Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 107
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

For the prevention and control of rockburst in underground coal mines, a detailed assessment of a rockburst hazard area is crucial. In this study, the dependence between stress and elastic wave velocity of axially-loaded coal and rock samples was tested in a laboratory. The results show that P-wave velocity in coal and rock is positively related to axial stress and can be expressed by a power function. The relationship showed that high stress and a potential rockburst area in coal mines can be determined by the elastic wave velocity anomaly assessment with passive seismic velocity tomography. The principle and implementation procedure of passive seismic velocity tomography for elastic wave velocity were introduced, and the assessment model of rockburst hazard using elastic wave velocity anomaly was built. A case study of a deep longwall panel affected by rockbursts was introduced to demonstrate the effectiveness of tomography. The rockburst prediction results by passive velocity tomography closely match the dynamic phenomenon in the field, which indicates the feasibility of elastic wave velocity anomaly for rockburst hazard prediction in coal mines.
Go to article

Authors and Affiliations

Kunyou Zhou
1 2
ORCID: ORCID
Piotr Małkowski
3
ORCID: ORCID
Linming Dou
4
ORCID: ORCID
Ke Yang
1
ORCID: ORCID
Yanjiang Chai
4
ORCID: ORCID

  1. Anhui University of Science and Technology, School of Mining Engineering, Huainan 232001, China
  2. Engineering Laboratory for Safe and Precise Coal Mining of Anhui Province, Huainan 232001,China
  3. AGH University of Science and Technology, al. Mickiewicza Av. 30, 30-059 Krakow, Poland
  4. China University of Mining and Technology, School of Mines, Xuzhou 221116, China
Download PDF Download RIS Download Bibtex

Abstract

The energy industry is undergoing a major upheaval. In Germany, for example, the large nuclear and coal-fired power plants in the gigawatt scale are planned to be shut down in the forthcoming years. Electricity is to be generated in many small units in a decentralized, renewable and environmentally friendly manner. The large 1000 MW multistage axial steam turbines used to this date are no longer suitable for these tasks. For this reason, the authors examine turbine architectures that are known per se but have fallen into oblivion due to their inferior efficiency and upcoming electric drives about 100 year ago. However, these uncommon turbine concepts could be suitable for small to micro scale distributed power plants using thermodynamic cycles, which use for example geothermal wells or waste heat from industry to generate electricity close to the consumers. Thus, the paper describes and discusses the concept of a velocity-compounded single wheel re-entry cantilever turbine in comparison with other turbine concepts, especially other velocity-compounded turbines like the Curtis-type. Furthermore, the authors describe the design considerations, which led to a specific design of a 5 kW air turbine demonstrator, which was later manufactured and investigated. Finally, first numerical as well as experimental results are presented, compared and critically discussed with regards to the originally defined design approach.

Go to article

Authors and Affiliations

Andreas Paul Weiss
Philipp Streit
Tobias Popp
Patrick Shoemaker
Thomas Hildebrandt
Václav Novotný
Jan Špale
Download PDF Download RIS Download Bibtex

Abstract

Movement is one of the most spectacular phenomena involving glaciers. Deter- mining glacier surface velocity is now a routine aspect of glaciological studies. These are geodetic methods, especially satellite positioning, that most frequently is applied in such work. Using the Hans Glacier (SW Spitsbergen) as an example, the presented paper is an attempt at defining the time resolution limit of changes in the velocity determined using GPS positioning technology. A test network was established in the area of the examined glacier in order to define the size and variability of the main satellite positioning biases as well as to define their impact on determining position and the calculated velocity. A discussion relating to achieved accuracy (differentiated from measurement precision) for baselines of a length of several kilometres in the high latitudes has also been presented.
Go to article

Authors and Affiliations

Marcin Rajner
Download PDF Download RIS Download Bibtex

Abstract

The velocity field around the standard Rushton turbine was investigated by the Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) measurements. The mean ensembleaveraged velocity profiles and root mean square values of fluctuations were evaluated at two different regions. The first one was in the discharge stream in the radial direction from the impeller where the radial flow is dominant and it is commonly modelled as a swirling turbulent jet. The validity range of the turbulent jet model was studied. The second evaluated region is under the impeller where flow seems to be at first sight rather rigorous but obtained results show nonnegligible values of fluctuation velocity.

