Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article presents the effects of the application of the passive method of flue gas purification from mercury compounds emitted during combustion. The research was carried out on a fluidized bed installation using coal. The dry method of acid gas pollutants reduction was applied during the combustion with the use of 9 modified sodium sorbents. They were fed into a gas jet of 573 K in two molar ratios (sodium contained in the sorbent to the sulphur contained in the fuel). The mercury emission level into the atmosphere was determined based on the mercury content in the solid substrates of the combustion process (in the fuel and the sorbent) and the solid products (fly ash and bottom waste). The combustion process was accompanied by mercury emission 14.7 μgHg/m3. During the removal of acid pollutants from fumes, a decrease in mercury concentration was achieved. The degree of the mercury reduction depended on the type the sorbent used, the manner of modification and the molar ratio in which they were fed into the installation (2 Na/S = 0.5; 2.1). Each time, the more the sorbent was fed into the installation, the bigger the reduction of the mercury emission level. Among the unmodified sorbents, the lowest emission level was achieved for the raw bicarbonate – 3.7 μgHg/m3. For baking soda it was 9.7 μgHg/m3. The application of mechanically modified compounds based on baking soda resulted in the reduction of the Hg emission in fumes up to 2.5–2.6 μgHg/m3. The determined mercury concentration levels in the gases during the purification of the fumes were compared with the accepted Hg emissions contained in the BAT conclusions for large combustion plants. As for all of the existing and newly built plants with a heat capacity below 300 MW, satisfactory effects would be achieved by the use of mechanically modified sorbents in the molar concentration of 2 Na/S = 2.1.

Go to article

Authors and Affiliations

Anna Pajdak
Dorota Łuczkowska
Barbara Walawska
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, actions allowing for a reduction of anthropogenic mercury emission are taken worldwide. Great emphasis is placed on reducing mercury emission from the processes of energochemical coal conversion, mainly from the coal combustion processes. One of the methods which enable a reduction of anthropogenic mercury emission is the removal of mercury from coal before its conversion. It should be pointed out that mercury in hard coal may occur both in the organic and mineral matter. Therefore, a universal method should allow for the removal of mercury, combined in both ways, from coal. In the paper, a concept of the hybrid mercury removal process from hard coal was presented. The idea of the process is based on the combination of the coal cleaning process using wet or dry methods (first stage) and the thermal pretreatment process at a temperature in the range from 200 to 400 °C (second stage). In the first stage, a part of mercury occurring in the mineral matter is removed. In the second stage, a part of mercury occurring in the organic matter as well as in some inorganic constituents characterized by a relatively low temperature of mercury release is removed. Based on the results of the preliminary research, the effectiveness of the decrease in mercury content in coal in the hybrid process was estimated in the range from 36 to 75% with the average at the level of 58%. The effect of the decrease in mercury content in coal is much more significant when mercury content is referred to a low heating value of coal. So determined, the effectiveness was estimated in the range from 36 to 75% with the average at the level of 58%.

Go to article

Authors and Affiliations

Tadeusz Dziok
Andrzej Strugała
Tomasz Chmielniak
Ireneusz Baic
Wiesław Blaschke
Download PDF Download RIS Download Bibtex

Abstract

Work is being carried out on possibilities of limiting the content of mercury in hard coal products by gravity concentration of run-of-mine coal in the Branch of the Institute of Mechanized Construction and Rock Mining in Katowice and on the Faculty of Energy and Fuels of the AGH University of Science and Technology in Krakow. Under domestic industrial conditions, gravity concentration is carried out with heavy medium liquids and in jigs. Preliminary - pilot studies have shown the possibility of mercury removal also by using the dry deshaling method involving vibratory air separators. Mercury is mainly found in the pyrite and the rubble formed by the mineral carbon, but also in the organic carbon. Some of it is located in layers of coal roof fields, which in the course of their exploitation go to coal. The mercury removal efficiency during the gravity concentration process will depend on the decomposition of the listed components in the density fractions. The paper presents the results of investigations of total mercury and total sulphur content in the separated coal fractions from four mines. These contents were determined in fractions: –1.5 g/cm3 (conventionally clean coal – concentrate), 1.5–1.8 g/cm3 (conventionally middlings) and +1.8 g/cm3 (conventionally rock – waste). The results are summarized in Tables 3–5 and in Charts 1–4. Conversely, graphs 5-8 show the relationship between mercury content and total sulphur content in the tested coal samples. The study, which can be called a preliminary analysis of the susceptibility of the coals to gravity concentration, showed that the dry deshaling method on the vibratory air separators would allow significant amounts of mercury accumulated in the middlings and waste fractions to be removed.

Go to article

Authors and Affiliations

Ireneusz Baic
Wiesław Blaschke
Tadeusz Dziok
Andrzej Strugała
Wojciech Sobko

This page uses 'cookies'. Learn more