Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present paper discusses static and dynamic characteristics of various under sleeper pads (USP) that are to be used in the ballasted track systems as resilient vibroacoustic isolators. Four different USP samples were put to fatigue tests and static and dynamic bedding moduli were determined. The purpose of the tests, which were carried out up to 500 thousand load cycles, was to determine which USP have favourable and which unfavourable properties, taking into account their potential application as the elements used for energy dissipation and reduction of noise and vibration. The obtained results allowed the authors to indicate samples with a potential for further analysis and to reject those, which did not satisfy the adopted criteria.

Go to article

Authors and Affiliations

C. Kraśkiewicz
A. Zbiciak
A. Al Sabouni-Zawadzka
A. Piotrowski
Download PDF Download RIS Download Bibtex

Abstract

The present paper focuses on the analysis of resistance of several prototypical under sleeper pads (USP) to severe environmental conditions. Taking into account the climate in Poland, evaluation of USP in regard to water and frost resistance should be performed and the influence of high temperatures should be analyzed. In the present paper results of several tests carried out on the selected USP are presented. The tests were performed in accordance with the rules given in PN-EN 16730. Concrete blocks with USP were immersed in water at room temperature for 24 h and then placed in a climatic chamber for resistance testing. The results show that the severe environmental conditions influence the damping-related parameters of USP, which affects the effectiveness of the vibration isolation. The performed analyses allowed the authors to indicate the most resistant pads that will undergo further testing. Additionally, requirements of several railway infrastructure managers as well as authors' recommendations concerning the properties of USP were given.
Go to article

Bibliography


[1] C. Jayasuriya, B. Indraratna, T. Ngoc Ngo, “Experimental study to examine the role of under sleeper pads for improved performance of ballast under cyclic loading”, Transportation Geotechnics 19: pp. 61–73, 2019. https://doi.org/10.1016/j.trgeo.2019.01.005
[2] C. Kraśkiewicz, A. Zbiciak, W. Oleksiewicz, W. Karwowski, “Static and Dynamic Parameters of Railway Tracks Retrofitted With Under Sleeper Pads”, Archives of Civil Engineering 64(4): pp. 187–201, 2018. https://doi.org/10.2478/ace-2018-0070
[3] M. Sol-Sánchez, F. Moreno-Navarro, C. Rubio-Gámez, “The use of elastic elements in railway tracks: A state of the art review”, Construction and Building Materials 75: pp. 293–305, 2015. https://doi.org/10.1016/j.conbuildmat.2014.11.027
[4] M. Sol-Sánchez, L. Pirozzolo, F. Moreno-Navarro, C. Rubio-Gámez, “A study into the mechanical performance of different configurations for the railway track section: A laboratory approach”, Engineering Structures 119: pp. 13–23, 2016. https://doi.org/10.1016/j.engstruct.2016.04.008
[5] M. Sol-Sánchez, F. Moreno-Navarro, C. Rubio-Gámez, “The Use of Deconstructed Tires as Elastic Elements in Railway Tracks”, Materials 7: 5903–5919, 2014. https://doi.org/10.3390/ma7085903
[6] M. Sol-Sánchez, N.H. Thom, F. Moreno-Navarro, C. Rubio-Gámez, G.D. Airey, “A study into the use of crumb rubber in railway ballast” Construction and Building Materials 75: pp. 19–24, 2015. https://doi.org/10.1016/j.conbuildmat.2014.10.045
[7] J. Kennedy, P.K. Woodward, G. Medero, M. Banimahd, “Reducing railway track settlement using three-dimensional polyurethane polymer reinforcement of the ballast” Construction and Building Materials 44: pp. 615–625, 2013. https://doi.org/10.1016/j.conbuildmat.2013.03.002
[8] S. Kaewunruen, A. Aikawa, A.M. Remennikov, “Vibration attenuation at rail joints through under sleeper pads”. Procedia Engineering 189: pp. 193-198, 2017. https://doi.org/10.1016/j.proeng.2017.05.031
[9] A. Omodaka, T. Kumakura, T. Konishi, “Maintenance reduction by the development of resilient sleepers for ballasted track with optimal under-sleeper pads”, Procedia CIRP 59: pp. 53–56, 2017. https://doi.org/10.1016/j.procir.2016.09.039
[10] T. Abadi, L. Le Pen, A. Zervos, W. Powrie, “Effect of Sleeper Interventions on Railway Track Performance”, Journal of Geotechnical and Geoenvironmental Engineering 145(4): 04019009, 2019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002022
[11] C. Jayasuriya, B. Indraratna, T.N. Ngo, “Experimental study to examine the role of under sleeper pads for improved performance of ballast under cyclic loading”, Transportation Geotechnics 19: pp. 61–73, 2019. https://doi.org/10.1016/j.trgeo.2019.01.005
[12] C. Kraśkiewicz, A. Zbiciak, A. Al Sabouni-Zawadzka, A. Piotrowski, “Experimental Research on Fatigue Strength of Prototype under Sleeper Pads Used in the Ballasted Rail Track Systems”, Archives of Civil Engineering 66(1): pp. 241–255, 2020. https://doi.org/10.24425/ace.2020.131786
[13] Zbiciak, C. Kraśkiewicz, Al Sabouni-Zawadzka, J. Pełczyński, S. Dudziak, “A Novel Approach to the Analysis of Under Sleeper Pads (USP) Applied in the Ballasted Track Structures”, Materials 13(11): p. 2438, 2020. https://doi.org/10.3390/ma13112438
[14] IRS 70713-1: Railway Application – Track & Structure “Under Sleeper Pads (USP) - Recommendations for Use”, 1st edition 01.04.2018.
[15] PN-EN 16730:2016-08 Railway applications – track – concrete sleepers and bearers with under sleeper pads.
[16] RFI TCAR SF AR 03 007 C, Specifica tecnica di fornitura: Tappetini sotto traversa (USP), 2017.
[17] SNCF IG04013 Traverses et supports béton pour pose ballastée équipées de semelles résilientes en sous faces (ex CT IGEV 016) 14.08.2018.
Go to article