Go to article

Authors and Affiliations

Bohuš Kysela
Jiří Konfršt
Ivan Fořt
Michal Kotek
Zdeněk Chára
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the estimation of flow velocity from a multi-sensor scenario. Different estimation methods were used, which allow the effective measurement of the actual Doppler shift in a noisy environment, such as water with air bubbles, and on this basis the estimation of the flow velocity in the pipe was calculated. Information fusion is proposed for the estimates collected. The proposed approach focuses on the density of the fluid. The proposed method is capable of determining the flow velocity with high accuracy and small variations. Simulation results for plastic and steel (both galvanized and non-galvanized) pipes show the possibility of accurate fluid flow measurements without the need for sensors inside the pipe.
Go to article

Authors and Affiliations

Pawel Biernacki
1
Stanislaw Gmyrek
1
Wladyslaw Magiera
1

  1. Faculty of Electronics, Photonics and Microsystems, Department of Acoustics, Multimedia and Signal Processing, Wroclaw University of Science and Technology, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the experimental results of a new proof mass actuator for the implementation of velocity feedback control loops to reduce the flexural vibration of a thin plate structure. Classical proof mass actuators are formed by coil–magnet linear motors. These actuators can generate constant force at frequencies above the fundamental resonance frequency of the spring–magnet system, which can be used to efficiently implement point velocity feedback control loops. However, the dynamics of the spring–magnet system limit the stability and control performance of the loops when the actuators are exposed to shocks. The proof mass actuator investigated in this paper includes an additional flywheel element that improves the stability of the velocity feedback loop both by increasing the feedback gain margin and by reducing the fundamental resonance frequency of the actuator. This paper is focused on the stability and control performance of decentralized velocity feedback control loops.
Go to article

Authors and Affiliations

Aleksander Kras
1
ORCID: ORCID
Paolo Gardonio
2
ORCID: ORCID

  1. Silencions, Bierutowska 57-59, 51-315 Wrocław, Poland
  2. DPIA, Università di Udine, Via delle Scienze 206, 33100, Udine, Italy
Download PDF Download RIS Download Bibtex

Abstract

The flow of a viscous incompressible fluid in small gaps hydraulic devices and devices based on the hop boundary changes in viscosity. For the distribution model adopted dynamic viscosity was integrate the equations of fluid motion, whereby expressions are obtained for the velocity of the liquid height of the gap. The expressions for calculation of the fall capacity flow section are determined. Examples of the calculation of distributions velocity and falling bandwidth to a narrow gap are given.The estimation of the limits of applicability of classical approach to the calculation of viscous flow in micro gap is executed.
Go to article

Authors and Affiliations

Sokolova Ya.
Yu. Rasskazova
O. Krol
V. Sokolov
Download PDF Download RIS Download Bibtex

Abstract

Aspiration dust probes of some isokinctic samplers have such a construction that enables them to measure the gas velocity at the point they arc placed in a duct, the measurement being required for maintaining isokinctic conditions and in determining the dust mass flow rate in the duct. The gas velocity is correlated with a probe specific pressure difference, a quantity measured directly when the train is in operation. This relationship is a mclrological characteristic of a given probe, being established in a calibration procedure. Two types of the above-mentioned probes, namely a pressure balance-type and an in-stack filtration probes (in two versions) combined with a type S velocity sensor, have been tested. The behaviour of the characteristics of the probes was studied in the flows of different turbulence at a laboratory stand. The achieved results, presented in the paper, show that the turbulence state of gas flow is the factor that shapes the mctrological characteristics. Facing the fact that the turbulence of gas flow in industrial installations is not identified during the dust concentration gravimetric measurements, this parameter constitutes a source of uncertainty of the gas velocity measurement. For the probes under test, the values of this uncertainty, varying with the gas velocity, were determined. The test and calculation procedures were described.
Go to article

Authors and Affiliations

Przemysław Kateusz
Zbigniew Popiołek
Jerzy Szulikowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the problem of sensorless control of a permanent magnets synchronous motor (PMSM) without a damping cage for fan applications. Frequency control was used according to the principle of v/f = const. In order to reduce the power consumption of the drive system, the optimal voltage to the motor frequency characteristics was tested in the laboratory. The experimental studies was performed on a laboratory set of a drive consisting of two coupled PMSM machines, where one machine was supplied by a transistor inverter and the other was a passive load. A new criterion based on minimizing the module of stator current vector was proposed and an optimization algorithm in steady states was tested. The results of laboratory tests confirmed the validity of the applied solution for the fan drive.

