Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The compactness of dimension stone blocks was previously controlled through various methods that were partially based on personal experiences, acoustic and visual observance of materials. With the development of technology, the ultrasonic pulse method is frequently used for the examination of stone test pieces and with an analysis of acquired data through the tomography method, the compactness is determined. The monolith stone blocks that are found at a site contain hidden discontinuities. The technique of data acquisition and the use of various instruments enable a good overview of the block interior. With an increased number of measurements, a suitable classification is prepared that helps reduce modification costs and increases the quality of stone blocks. The control methodology of compactness is based on the passage of longitudinal waves through the stone block without damaging the block during control. High differences in speed show irregularities in the material. With the observation system, we can prepare a tomography of the measured profiles that show us the locations of irregularities that should be observed more closely. During in situ measurements, the data for comparison with measured results are acquired. Determination of critical locations is of extreme importance before the processing of the block into smaller stone products or during the reconstruction of older stone elements or sculptures. The purpose of “in situ” measurements is to prepare a simple and fast method for the evaluation of materials compactness and for production work.

Go to article

Authors and Affiliations

Andrej Kos
Jože Kortnik
Download PDF Download RIS Download Bibtex

Abstract

Cast iron destined for spheroidization is usually characterized by a near-eutectic chemical composition, which is a result of the necessity of maintaining its high graphitizing ability. This graphitizing ability depends mainly on the chemical composition but also on the so-called physical-chemical state. This, in turn, depends on the melting process history and the charge structure. It happens quite often, that at very similar chemical compositions cast irons are characterized by different graphitizing abilities. The hereby work concerns searching for the best method of assessing the graphitizing abilities of near-eutectic cast iron. The assessment of the graphitizing ability was performed for cast iron obtained from the metal charge consisting of 100% of special pig iron and for synthetic cast iron obtained from the charge containing 50% of pig iron + 50% of steel. This assessment was carried out by a few methods: wedge tests, thermal analysis, microstructure tests as well as by the new ultrasonic method. The last method is the most sensitive and accurate. On the basis of the distribution of the wave velocity, determined in the rod which one end was cast on the metal plate, it is possible to determine the graphitizing ability of cast iron. The more uniform structure in the rod, in which directional solidification was forced and which had graphite precipitates on the whole length, the higher graphitizing ability of cast iron. The homogeneity of the structure is determined by the indirect ultrasonic method, by measurements of the wave velocity. This new ultrasonic method of assessing the graphitizing ability of cast iron of a high Sc (degree of eutectiveness) and CE (carbon equivalent) content, can be counted among fast technological methods, allowing to assess the cast iron quality during the melting process.
Go to article

Bibliography

[1] Janerka, K. (2010). Carburizing of iron alloys. Gliwice: Wydawnictwa Politechniki Śląskiej. (in Polish).
[2] Janerka, K. (2019). The rate effectiveness of carbonization to the sort of carburizer. Archives of Foundry Engineering. 7(4), 95-100.
[3] Karsay, S.J. (1992). Ductile Iron I, Production. Canada: QIT –Fer & Titane.
[4] Fraś, E., Podrzucki, Cz. (1981). Modified cast iron. Kraków: Skrypt AGH. (in Polish).
[5] Riposan, I., Chisamera, M., Stan, S., Adam, N. (2004). Influencing Factors on the High Purity - Steel Scrap Optimum Ratio in Ductile Iron Production. Ductile Iron News. 2, 10-19.
[6] Riposan, I., Chisamera, M., Stan, S., Constantin, V., Adam, N. & Barstow, M. (2006). Beneficial remnant effect of high purity pig iron in industrial production of ductile iron. AFS Transactions. 114, 657-666.
[7] Fraś, E. (1978). Przegląd Odlewnictwa. 6,133. (in Polish).
[8] Podrzucki, Cz. (1991). Cast iron - structure - properties – application. Kraków: Wyd. ZG STOP. (in Polish).
[9] Podrzucki, Cz., Falęcki, Z., Wiśniewski, B. (1966). Przegląd Odlewnictwa. 7-8, 248. (in Polish).
[10] ASTM Standards of iron casting, (1957). Tentative methods of testing of cast iron. 76, A 367-55T.
[11] Podrzucki Cz., Kalata Cz. (1976). Metallurgy and iron founding. Katowice: Wyd. Śląsk. (in Polish).
[12] Zych ,J. (2000). The study of the sensitivity of cast iron to the cooling rate using the ultrasonic method. Solidification of Metals and Alloys. 43, 543-552. (in Polish).
[13] Zych, J. (2001). Multi-stage, ultrasonic control of the ductile iron castings production process. Archives of Foundry. 1(1/2), 227-235. (in Polish).
Go to article

