Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of determining the load of a model tunnel lining in a noncohesive soil medium at two different heights of soil backfill above the structure. A series of simulations were performed with the flexible and rigid tunnel lining. The analysis was performed by conducting simulations with the use of an author’s program based on the discrete element method. The model previously calibrated on the basis of laboratory tests was used. The loads acting on the structure, the distribution of stresses in the surrounding soil medium and the displacements of this medium in the vicinity of the structure were determined and compared. The effect of soil weight and technological load applied from the surface was taken into account. The values of the numerically obtained loads of the tunnel lining were compared with those calculated according to the classic Hewett’s method.
It has been proven that in both cases the degree of cooperation between the structure and soil is significantly related to the rigidity of the structure, hence the loads determined may differ significantly from the results obtained according to classical methods. It was shown that discrete modelling allows to reflect differences in the behaviour of the soil medium resulting from different heights of soil backfill. Smaller horizontal pressure was obtained in the side zones of an excavation at a higher backfill. In addition, significantly greater intensity of vertical soil displacements over the lining were observed with a lower backfill height.
Go to article

Authors and Affiliations

Paweł Szklennik
1
ORCID: ORCID

  1. Military University of Technology, Faculty of Civil Engineering and Geodesy, ul. Gen. Sylwestra Kaliskiego 2 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In order to study the ground disturbance and the influence relationship between the two tunnels during the construction of the new shield tunnel undercrossing the existing high-speed railway tunnel, the centrifuge test was used to simulate the construction of the parallel shield tunnel undercrossing the high-speed railway tunnel, and the variation law of the internal force, segment deformation and surface settlement of the existing high-speed railway tunnel undercrossing the shield was studied. It is found that the adverse effects caused by the later tunnel are less than those caused by the first tunnel excavation. For the existing tunnels without settlement joints, the longitudinal settlement of the inverted arch and the vault is U-shaped and anti-U-shaped respectively. The settlement value of the ground surface and the existing tunnel is increased by more than 100%. When the shield passes through the high-speed railway tunnel, the transverse bending strain is larger than the longitudinal, and special attention should be paid at the corner.
Go to article

Authors and Affiliations

Ruizhen Fei
1 2
ORCID: ORCID
Limin Peng
1
ORCID: ORCID
Chunlei Zhang
2
ORCID: ORCID
Jiqing Zhang
2
ORCID: ORCID
Peng Zhang
2
ORCID: ORCID

  1. Central South University, School of Civil Engineering, Changsha, 410075, China
  2. China Railway Design Corporation, Tianjin, 300142, China

This page uses 'cookies'. Learn more