Go to article

Authors and Affiliations

Stefan Brock
Tomasz Pajchrowski
Download PDF Download RIS Download Bibtex

Abstract

Results of velocity measurements of liquid and gas bubbles in a tank with a self-aspirating disk impeller are analysed. Studies were carried out using a fluorescent dye tracer in the measuring system with two cameras (simultaneous phase velocity measurement) and with one camera (sequential measurement of phase velocity). Based on a comparative analysis of the acquired data it was found that when differences in the phase velocities were small the simultaneous velocity measurement gave good results. However, sequential measurement gives greater possibilities for setting the measuring system and if the analysis of instantaneous velocities is not necessary, it seems to be a better solution.

Go to article

Authors and Affiliations

Radosław Musoski
Jacek Stelmach
Download PDF Download RIS Download Bibtex

Abstract

The aim of the project was to collect experimental data regarding local distributions of fluid velocity and inert tracer concentration in a tank reactor with turbulent flow. The experiments were performed in a microscale in a region of tracer fluid injection. The results of experiments can be used for direct validation of currently developed CFD models, particularly for time-dependent mixing models used in LES.

Go to article

Authors and Affiliations

Łukasz Makowski
Wojciech Orciuch
Download PDF Download RIS Download Bibtex

Abstract

Velocity is one of the main navigation parameters of moving objects. However some systems of position estimation using radio wave measurements cannot provide velocity data due to limitation of their performance. In this paper a velocity measurement method for the DS-CDMA radio navigation system is proposed, which does not require full synchronization of reference stations carrier frequencies. The article presents basics of FDOA (frequency difference of arrival) velocity measurements together with application of this method to an experimental radio navigation system called AEGIR and with some suggestions about the possibility to implement such FDOA measurements in other kinds of asynchronous DS-CDMA radio networks. The main part of this paper present results of performance evaluation of the proposed method, based on laboratory measurements

Go to article

Authors and Affiliations

Jarosław Sadowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of simulation method for prediction of helicopter H-V zone envelope in the case of engine power loss. Depending on the loss rate of available power, the emergency maneuver for flight continuation is calculated, or the autorotation landing is predicted. The realization of an airborne device with in-built calculating procedure and graphic presentation of H-V zone predicted limits can improve safety level of helicopter flight, and can cue the pilot to make proper decision in emergency conditions. The results of emergency maneuver simulation were verified by comparing them with flight tests of Mi-2Plus helicopter for partial power unit failure, and with records of SW-4 helicopter autorotation landing. The operation of measurement-recording module, which consists of GPS receiver, inertial measurement unit and a computer of PC-104 standard, was checked during flight tests of a radio-controlled helicopter model.

Go to article

Authors and Affiliations

Jarosław Stanisławski
Download PDF Download RIS Download Bibtex

Abstract

The knowledge of the dynamic elastic properties of a coal seam is important in the context of various types of calculations of the seam behavior under various stress-strain conditions. These properties are often used in numerical and analytical modeling related to maintaining the stability of excavations and the analysis of mechanisms, e.g. related to the risk of rock bursts. Additionally, during the implementation of seismic surveys, e.g. seismic profiling and seismic tomography in coal seams, the reference values of the elastic properties of coal are used in the calculation of relative stresses in various geological and mining conditions.
The study aims to calculate the dynamic elastic parameters of the coal seam located at a depth of 1,260 m in one of the hard coal mines in the Upper Silesian Coal Basin (USCB). Basic measurements of the velocity of P- and S-waves were conducted using the seismic profiling method. These surveys are unique due to the lack of the velocity wave values in the coal seam at such a great depth in the USBC and difficult measurement conditions in a coal mine. As a result, dynamic modulus of elasticity was calculated, such as Young’s modulus, volumetric strain modulus, shear modulus and Poisson’s ratio. The volumetric density of coal used for calculations was determined on the basis of laboratory tests on samples taken in the area of the study. The research results showed that the calculated mean P-wave velocity of 2,356 m/s for the depth of 1,260 m is approximately consistent with the empirical relationship obtained by an earlier study. The P-wave velocity can be taken as the reference velocity at a depth of approx. 1,260 m in the calculation of the seismic anomaly in the seismic profiling method.
Go to article

Bibliography

Brown, E.T. and Hoek, E. 1978. Trends in relationships between measured in-situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15(4), pp. 211–215.