Authors and Affiliations

J. Zych
1
ORCID: ORCID
M. Myszka
1
T. Snopkiewicz
1

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The fiber-cement and cellulose boards are materials commonly used in architectural engineering for exterior and interior applications such as building facades or as wall and roof covering materials. The aim of the study was to present the ultrasonic non-contact method of testing fiber-cement boards with Lamb waves and to discuss the results and limitations of the method in context of quality control of the material. The experiments were performed for the corrugated boards using a laboratory non-contact ultrasonic scanner. Lamb waves were generated in the tested materials by a transmitter excited by a chirp signal with a linearly modulated frequency. Waves transmitted through the tested material are acquired by the receiver and registered by the PC based acquisition system. The tests were done on reference plate board and the corrugated boards. As the main descriptor to assess the quality of tested boards the maximum amplitude of transmitted Lamb waves was selected. The significant role of boundary effects and frequency of waves was noticed. The obtained results have confirmed the usefulness of the applied ultrasonic method for testing macroscopic inhomogeneity of corrugated fiber-cement boards.
Go to article

Bibliography

  1.  Z. Su, L. Ye, and Y. Lu, “Guided Lamb waves for identification of damage in composite structures: A review”, J. Sound Vibr. 295, 753–780 (2006).
  2.  J.K. Agrahari and S. Kapuria, “Effects of adhesive, host plate, transducer and excitation parameters on time reversibility of ultrasonic Lamb waves”, Ultrasonics 70, 147–157 (2016).
  3.  R. Kędra and M. Rucka, “Preload monitoring in a bolted joint using Lamb wave energy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(6), 1161–1169 (2019).
  4.  S. Vázquez, J. Gosálbez, I. Bosch, A. Carrión, C. Gallardo, and J. Payá, “Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates”, Sensors (Basel) 19(19), 4068 (2019).
  5.  L. Yu, Z. Tian, and C.A.C. Leckey, “Crack imaging and quantification in aluminum plates with guided wave wavenumber analysis methods”, Ultrasonics 62, 203–212 (2015).
  6.  M. Radzieński, P. Kudela, W. Ostachowicz, P. Bolimowski, R. Kozera, and A. Boczkowska, “Lamb-wave-based method in the evaluation of self-healing efficiency”, Appl. Sci. 10, 2585 (2020).
  7.  K. Imielińska, M. Castaingsc, R. Wojtyrab, J. Harasa, E. Le Clezioc, and B. Hosten, “Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and Kevlar/epoxy composites”, J. Mat. Process. Techn. 157–158, 513–522 (2004).
  8.  H.B. Kichou, J.A. Chavez, A. Turo, J. Salazar, and M.J. Garcia-Hernandez, “Lamb waves beam deviation due to small inclination of the test structure in air-coupled ultrasonic NDT”, Ultrasonics 44, e1077–e1082 (2006).
  9.  S. Yashiro, J. Takatsubo, and N. Toyama, “An NDT technique for composite structures using visualized Lamb-wave propagation”, Compos. Sci. Technol. 67, 3202–3208 (2007).
  10.  Ł. Ambrozinski, B. Piwakowski, T. Stepinski, and T. Uhl, “Application of air-coupled ultrasonic transducers for damage assessment of composite panels”, 6th European Workshop on Structural Health Monitoring, 2014, pp. 1‒8.
  11.  R. Drelich, T. Gorzelańczyk, M. Pakuła, and K. Schabowicz, “Automated control of cellulose fibre cement boards with a non-contact ultrasound scanner”, Autom. Constr. 57, 55–63 (2015).
  12.  M.S. Harb and F.G. Yuan, “Non-contact ultrasonic technique for Lamb wave characterization in composite plates”, Ultrasonics 64, 162–169 (2016).
  13.  S. Talberg and T.F. Johansen, “Acoustic measurements above a plate carrying Lamb waves”, Proceedings of the 39th Scandinavian Symposium on Physical Acoustics, Geilo, Norway, 2016.
  14.  T. Marhenke, J. Neuenschwander, R. Furrer, J. Twiefel, J. Hasener, P. Niemz, and S.J. Sanabria, “Modeling of delamination detection utilizing air-coupled ultrasound in wood-based composites”, NDT E Int. 99, 1–12 (2018).
  15.  K.J. Vössing, M. Gaal, and E. Niederleithinger, “Air-coupled ferroelectret ultrasonic transducers for nondestructive testing of wood- based materials”, Wood Sci. Technol. 6, 1527–1538 (2018).
  16.  N. Toyama, J. Ye, W. Kokuyama, and S. Yashiro, “Non-contact ultrasonic inspection of impact damage in composite laminates by visualization of lamb wave propagation”, Appl. Sci. 9, 46 (2019).
  17.  A. Römmeler, P. Zolliker, J. Neuenschwander, V. van Gemmeren, M. Weder, and J. Dual,“Air coupled ultrasonic inspection with Lamb waves in plates showing mode conversion”, Ultrasonic 100, 105984 (2020).
  18.  M. Kaczmarek, B. Piwakowski, and R. Drelich, “Noncontact ultrasonic nondestructive techniques: state of the art and their use in civil engineering”, J. Infrastruct. Syst. 23(1), 45–56an (2017).
  19.  B. Yilmaz, A. Asokkumar, E. Jasiuniene, and R. J. Kazys, “Air-coupled, contact, and immersion ultrasonic non-destructive testing: Comparison for bonding quality evaluation”, Appl. Sci. 10, 6757 (2020).
  20.  J. Liu and N.F. Declerq, “Ultrasonic geometrical characterization of periodically corrugated surfaces”, Ultrasonics 53, 853–861 (2013).
  21.  J.D. Achenbach, Wave propagation in elastic solids, North-Holland Publishing Company, Amsterdam, 1973.
  22.  O. Abraham, B. Piwakowski, G. Villain, and O. Durand, “Non-contact, automated surface wave measurements for the mechanical characterization of concrete”, Constr. Build. Mater. 37, 904–915 (2012).
  23.  R. Drelich, B. Piwakowski, and M. Kaczmarek, “Identification of inhomogeneous cover layer by non-contact ultrasonic method – studies for model materials”, Annales du Bâtiment et des Travaux Publics 66(1–3), 47–52 (2014).
  24.  Ł. Amboziński, B. Piwakowski, T. Stepinski, and T. Uhl, “Evaluation of dispersion characteristics of multimodal guided waves using slant stack transform”, NDT E Int. 68, 88–97 (2014).
  25.  W. Ke, M. Castaings, and C. Bacon, “3D finite element simulations of an air-coupled ultrasonic NDT system”, NDT E Int. 42, 524–533 (2009).
  26.  A. Piekarczuk, “Test-supported numerical analysis for evaluation of the load capacity of thin-walled corrugated profiles”, Bull. Pol. Acad. Sci. Tech. Sci. 65(6), 791‒798 (2017).
  27.  M. Cieszko, R. Drelich, and M. Pakuła, “Wave dispersion in randomly layered materials”, Wave Motion 64, 52–67 (2016).
Go to article

