Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The use of ultrasonic energy has created versatile possibilities of their applications in many areas of life, especially in hydro location and underwater telecommunications, industry and medicine. The consequence of a widespread use of high intensity ultrasonics in technology is the increased number of people who are exposed to such ultrasonic noise. Therefore it is important to determine the types of machines and other devices that are responsible for the emission of ultrasonic noise (10-40 kHz of central frequencies of one-third octave bands) as harmful and annoying hazard in the work environment. This paper presents ultrasonic noise sources frequently used in industry and preventive measures reducing the exposure to ultrasonic noise. Two types of ultrasonic noise sources have been distinguished: machines and other devices used to carry out or improve production processes, the so-called technological sources and sources in which ultrasonic noise exists as a non-intentional result of operation of many machines and systems, the so-called non-technological sources of ultrasonic noise. The emission of SPL has been determined for each groups of devices based on own measurement results.
Go to article

Authors and Affiliations

Bożena Smagowska
Download PDF Download RIS Download Bibtex

Abstract

The paper consists of study results of exposure to high frequency noise at metalworking workplaces. The study was carried out using objective methods (measurements of parameters characterizing the noise) and subjective studies (questionnaire survey). Metalworking workplaces were located in a steel structure (e.g. deck gratings) of the manufacturing plant. The results are equivalent sound pressure levels in the 1/3 octave frequency bands with center frequencies from 10 kHz to 40 kHz in reference to an 8-hour workday equal to approximately 81-105 dB at most of the tested workplaces and exceed permissible values. The questionnaire survey of annoyance high frequency noise (i.e. in the audible frequency and low ultrasound range) was conducted among 52 operators of machines. Most of the workers describe the noise as: buzzing, insistent, whistling and high-pitched squeaky. Respondents specify the noise levels occurring at workplaces as: loud, impeding communication, highly strenuous and tiring.
Go to article

Authors and Affiliations

Bożena Smagowska
Download PDF Download RIS Download Bibtex

Abstract

In parallel to the ultrasonic noise assessment procedures and research activity in the field there have appeared several papers in the domain of so called high-frequency audiometry which covers the range of frequencies 8-20 kHz. They are important for recognizing the harmfulness and hazard of the audible high frequency sound components in the same range as the one of the low frequency ultrasonic noise. On the other hand there exists a certain inconsequent situation in the general approach to the problem of ultrasonic noise hazard assessment in work places environment which concerns the convention to include the frequency range of 10-20 kHz to the domain of ultrasonics. The range consists of one third octave bands of central frequencies: 10, 12.5, 16, 20 kHz and conventionally is called low frequency ultrasonic noise though at least the components of the two lowest bands are naturally audible by a majority of population (mainly young people).The paper presents a discussion related to some achievements of the two domains and some conclusions which could be useful for a more consequent description of the subject and could be taken into account in the future regulations for the ultrasonic noise assessment in work places environment.
Go to article

Authors and Affiliations

Antoni Śliwiński
Download PDF Download RIS Download Bibtex

Abstract

Sound absorption coefficient is a commonly used parameter to characterize the acoustic properties of sound absorbing materials. It is defined within the frequency range of 100-5 000 Hz. In the industrial conditions, many appliances radiating acoustic energy of the frequency range of above 5000 Hz are used and at the same time it is known that a noise within the frequency range of 5 000-50 000 Hz can have a harmful effect on people,hence there is a need to define the coefficient in this frequency range. The article presents a proposal for a method of measurement of the sound absorption coefficient of materials in the frequency range from 5 000 Hz to 50 000 Hz. This method is a modification of the reverberation method with the use of interrupted noise.
Go to article

Authors and Affiliations

Witold Mikulski
Download PDF Download RIS Download Bibtex

Abstract

The physical phenomena occurring in sound-absorbing and insulating enclosures are subject of the present paper. These phenomena are: absorption in air and by the sound-absorbing material covering the walls and the coincidence effect. The absorption in the air can be neglected in small size enclosures for low ultrasonic frequencies (20-30 kHz). The coincidence plays a role in decrease of the sound insulation, however the main role play the leaks. The boards made of ceramic fibers have been chosen as the optimal sound-absorbing material. They are dense and have deeply porous structures. The enclosure for insulation of 20-kHz noise produced by a welding machine has been designed and manufactured, and reductions of 25 dB of peak and Leq levels have been achieved.

Go to article

Authors and Affiliations

Andrzej Dobrucki
Bronisław Żółtogórski
Piotr Pruchnicki
Romuald Bolejko
Download PDF Download RIS Download Bibtex

Abstract

Increased efficiency of production and improved quality have contributed to the development of ultrasonic technological applications, in which low frequency ultrasounds are generated to operate, accelerate as well as to facilitate technological processes. Technological ultrasonic devices (i.e. sources of ultrasonic noise in the work environment, e.g. ultrasonic washers, ultrasonic welding machines) have relatively high power and their nominal frequencies are in the range from 18 kHz to 40 kHz. In Poland, ultrasonic noise (defined as noise containing high audible and low ultrasonic frequencies from 10 kHz to 40 kHz) is included in the list of factors harmful to health in the work environment and therefore the admissible values of ultrasonic noise in the workplaces are established. The admissible values of ultrasonic noise and the new ultrasonic noise measurement method make it possible to perform the assessment of occupational risk related to ultrasonic noise. According to this method, the scope of the measurements includes the determination of the equivalent sound pressure levels in the 1/3 octave bands with the centre frequencies from 10 kHz to 40 kHz. This paper presents the description of both, i.e. the method for ultrasonic noise measurements and the method of the assessment of occupational risk related to ultrasonic noise. The examples of the results of the assessment of occupational risk related to exposure to ultrasonic noise are also discussed.
Go to article

Authors and Affiliations

Dariusz Pleban
1
Bożena Smagowska
1
Jan Radosz
1

  1. Central Institute for Labour Protection – National Research Institute, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Efficient ultrasonic noise reduction by using enclosures requires the knowledge of absorbing properties of materials in the frequency range above 4 kHz. However, standardized methods enable determination of absorption coefficients of materials in the frequency range up to 4 kHz. For this reason, it is proposed to carry out measurements of the sound absorption properties of materials in the free field by means of a tone-burst technique in the frequency range from 4 kHz to 40 kHz at angles of incidence varying from 0° to 60°. The absorption coefficient of a material is calculated from the reflection coefficient obtained by reflecting a tone-burst from both a perfectly reflecting panel and a combination of this panel and the sample of the tested material. The tests results show that mineral wool and polyurethane open-cell foam possess very good absorbing properties in this frequency range.
Go to article

Authors and Affiliations

Dariusz Pleban
Download PDF Download RIS Download Bibtex

Abstract

The hazard assessment of ultrasonic noise impact on human body at workplaces presents an open problem; it is not satisfactorily solved comparing the fund of knowledge and standard regulations established for the case of audible noise. Some research carried on in the Central Institute of Labour Protection - National Research Institute, Poland, are essential for elaboration reliable procedures for the assessment of ultrasonic noise hazard and they have to bring to modernization and creation the corresponding standards in this field. In the presentation, some problems related to measurement procedures applied as well as to the interpretation of results essential for hazard assessment of ultrasonic noise impact on human body will be considered; in particular such cases where some procedures elaborated for audible noise assessment are being transferred to apply in the ultrasonic range without taking fully into account some specific aspects of the high frequency components of the noise.
Go to article

Authors and Affiliations

Antoni Śliwiński

This page uses 'cookies'. Learn more