Chlebowski, D. and Burtan, Z. 2021. Geophysical and analytical determination of overstressed zones in exploited coal seam: A case study. Acta Geophys. 69, pp. 701–710. DOI: 10.1007/s11600-021-00547-z.

Czarny et al. 2016 – Czarny, R., Marcak, H., Nakata, N., Pilecki, Z. and Isakow, Z. 2016. Monitoring velocity changes caused by underground coal mining using seismic noise. Pure. Appl. Geophys. 173, pp. 1907–1916. DOI: 10.1007/s00024-015-1234-3.

Dubiński, J. 1989. Seismic method of shock hazard assessment in hard coal mines (Sejsmiczna metoda wyprzedzającej oceny zagrożenia wstrząsami górniczymi w kopalniach węgla kamiennego). Prace Głównego Instytutu Górnictwa. Katowice: Central Mining Institute, 163 pp. (in Polish).

Dubiński, J. and Konopko, W. 2000. Rock bursts – assessment, prognosis, defeating (Tąpania – ocena, prognoza, zwalczanie). Katowice: Central Mining Institute, 378 pp. (in Polish).

Dubiński et al. 2001 – Dubiński, J., Pilecki, Z. and Zuberek, W. 2001. Geophysical research in mines – past, present and future plans (Badania geofizyczne w kopalniach – przeszłość, teraźniejszość, i zamierzenia na przyszłość). Kraków: MEERI PAS (in Polish).

Gustkiewicz, J. ed. 1999. Physical properties of Carboniferous rocks of the Upper Silesian coal basin. Rocks of Saddle beds (Właściwości fizyczne wybranych skał karbońskich Górnośląskiego Zagłębia Węglowego – skały warstw siodłowych). Kraków: MEERI PAS, 267 pp. (in Polish).

ISO 349:2020 Hard coal – Audibert-Arnu dilatometer test.

Jarzyna et al. 2020 – Jarzyna, J., Niculescu, B., M., Malinowski, M. and Pilecki Z. 2020. Editorial for special issue advances in engineering, environmental and mining geophysics. Acta Geophys. 69(2), pp. 609–611. DOI: 10.1007/s11600-021-00560-2.

Kokowski et al. 2019 – Kokowski, J., Szreder, Z. and Pilecka, E. 2019. Reference P-wave velocity in coal seams at great depths in Jastrzebie coal mine. E3S Web of Conf. 133, 01011. DOI: 10.1051/e3sconf/201913301011.

Kudyk, M. and Pilecki Z. 2009. Modulus of deformation of Carpathian flysch on the route of the “Emilia” tunnel in the Zywiec Beskids (Modul deformacji utworow fliszu karpackiego na trasie tunelu „Emilia” w Beskidzie Zywieckim). Zeszyty Naukowe IGSMiE PAN 76, pp. 45–64 (in Polish).

Ladanyi, B. 1974. Use of the long-term strength concept in the determination of ground pressure on tunnel linings. Proceedings of the Third Congress of the Int. Soc. for Rock Mech., Denver, vol. II part B, pp. 1150–1156.

Majcherczyk, T. and Małkowski, P. 2002. Relation between carbon rock depth and behavior of rock mass around openings (Głębokość zalegania skał karbońskich a zachowanie się górotworu wokół wyrobiska korytarzowego). Proceedings of the Conference of Winter School of Rock Mass Mechanics (XXV Zimowa Szkoła Mechaniki Górotworu). Zakopane, 18–22 March, 2002, pp. 427–435 (in Polish).

Majcherczyk et al. 2012 – Majcherczyk, T., Pilecki, Z., Niedbalski, Z., Pilecka, E., Blajer, M. and Pszonka, J. 2012. Impact of geological, engineering and geotechnical conditions on the selection of parameters of the initial support of the road tunnel in Laliki (Wpływ warunków geologiczno-inżynierskich i geotechnicznych na dobór parametrów obudowy wstępnej tunelu drogowego w Lalikach). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 28(1), pp. 103–124 (in Polish).

Małkowski et al. 2021 – Małkowski, P., Niedbalski, Z. and Balarabe, T. 2021. A statistical analysis of geomechanical data and its effect on rock mass numerical modeling: a case study. Int. J Coal Sci. Technol. 8(2), pp. 312–323.

