Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study expands on prior studies on wireless telecommunication generations by examining the technological differences and evolutional triggers that characterise each Generation (from 1G to 5G). Based on a systematic literature review approach, this study examines fifty (50) articles to enhance our understanding of wireless generation evolution. Specifically, this study analyses i) the triggers that necessitated the evolution of wireless telecommunication generations and ii) makes a case regarding why it is imperative to look beyond the fifth Generation (5G) network technologies. The authors propose areas for future research.
Go to article

Authors and Affiliations

Godfred Yaw Koi-Akrofi
1
Marcellinus Kuuboore
1
Daniel Adjei Odai
2
Albert Neequaye Kotey
3

  1. IT Studies, University of Professional Studies Accra, Ghana
  2. Vodafone Ghana, Ghana
  3. Ericsson BGH, Ghana
Download PDF Download RIS Download Bibtex

Abstract

A novel approach to a trigger mode in the Gas Electron Multiplier (GEM) detector readout system is presented. The system is already installed at WEST tokamak. The article briefly describes the architecture of the GEM detector and the measurement system. Currently the system can work in two trigger modes: Global Trigger and Local Trigger. All trigger processing blocks are parts of the Charge Signal Sequencer module which is responsible for transferring data to the PC. Therefore, the article presents structure of the Sequencer with details about basic blocks, theirs functionality and output data configuration. The Sequencer with the trigger algorithms is implemented in an FPGA chip from Xilinx. Global Trigger, which is a default mode for the system, is not efficient and has limitations due to storing much data without any information. Local trigger which is under tests, removes data redundancy and is constructed to send only valid data, but the rest of the software, especially on the PC side, is still under development. Therefore authors propose the trigger mode which combines functionality of two existing modes. The proposed trigger, called Zero Suppression Trigger, is compatible with the existing interfaces of the PC software, but is also capable to verify and filter incoming signals and transfer only recognized events. The results of the implementation and simulation are presented.
Go to article

Authors and Affiliations

Piotr Kolasinski
1
Krzysztof Pozniak
1
Andrzej Wojenski
1
Paweł Linczuk
2
Rafał Krawczyk
1 3
Michał Gaska
1
Wojciech Zabolotny
1
Grzegorz Kasprowicz
1
Maryna Chernyshova
4
Tomasz Czarski
4

  1. Institute of Electronic Systems, Faculty of Electronics and Information Technology, University of Technology, Warsaw, Poland
  2. Institute of Electronic Systems, Faculty of Electronics and Information Technology, University of Technology, Warsaw, Poland
  3. CERN, Geneva, Switzerland
  4. Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the non-fragile event-triggered control of positive switched systems with random nonlinearities and controller perturbations. The random nonlinearities and controller perturbations are assumed to obey Bernoulli and Binomial sequence, respectively. A class of linear event-triggering conditions is introduced. A switched linear co-positive Lyapunov function is constructed for the systems. For the same probability with respect to nonlinearities and controller perturbations in each subsystem, a non-fragile controller of positive switched systems is designed in terms of linear programming. Then, the different probability case is considered and the corresponding non-fragile event-triggered control is explored. Finally, the effectiveness of theoretical findings is verified via two examples.
Go to article

