Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study was undertaken to investigate the effect of severe plastic deformation (SPD) by extrusion combined with reversible torsion (KoBo) method on microstructure and mechanical properties of Al-5Cu and Al-25Cu alloys. The extrusion combined with reversible torsion was carried out using reduction coefficient of λ = 30 and λ = 98. In this work, the microstructure was characterized by light microscopy (LM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Compression test and tensile test were performed for deformed alloys. The binary Al-5Cu and Al-25Cu alloys consist of the face cantered cubic (FCC) α phase in the form of dendrites and tetragonal (C16) θ-Al2Cu intermetallic phase observed in interdentritic regions. The increase of Cu content leads to increase of interdentritic regions. The microstructure of the alloys is refined after applying KoB deformation with λ = 30 and λ = 98. Ultimate Tensile Strength (UTS) of Al-5Cu alloy after KoBo deformation with λ = 30 and λ = 98 reached about 200 MPa. UTS for samples of Al-25Cu with λ = 30 and λ = 98 increased compared to Al-5Cu alloy and exceed 320 MPa and 270 MPa respectively. All samples showed increase of plasticity with increase of reduction coefficient. Independently of reduction coefficient, the compressive strain of Al-5Cu alloys is about 60%. The Al-25Cu alloy with λ = 98 showed the value of compressive strain exceed 60%, although for this same alloy but with λ = 30, the compressive strain is only 35%.

Go to article

Authors and Affiliations

K. Rodak
A. Brzezińska
J. Sobota
Download PDF Download RIS Download Bibtex

Abstract

In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s–1 to 1 s–1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s–1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s–1 due to the maximum adiabatic heating in the material.

Go to article

Authors and Affiliations

Q. Yuan
G. Xu
S. Liu
M. Liu
H. Hu
Download PDF Download RIS Download Bibtex

Abstract

Two strength-age hardening aluminum-lithium alloys: Al-2.3wt%Li and Al-2.2wt%Li-0.1wt%Zr in two different heat treatment conditions: solution state (S) and additionally in aging state (A) were severely plastically deformed by rolling with cyclic movement of rolls (RCMR) method to produce ultrafine – grained structure. Two thermo-mechanical treatments were used: (S+A+RCMR) and (S+RCMR+A+RCMR). To investigate the combined effect of plastic deformation and heat treatment, tensile tests were performed. Microstructural observations were undertaken using scanning transmission electron microscopy (STEM), and scanning transmission electron microscopy (SEM) equipped with electron backscattering diffraction detector (EBSD). Based on the obtained results, it can be deduced that maximum mechanical properties as: yield strength (YS) and ultimate tensile strength (UTS) could be achieved when the microstructure of alloys is in (S+A+RCMR) state. For samples in (S+RCMR+A+RCMR) state, ductility is higher than for (S+A+RCMR) state. The microstructural results shows that the favourable conditions for decreasing grain size of alloys is (S+A+RCMR) state. Additionally, in this state is much greater dislocation density than for (S+RCMR+A+RCMR) state. The microstructure of alloys in (S+RCMR+A+RCMR) state is characterized by grains/subgrains with higher average diameter and with higher misorientation angles compared with (S+A+RCMR) state.

Go to article

Authors and Affiliations

A. Brzezińska
A. Urbańczyk-Gucwa
R. Molak
K. Rodak

This page uses 'cookies'. Learn more