Marcak, H. and Pilecki, Z. 2019. Assessment of the subsidence ratio be based on seismic noise measurements in mining terrain. Arch. Min. Sci. 64, pp. 197–212, DOI: 10.24425/ams.2019.126280.

Olechowski et al. 2018 – Olechowski, S., Krawiec, K., Kokowski, J., Szreder, Z., Harba, P. and Ćwiękała, M. 2018. Comparison of the results of the seismic profiling and WAS-96/RMS seismoacoustic active method in an assessment of the impact of the overlying coal seam edge. E3S Web of Conf. 66, 01011. DOI: 10.1051/e3sconf/20186601011.

PN-G-97002:2018-11 Węgiel kamienny – Klasyfikacja – Typy.

Pilecki, Z. 1995. An Example of Rock Burst Hazard State Control Using a Z onal Seismoacoustic Observation. Proc. Fifth Conf. on Acoustic Emission/Microseismic Activity, Clausthal-Zellerfeld: Trans. Tech. Publications, pp. 313–332.

Pilecki, Z. 1999. Dynamic analysis of mining tremor impact on excavation. [In:] Detournay, C. and Hart, R. eds. Proc. Int. FLAC Symp. on Numerical Modeling in Geomechanics. Minneapolis, Minnesota, USA: 1–3 September, 1999. Rotterdam: A. A. Balkema, pp. 397–400.

Pilecki, Z. 2018. Seismic method in geoengineering (Metoda sejsmiczna w geoinżynierii). Kraków: MEERI PAS, 311 pp. (in Polish).

Szreder et al. 2008 – Szreder, Z., Pilecki, Z. and Kłosiński, J. 2008. Effectiveness of recognition of exploitation edge influence with the help of profiling of attenuation and velocity of seismic wave (Efektywność rozpoznania oddziaływania krawędzi eksploatacyjnych metodami profilowania tłumienia oraz prędkości fali sejsmicznej). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 24(2), pp. 215–226 (in Polish).

Szreder, Z. and Barnaś, M. 2017. Assessment of the impact of an overlying coal seam edge using seismic profiling of refracted P-wave velocity. E3S Web of Conf. 24, 01007 DOI: 10.1051/e3sconf/20172401007.

Ślizowski et al. 2013 – Ślizowski, J., Pilecki, Z., Urbańczyk, K., Pilecka, E., Lankof, L. and Czarny, R. 2013. Site assessment for astroparticle detector location in evaporites of the Polkowice-Sieroszowice copper ore mine, Poland. Adv. High Energy Phys. 12, pp. DOI: 10.1155/2013/461764.

Wojtecki et al. 2016 – Wojtecki, Ł., Dzik, G. and Mirek, A. 2016. Changes of te dynamic elastic modules of the coal seam ahead the longwall face (Zmiany dynamicznych modułów sprężystości pokładu węgla przed frontem ściany). Przegląd Górniczy 72(1), pp. 57–62 (in Polish).
Go to article

Authors and Affiliations

Krzysztof Krawiec
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents theory of new shear horizontal (SH) acoustic surface waves that propagate along the interface of two semi-infinite elastic half-spaces, one of which is a conventional elastic medium and a second one an elastic metamaterial with a negative and frequency dependent shear elastic compliance.
This new surface waves have only one transverse component of mechanical displacement, which has a maximum at the interface and decays exponentially with distance from the interface. Similar features are also shown by the acoustic shear horizontal Maerfeld-Tournois surface waves propagating at the interface of two semi-infinite elastic media due to the piezoelectric effect that should occur in at least one semi-space.
The proposed new shear horizontal acoustic surface waves exhibit also strong formal similarities with the electromagnetic surface waves of the surface plasmon polariton (SPP) type, propagating along a metal-dielectric planar interface. In fact, the new shear horizontal elastic surface waves possess a large number of properties that are inherent for the SPP electromagnetic surface waves, such as strong subwavelength concentration of the wave field in the proximity of the guiding interface, low phase and group velocity etc. As a result, the new shear horizontal acoustic surface waves can find applications in sensors with extremely high sensitivity, employed in measurements of various physical parameters, such as viscosity of liquids, as well as in biosensors, chemosensors, or a near field acoustic microscopy (subwavelength imaging) and miniaturized devices of microwave acoustics.
Go to article

Bibliography

Achenbach J.D. (1973), Wave Propagation in Elastic Solids, North-Holland, Amsterdam.