Bibliography

  1.  L. Fainshil, M. Margaliot, and P. Chigansky, “On the stability of positive linear switched systems under arbitrary switching laws,” IEEE Trans. Autom. Contr., vol. 54, no. 4, pp. 897–899, 2009.
  2.  T. Kaczorek, “Simple sufficient conditions for asymptotic stability of positive linear systems for any switchings,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 2, pp. 343–347, 2013.
  3.  J. Zhang, Z. Han, and F. Zhu, “L1-gain analysis and control synthesis of positive switched systems,” Int. J. Syst. Sci., vol.  46, no. 12, pp. 2111–2121, 2015.
  4.  T. Kaczorek, “Global stability of positive standard and fractional nonlinear feedback systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 285–288, 2020.
  5.  H. Yang and Y. Hu, “Stability and stabilization of positive linear dynamical systems: new equivalent conditions and computations,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 2, pp. 307‒315, 2020.
  6.  L. Farina and S. Rinaldi, Positive linear systems: theory and applications. John Wiley and Sons, 2011.
  7.  T. Kaczorek, Positive 1D and 2D systems. Springer Science and Business Media, 2012.
  8.  J. Lam et al., Positive Systems. Springer, 2019.
  9.  E. Hernandez-Vargas et al., “Discrete-time control for switched positive systems with application to mitigating viral escape,” Int. J. Robust Nonlinear Contr., vol. 21, no.  10, pp. 1093–1111, 2011.
  10.  L. Gurvits, R. Shorten, and O. Mason, “On the stability of switched positive linear systems,” IEEE Trans. Autom. Contr., vol. 52, no. 6, pp. 1099–1103, 2007.
  11.  E. Fornasini and M. Valcher, “Stability and stabilizability criteria for discrete-time positive switched systems,” IEEE Trans. Autom. Contr., vol. 57, no. 5, pp. 1208‒1221, 2011.
  12.  J. Zhang et al., “Stability and stabilization of positive switched systems with mode-dependent average dwell time,” Nonlinear Anal.-Hybrid Syst., vol. 9, pp. 42–55, 2013.
  13.  J. Klamka, A. Czornik, and M. Niezabitowski, “Stability and controllability of switched systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 61, no. 3, pp. 547–555, 2013.
  14.  O. Mason and R. Shorten, “On linear copositive Lyapunov functions and the stability of switched positive linear systems,” IEEE Trans. Autom. Contr., vol. 52, no. 7, pp. 1346–1349, 2007.
  15.  F. Blanchini, P. Colaneri, and M. Valcher, “Co-positive Lyapunov functions for the stabilization of positive switched systems,” IEEE Trans. Autom. Contr., vol. 57, no. 12, pp. 3038–3050, 2012.
  16.  X. Liu, “Stability analysis of switched positive systems: A switched linear copositive Lyapunov function method,” IEEE Trans. Circuits Syst. II-Express Briefs, vol. 56, no. 5, pp. 414– 418, 2009.
  17.  M. Li et al., “Nonfragile reliable control for positive switched systems with actuator faults and saturation,” Optim. Contr. Appl. Met., vol. 40, no. 4, pp. 676–690, 2019.
  18.  J. Zhang, X. Zhao, and R. Zhang, “An improved approach to controller design of positive systems using controller gain decomposition,” J. Franklin Inst., vol. 354, no. 3, pp. 1356–1373, 2017.
  19.  R.C. Dorf, M. Farren, and C. Phillips, “Adaptive sampling frequency for sampled-data control systems,” IEEE Trans. Autom. Contr., vol. 7, no. 1, pp. 38–47, 1962.
  20.  P. Li et al., “Dynamic event-triggered control for networked switched linear systems,” in 2017 36th Chin. Contr. Conf., 2017, pp. 7984– 7989.
  21.  Y. Qi, P. Zeng, and W. Bao, “Event-triggered and self-triggered H1 control of uncertain switched linear systems,” IEEE Trans. Syst. Man Cybern. Syst., pp. 1–13, 2018.
  22.  S. Xiao, Y. Zhang, and B. Zhang, “Event-triggered networked fault detection for positive Markovian systems,” Signal Process., vol. 157, pp. 161–169, 2019.
  23.  Y. Yin et al., “Event-triggered constrained control of positive systems with input saturation,” Int. J. Robust Nonlinear Contr., vol. 28, no. 11, pp. 3532–3542, 2018.
  24.  L. Liu et al., “Event-triggered control of positive switched systems based on linear programming,” IET Control Theory A., vol. 14, no. 1, pp. 145–155, 2020.
  25.  H. Yang et al., “Non-fragile control of positive Markovian jump systems,” J. Frankl. Inst.-Eng. Appl. Math., vol. 356, no. 5, pp. 2742–2758, 2019.
  26.  J. Zhang, T. Raïssi, and S. Li, “Non-fragile saturation control of nonlinear positive Markov jump systems with time-varying delays,” Nonlinear Dyn., vol. 97, no. 1, pp. 1–19, 2019.
  27.  D. Ding et al., “H1 state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 5, pp. 725–736, 2012.
  28.  W. He et al., “Almost sure stability of nonlinear systems under random and impulsive sequential attacks,” IEEE Trans. Autom. Contr., vol. 65, no. 9, pp. 3879–3886, 2020.
  29.  J. Hu et al., “On state estimation for nonlinear dynamical networks with random sensor delays and coupling strength under event-based communication mechanism,” Informa. Sciences, vol. 511, pp. 265–283, 2020.
  30.  J. Hu et al., “On co-design of filter and fault estimator against randomly occurring nonlinearities and randomly occurring deception attacks,” Int. J. Gen. Syst., vol.  45, no. 5, pp. 619–632, 2016.
  31.  J. Zhang et al., “Adaptive event-triggered communication scheme for networked control systems with randomly occurring nonlinearities and uncertainties,” Neurocomputing, vol. 174, pp. 475–482, 2016.
  32.  Z. Wang, Y. Wang, and Y. Liu, “Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays,” IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 11–25, 2009.
  33.  J. Zhang, X. Zhao, and X. Cai, “Absolute exponential L1-gain analysis and synthesis of switched nonlinear positive systems with time- varying delay,” Appl. Math. Comput., vol. 284, pp. 24–36, 2016.
  34.  J. Zhang, H. Yang, and T. Rassi, “Stability analysis and saturation control for nonlinear positive Markovian jump systems with randomly occurring actuator faults,” Int. J. Robust Nonlinear Contr., vol. 30, no. 13, pp. 5062–5100, 2020.
  35.  M.A. Rami, U. Helmke, and F. Tadeo, “Positive observation problem for linear time-delay positive systems,” in proceedings of 15th IEEE Med. Conf. Contr. Autom., 2007, pp. 5004–5009.
  36.  P. Bolzern and P. Colaneri, “Positive Markov jump linear systems,” Found. Trends Syst. Contr., vol. 2, no. 3, pp. 275–427, 2015.
  37.  D. Li et al., “Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching,” J. Differ. Equ., vol. 263, no. 12, pp. 8873–8915, 2017.
Go to article

Authors and Affiliations

Yanqi Wu
1
Junfeng Zhang
1
Shizhou Fu
1

  1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

This page uses 'cookies'. Learn more