiao
1

  1. Institute of Vibration Engineering, Liaoning University of Technology Shiying Street, Guta District, Jinzhou, Liaoning Province, China
  2. College of Science, Liaoning University of Technology, Shiying Street, Guta District, Jinzhou, Liaoning Province, China
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to address the problems of inaccurate location and large computation in hybrid transmission line traveling wave detection methods. In this paper, a new fault location method based on empirical Fourier decomposition (EFD) and the Teager energy operator (TEO) is proposed. Firstly, the combination of EFD and the TEO is used to detect the time difference between the arrival of the initial traveling wave of the fault at the two measurement ends of the hybrid line. Then, when the fault occurs at the midpoint of each line segment and at the connection point of the hybrid line, the time difference between the arrival of the fault traveling wave at the two measurement ends of the line is calculated according to the line parameters. By comparing the obtained time differences, it is determined whether the fault occurs in the first or second half of the line. Finally, the fault distance is calculated using the double-ended traveling wave method according to the fault section. The model was built on PSCAD and the proposed algorithm was simulated on MATLAB platform. The results demonstrate that the proposed method achieves an average fault location accuracy of 98.88% by adjusting transition resistances and fault distances and comparing with other location methods. After validation, the proposed method for locating faults has a high level of accuracy in location, computational efficiency, and reliability. It can accurately identify fault segments and locations in hybrid transmission line systems.
Go to article

Authors and Affiliations

Caixia Tao
1
Baosheng Xing
1
Taiguo Li
1

  1. School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Gansu Province, China
Download PDF Download RIS Download Bibtex

Abstract

A new approach to calculations based on the modal synthesis method is proposed for the evaluation of structural and dry-friction damping effects on self-excited vibrations due to aeroelastic instability in bladed turbine wheels. The method described herein is used to study dry-friction damping of self-excited vibration of an industrial turbine wheel with 66 blades. For evaluating damping effects, the blade couplings are applied to this particular turbine wheel. Therefore, neighbouring blades are interconnected by rigid arms that are fixed on one side to one blade and are in frictional contact on their free side with the other blade. Due to relatively normal motions in contacts, the prescribed contact forces vary over time. The aerodynamic excitation arises from the spatially periodical flow of steam through the stator blade cascade. In this paper, we attempt to model flow-induced instabilities with the Van der Pol model linked to relative motion between neighbouring blades. The proposed modal synthesis method as ROM is a computationally efficient solution allowing substantial parametrization. The effect of the angles of contact surfaces on the wheel dynamics and on the level of the self-excitation suppression will be discussed herein.
Go to article

Authors and Affiliations

Luděk Pešek
1
ORCID: ORCID
Pavel Šnábl
1
Chandra Shekhar Prasad
1

  1. Institute of Thermomechanics of the CAS, v. v. i., Dolejškova 1402/5, 182 00 Praha 8, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we study the constrained exact and approximate controllability of traveling wave solutions of Korteweg-de Vries (third order) and Boussinesq (fourth order) semi-linear equations using the Green’s function approach. Control is carried out by a moving external source. Representing the general solution of those equations in terms of the Frasca’s short time expansion, system of constraints on the distributed control is derived for both types of controllability. Due to the possibility of explicit solution provided by the heuristic method, the controllability analysis becomes straightforward. Numerical analysis confirms theoretical derivations.

Go to article

Authors and Affiliations

Jerzy Klamka
ORCID: ORCID
Ara S. Avetisyan
Asatur Zh. Khurshudyan

This page uses 'cookies'. Learn more