Ambati M., Fang N., Sun C., Zhang X. (2007), Surface resonant states and superlensing in acoustic metamaterials, Physical Review B, 75(19): 195447, https://doi.org/10.1103/PhysRevB.75.195447.

Auld B.A. (1990), Acoustic Fields and Waves in Solids. Volume I, II, Krieger Publishing Company, Florida.

Bleustein J.L. (1968), A new surface wave in piezoelectric materials, Applied Physics Letters, 13: 412-413, 10.1063/1.1652495. https://doi.org/10.1063/1.1652495.

Born M., Wolf E. (1980), Principles of Optic, 6th ed., p. 625, Cambridge University Press, Cambridge.

Deng K., He Z., Ding Y., Zhao H., Liu Z. (2014), Surface-plasmon-polariton (SPP)-like acoustic surface waves on elastic metamaterials, arXiv, arXiv:1408.2186v1, 10.48550/arXiv.1408.2186, https://doi.org/10.48550/arXiv.1408.2186.

Kadic M., Bückmann T., Schittny R., Wegener M. (2013), Metamaterials beyond electromagnetism, Reports on Progress in Physics, 76(12): 126501, https://doi.org/10.1088/0034-4885/76/12/126501.

Kiełczyński P., Szalewski M., Balcerzak A., Wieja K. (2015), Group and Phase Velocity of Love Waves Propagating in Elastic Functionally Graded Materials, Archives of Acoustics, 40(2): 273–281, https://doi.org/10.1515/aoa-2015-0030.

Kiełczyński P. (2018), Direct Sturm–Liouville problem for surface Love waves propagating in layered viscoelastic waveguides, Applied Mathematical Modelling, 53: 419–432, 10.1016/j.apm.2017.09.013. https://doi.org/10.1016/j.apm.2017.09.013.

Kiełczyński P. (2021), New Fascinating Properties and Potential Applications of Love Surface Waves, Invited Speaker presentation at the IEEE, International Ultrasonic Symposium, September 11–16, 2021, Xi’an, China, http://zbae.ippt.pan.pl/strony/publikacje.htm.

Love A.E.H. (1911), Some Problems of Geodynamics, Cambridge University Press, London.

Maerfeld C., Tournois P. (1971), Pure shear elastic surface wave guided by the interface of two semi‐infinite media, Applied Physics Letters, 19(4): 117, 10.1063/1.1653836. https://doi.org/10.1063/1.1653836.

Maier S.A. (2007), Plasmonics: Fundamentals and Applications, Springer, Berlin.

Nkoma J., Loudon R., Tilley D.R. (1974), Elementary properties of surface polaritons, Journal of Physics C: Solid State Physics, 7(19): 3547–3559.

Rosenblatt G., Feigenbaum E., Orenstein M. (2010), Circular motion of electromagnetic power shaping the dispersion of surface plasmon polaritons, Optics Express, 18(25): 25861–25872, 10.1364/OE.18.025861. https://doi.org/10.1364/OE.18.025861.

Royer D., Dieulesaint E. (2000), Elastic Waves in Solids I, Springer, Berlin Heidelberg New York.

Wu Y., Lai Y., Zhang Z.-Q. (2011), Elastic metamaterials with simultaneously negative effective shear modulus and mass density, Physical Review Letters, 107(10): 105506, 10.1103/PhysRevLett.107.105506. https://doi.org/10.1103/PhysRevLett.107.105506.

Yu S.-Y., Wang J.-Q., Sun X.-C., Liu F.-K., He C., Xu H.-H., Lu M.-H., Christensen J., Liu X.-P., Chen Y.-F. (2020), slow surface acoustic waves via lattice optimization of a phononic crystal on a chip, Physical Review Applied, 14(6): 064008, 10.1103/PhysRevApplied.14.064008. https://doi.org/10.1103/PhysRevApplied.14.064008.

Zaccherini R., Colombi A., Palermo A., Dertimanis V.K., Marzani A., Thomsen H.R., Stojadinovic B., Chatzi E.N. (2020), Locally resonant metasurfaces for shear waves in granular media, Physical Review Applied, 13(3): 034055, 10.1103/PhysRevApplied.13.034055, https://doi.org/10.1103/PhysRevApplied.13.034055.

Zhang J., Zhang L., Xu W. (2020), Surface plasmon polaritons: physics and applications, Journal of Physics D: Applied Physics, 45(11): 113001.