Authors and Affiliations

Radosław Drelich
1
ORCID: ORCID
Michał Rosiak
1
Michał Pakula
1
ORCID: ORCID

  1. Faculty of Mechatronics, Kazimierz Wielki University, Kopernika 1, 85-074 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

An emerging ultrasonic technology aims to control high-pressure industrial processes that use liquids at pressures up to 800 MPa. To control these processes it is necessary to know precisely physicochemical properties of the processed liquid (e.g., Camelina sativa oil) in the high-pressure range. In recent years, Camelina sativa oil gained a significant interest in food and biofuel industries. Unfortunately, only a very few data characterizing the high-pressure behavior of Camelina sativa oil is available. The aim of this paper is to investigate high pressure physicochemical properties of liquids on the example of Camelina sativa oil, using efficient ultrasonic techniques, i.e., speed of sound measurements supported by parallel measurements of density. It is worth noting that conventional low-pressure methods of measuring physicochemical properties of liquids fail at high pressures. The time of flight (TOF) between the two selected ultrasonic impulses was evaluated with a cross-correlation method. TOF measurements enabled for determination of the speed of sound with very high precision (of the order of picoseconds). Ultrasonic velocity and density measurements were performed for pressures 0.1–660 MPa, and temperatures 3–30XC. Isotherms of acoustic impedance Za, surface tension σ and thermal conductivity k were subsequently evaluated. These physicochemical parameters of Camelina sativa oil are mainly influenced by changes in the pressure p, i.e., they increase about two times when the pressure increases from atmospheric pressure (0.1 MPa) to 660 MPa at 30XC. The results obtained in this study are novel and can be applied in food, and chemical industries.

Go to article

Authors and Affiliations

Piotr Kiełczyński
Stanisław Ptasznik
Marek Szalewski
Andrzej Balcerzak
Krzysztof Wieja
Aleksander J. Rostocki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of calculations and measurements of the first natural frequency of castings of solid and ventilated brake discs made of gray cast iron of the EN-GJL-200 class. The tests were carried out for three types of chemical composition, taking into account the permissible minimum and maximum content of alloying elements. Numerical simulations of natural vibrations were carried out on the basis of our own production material databases. To determine the elastic properties of cast iron, the ultrasonic method with the measurement of the propagation velocity of longitudinal and transverse waves was used. Measurements were made directly on casts of raw discs of various thicknesses. The values of Young's modulus and Poisson's number calculated from ultrasonic measurements were used to define the stiffness matrix in the equilibrium equation, which is solved by the solver of the MSC Nastran program. A high compatibility between the results of numerical simulations and the results of experimental FRF frequency analysis was obtained. The differences between the calculated and actual values were at the level of several hertz, while the estimated average error of numerical simulations was 0.76%. It was also found out that cast iron melts for brake discs must be subject to strict control in terms of chemical composition. Slight deviations of the eutectic saturation coefficient from the optimal value cause a significant change in the first natural frequency of the brake discs, regardless of their geometry.
Go to article