Authors and Affiliations

Cezary Kraśkiewicz
1
ORCID: ORCID
Artur Zbiciak
1
ORCID: ORCID
Anna Al Sabouni-Zawadzka
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of the laboratory tests made for the prototype resilient under sleeper pads in the Warsaw University of Technology laboratory unit. These pads are dedicated to reduce vibrations transmitted to the vicinity of the railroad and to improve the resistance of the railroad structure. The laboratory testing program was carried out for elastomeric materials (polyurethane and rubber based) due to the PN-EN 16730 standard. The obtained values of the key parameters were used in order to determine the insertion loss vibration level by applying analytical method. The paper presents the influence of selected parameters i.e. static and dynamic moduli on the reduction of vibration and structure-borne sound level.

Go to article

Authors and Affiliations

C. Kraśkiewicz
A. Zbiciak
W. Oleksiewicz
W. Karwowski
Download PDF Download RIS Download Bibtex

Abstract

Resilient under sleeper pads (USPs) are vibration isolators used in the ballasted track structure to improve the dynamic performance of the track, reduce vibrations and protect the ballast layer. Being permanently connected with the rail supports (sleepers or turnout bearers), the pads must exhibit a proper value of the pull-off strength, which ensures that they do not separate from the supports while being transported to the construction site or during many years of exploitation. This study focuses on the experimental determination of the pull-off strength of USPs attached to full scale prestressed concrete sleepers. Three variants are tested: two pads equipped with different anchor layers attached to the sleepers in the production plant and one pad glued to the sleeper in the laboratory. Some of the tested USPs are made of recycled styrene-butadiene rubber (SBR). An important part of the work is specification of the requirements for the pull-off strength of USPs, as well as the requirements for sleepers and turnout bearers equipped with resilient pads.
Go to article

Authors and Affiliations

Cezary Kraskiewicz
1
ORCID: ORCID
Artur Zbiciak
1
ORCID: ORCID
Henryk Zobel
1
ORCID: ORCID
Anna Al Sabouni-Zawadzka
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw
Download PDF Download RIS Download Bibtex

Abstract

Under sleeper pads (USPs) are resilient elements used in the ballasted track structures to improve dynamic behaviour of the track, reduce vibration and protect the ballast against fast degradation. As the elements permanently connected to the sleepers or turnout bearers, the pads must have an appropriate level of pull-off strength, so that they do not separate from the rail support (here: sleeper) during their transportation to the construction site or during many years of operation. In this paper, results of pull-off tests performed on four selected USP samples are presented: three samples made of SBR (styrene-butadiene rubber) granulate and one made of polyurethane. Moreover, details of the pad’s attachment to the rail support are discussed, and the requirements for the USP properties are specified, focusing on the pull-off strength determined after the weather resistance test. It is shown that only two out of four considered USP samples fulfilled the requirements specified by the authors.
Go to article

Authors and Affiliations

Cezary Kraśkiewicz
1
ORCID: ORCID
Artur Zbiciak
1
ORCID: ORCID
Jarosław Medyński
1
ORCID: ORCID
Anna Al Sabouni-Zawadzka
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland

This page uses 'cookies'. Learn more