Go to article

Authors and Affiliations

Piotr Kiełczyński
1

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the mixing power and distributions of velocity and velocity pulsations in a baffled stirred tank with a flat blade turbine impeller placed at different distances from the bottom were determined. It was found that the mixing power reaches minimum values when the relative clearance of the impeller is C/D = 0.6÷0.7. The investigations of velocity distributions using the PIV method showed the axial flow of the liquid through the impeller. This results in deviations from the typical radial-circumferential flow and changes in mixing power vs. impeller clearance versus a Rushton impeller. With a clearance corresponding to the minimum power, the flow is axial-circumferential with one circulation loop. For a flat blade turbine impeller, good mixing conditions are obtained for a clearance of 0.8 < C/D < 0.9.
Go to article

Authors and Affiliations

Jacek Stelmach
1
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 93-005 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents a numerical model of a U-ventilated longwall, taking into account detailed elements such as arch yielding support, roof supports and shearer. What distinguishes it from previous models is the mapping of adjacent goafs. This model considers the current state of knowledge regarding spatial height distribution, porosity and permeability of goafs. Airflow calculations were carried out using the selected turbulence models to select appropriate numerical methods for the model. Obtained results show possibilities of conducting extensive numerical calculations for the flow problems in the mine environment, taking into account more complex descriptions and the interpretation of the calculation results carried out with simpler models.
Go to article

Bibliography

[1] Ansys Inc, Ansys Fluent Theory Guide. Ansys Inc (2019).
[2] M. Baścik, 3D laser scanning in underground mines – practical experience. School of Underground Mining 2013. The Mineral And Energy Economy Research Institute of Polish Academy of Sciences (2013).
[3] P.Y. Chou, On velocity correlations and the solutions of the equations of turbulent fluctuations. Quarterely of Applied Mathematics (1945).
[4] N .S. Dhamakar, G.A. Blasdell, A.S. Lyrintzis, An Overview of Turbulent Inflow Boundary Conditions for large Eddy Simulations. Proc of the 22 nr AIAA Computational Fluid Dynamics Conference AIAA Paper (2015).
[5] W. Dziurzyński, Prognozowanie procesu przewietrzania kopalni głębinowej w warunkach pożaru podziemnego. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Kraków (1998).
[6] J. Janus, PhD thesis, Modelling of flow phenomena in mine drifts using the results of laser scanning. Strata Mechanics Research Institute of Polish Academy of Sciences (2018).
[7] J. Janus, The Application of laser scanning in the process of constructing a mine drift numerical model. 24th World Mining Congress PROCEEDINGS – Underground Mining, Brazilian Mining Association, Rio de Janeiro (2016).
[8] J. Janus, The application of laser scanning in the process of construction a mine drift numerical model. Transactions of the Strata Mechanics Research Institute 18, 3 (2016).
[9] J. Janus, Assessment of the possibilities of using laser scanning for numerical models constructions. Transactions of the Strata Mechanics Research Institute 17, (1-2) (2015).
[10] J. Janus, Wpływ zapory przeciwwybuchowej wodnej na pole prędkości i warunki przewietrzania wyrobiska kopalnianego. Archives of Mining Sciences, Seria: Monografia, Nr 19 (2019).
[11] J. Janus, J. Krawczyk, An Analysis of the Mixing of Air and Methane in the Stream Produced by the Mine Injector Station – Present Results of Measurements and Modeling. The Australian Mine Ventilation Conference 2013, The Australian Institute of Mining and Metallurgy (2013).
[12] J. Janus, J. Krawczyk, Measurement and Simulation of Flow in a Section of a Mine Gallery. Energies 14, 4894 (2021). DOI: https://doi.org/10.24425/ather.2019.128295
[13] J. Janus, J. Krawczyk, The numerical simulation of a sudden inflow of methane into the end segment of a longwall with Y – type ventilation system. Archives of Mining Sciences 59, (4) (2014).
[14] A. Kidybiński, Podstawy geotechniki kopalnianej. Wydawnictwo Śląsk, Katowice (1982).
[15] J. Krawczyk, J. Janus, An example of defining boundary conditions for a flow in a mine gallery. Abstract in the XXIII Fluid Mechanics Conference Materials, Zawiercie (2018).
[16] J. Krawczyk, J. Janus, Velocity field in the area of artificially generated barrier on the mine drift floor. Przegląd Górniczy 71, (11) (2015).
[17] J. Krawczyk, Single and multiple-dimensional models of unsteady air and gas flows in underground mines. Archives of Mining Sciences, Seria: Monografia, No 2 (2007).
[18] F. Menter, Turbulence Modeling for Engineering Flows. ANSYS 2012 Inc. (2012). [19] F. Menter, Best Practice – Scale-Resolving Simulations in ANSYS CFD – Application Brief Version 2.0 (2015).
[20] J. Pokorný, L. Brumarová, P. Kučera, J. Martinka, A. Thomitzek, P. Zapletal, The effect of Air Flow Rate on Smoke Stratification in Longitudinal Tunnel Ventilation. Acta Montanistica Slovaca 24, (3) (2019).
[21] T. Ren, R. Balusu, C. Claassen, Computational Fluid Dynamics Modelling of Gas Flow Dynamics in Large Longwall Goaf Areas. 35th APCOM Symposium (2011).
[22] P. Skotniczny, Three-Dimensional Numerical Simulation of the Mass Exchange Between Longwall Headings and Goafs, in the Presence of Methane Drainage in A U-Type Ventilated Longwall. Archives of Mining Sciences 58, (3) (2013).
[23] V. Sokoła-Szewioła, J. Wiatr, Application of laser scanning method for the elaboration of digital spatial representation of the shape of underground mining excavation. Przegląd Górniczy 8 (2013).
[24] J. Szlązak, PhD thesis, Wpływ uszczelniania chodników przyścianowych na przepływ powietrza przez zroby. AGH Kraków (1980).
[25] N. Szlązak, J. Szlązak, Wentylacja wyrobisk ścianowych w kopalniach węgla kamiennego, w warunkach zagrożenia metanowego i pożarowego. Górnictwo i Geologia (2) (2019).
[26] K. Wierzbiński, Wpływ geometrii chodnika wentylacyjnego i sposobu jego likwidacji na rozkład stężenia metanu w rejonie wylotu ze ściany przewietrzanej sposobem U w świetle obliczeń numerycznych CFD. Zeszyt Naukowy Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, No 94 (2016).
[27] M.A. Wala, S. Vytla, C.D. Taylor, G. Huang, Mine face ventilation: a comparison of CFD results against benchmark experiments for the CFD code validation. Mining Engineering (2007).
[28] D.M. Worrall, E.W. Wachel, U. Ozbay, D.R. Munoz, J.W. Grubb, Computational fluid dynamic modeling of sealed longwall gob in underground coal mine – A progress report. 14th United States/North American Mine Ventilation Symposium, Calizaya & Nelson (2012).
Go to article

