Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The knowledge of performance characteristics of turbine stage groups is still insufficient, particularly in the general case of changes of operating conditions. This situation is caused mainly by the scarcity of experimental data available. In such case, the opportunity to obtain the required data, using mathematical modelling and numerical simulation of the operation of stage groups under off-design conditions instead of physical experiment, seems to be attractive. The application of this idea for impulse type turbine stage groups was presented in [I], [2]. Here we discuss similar results but obtained for reaction type turbine stage groups, that is: - mathematical model for computer simulation of operation of reaction type turbine stage group, under variable regime (based on Ainley's and Mathieson's method with some improvements); - simulation results for a number of stage groups designed according to former BBC and traditional concepts; - more general properties of these groups (in relation to flow capacity and efficiency) obtained from the analysis of simulation data; - comparison of observed properties of impulse and reaction typy turbine stage groups.
Go to article

Authors and Affiliations

Andrzej Miller
Janusz Lewandowski
Zofia Trzcińska
Kamal Ahmad Abed
Download PDF Download RIS Download Bibtex

Abstract

The investigation presented in this work concerned one-dimensional modelling of transient flow in an axial turbine stage. Because of the compound motion in the rotor-blade channels, the model of this flow path element was considered the most difficult to solve. The basic modelling approaches and the usefulness of the Euler and Lagrange methods for mathematical description are discussed. Relevant applied model based on the Lagrange method is described. Results of a successful numerical simulation of transient flow in a turbine stage are presented. This success opens the opportunity to build and solve one-dimensional models of dynamic flows in turbine cascades and entire flow paths.
Go to article

Authors and Affiliations

Nikołaj Uzunow

This page uses 'cookies'. Learn more