Bibliography

[1] Zagrajek, T., Krzesiński, G., Marek, P. (2006). Finite element method in structural mechanics. Warszawa: Oficyna Wydawnicza Politechniki Warszawskiej. (in Polish).
[2] Qatu, M.S., Abdelhamid, M.K., Pang J. & Sheng, G. (2009). Overview of automotive noise and vibration. International Journal of Vehicle Noise and Vibration. 5(1-2), 1-35. https://doi.org/10.1504/IJVNV.2009.029187.
[3] Lü, H. & Yu, D. (2014). Brake squeal reduction of vehicle disc brake system with interval parameters by uncertain optimization. Journal of Sound and Vibration. 333(26), 7313-7325. https://doi.org/10.1016/j.jsv.2014.08.027.
[4] Yoon, J., Park, J. & Min, S. (2022). Optimal disc brake design for reducing squeal instability using slip-dependent complex eigenvalue analysis. Mechanical Systems and Signal Processing. 177, 109240. https://doi.org/10.1016/j.ymssp. 2022.109240.
[5] Liu, P., Zheng, H., Cai, C., Wang, Y.Y., Lu, C., Ang, K.H. & Liu G.R. (2007). Analysis of disc brake squeal using the complex eigenvalue method. Applied Acoustics. 68(6), 603-615. https://doi.org/10.1016/j.apacoust.2006.03.012.
[6] Sinou, J.-J. (2010). Transient non-linear dynamic analysis of automotive disc brake squeal – On the need to consider both stability and non-linear analysis. Mechanics Research Communications. 37(1), 96-105. https://doi.org/10.1016/ j.mechrescom.2009.09.002.
[7] Nouby, M., Mathivanan, D. & Srinivasan, K. (2009). A combined approach of complex eigenvalue analysis and design of experiments (DOE) to study disc brake squeal. International Journal of Engineering, Science and Technology. 1(1), 254-271. DOI: 10.4314/ijest.v1i1.58084 .
[8] Armstrong, P.E., in: R.F. Bunshan (Ed.) (1971). Measurement of Mechanical Properties, Techniques of Metals Research. vol. V (Part 2). New York: Wiley.
[9] Radovic, M., Lara-Curzio, E., Riester, L. (2004). Comparison of different experimental techniques for determination of elastic properties of solids. Materials Science and Engineering A. 368(1-2), 56-70. https://doi.org/10.1016/ j.msea.2003.09.080.
[10] Migliori, A., Sarrao, J.L. (1997). Resonant Ultrasound Spectroscopy: Applications to Physics. Materials Measurements and Nondestructive Evaluation. , New York: Wiley.
[11] Wadsworth, H.M. (1990). Handbook of Statistical Methods for Engineers and Scientists. New York: Mc-Graw-Hill.
[12] WT/054/PIMOT/93 (1993). Brake discs of motor vehicles. Security requirements. (in Polish).
[13] Wehr, J. (1972). Measurements of the speed and attenuation of ultrasonic waves. Warszawa: PWN.
[14] Konopka, Z., Łągiewka, M. & Zyska, A. (2020). Influence of cast iron modification on free vibration frequency of casting. Archives of Foundry Engineering. 20(1), 23-26. DOI: 10.24425/afe.2020.131277.
Go to article

Authors and Affiliations

Andrzej Zyska
1
ORCID: ORCID
Mariusz Bieroński
2
ORCID: ORCID

  1. Department of Metallurgy and Metal Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
  2. Brembo Poland Sp. z o.o., ul. Roździeńskiego 13, 41-308 Dąbrowa Górnicza
Download PDF Download RIS Download Bibtex

Abstract

Elaborating composites containing waste materials requires study of basic mechanical properties and assessment of their structure quality. The subject of investigation was PPC concrete where aggregate was substituted with PET remaining after beverages bottles grinding. Substitution was done up to 25% (by volume). Waste material was fractioned and applied in various granulations. The main goal was to indicate the influence of such modification on the composite mechanical properties and to examine composite structure quality at macro level. Since PET and quartz differ greatly in density, to perform such examination it was possible to apply the nondestructive ultrasonic method, one of the most common NDT techniques used in material science and industry. The paper presents the effects of substitution of quartz with PET on ultrasonic wave propagation in PCC. The ultrasonic test results (measurements of wave velocity) compared with results of destructive tests (flexural and compressive strength) showed great correlation.

Go to article

Authors and Affiliations

J.J. Sokołowska
K. Zalegowski

This page uses 'cookies'. Learn more