Authors and Affiliations

Jakub Janus
1
ORCID: ORCID

  1. Strata Mechanics Research Institute, 27 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The blasting technique is currently the basic excavation method in Polish underground copper mines. Applied explosives are usually described by parameters determined on the basis of specific standards, in which the manner and conditions of the tests performance were defined. One of the factors that is commonly used to assess the thermodynamic parameters of the explosives is the velocity of detonation. The measurements of the detonation velocity are carried out according to European Standard EN ­13631-14:2003 based on a point-to-point method, which determines the average velocity of detonation over a specified distance. The disadvantage of this method is the lack of information on the detonation process along the explosive sample. The other method which provides detailed data on the propagation of the detonation wave within an explosive charge is a continuous method. It allows to analyse the VOD traces over the entire length of the charge. The examination certificates of a given explosive usually presents the average detonation velocities, but not the characteristics of their variations depending on the density or blasthole diameter. Therefore, the average VOD value is not sufficient to assess the efficiency of explosives. Analysis of the abovementioned problem shows, that the local conditions in which explosives are used differ significantly from those in which standard tests are performed. Thus, the actual detonation velocity may be different from that specified by the manufacturer. This article presents the results of VOD measurements of a bulk emulsion explosive depending on the diameter of the blastholes carried out in a selected mining panel of the Rudna copper mine, Poland. The aim of the study was to determine the optimal diameter of the blastholes in terms of detonation velocity. The research consisted of diameters which are currently used in the considered mine.

Go to article

Authors and Affiliations

Piotr Mertuszka
Marcin Szumny
Krzysztof Fuławka
Jarosław Maślej
David Saiang
Download PDF Download RIS Download Bibtex

Abstract

The prediction of strength properties is a topic of interest in many engineering fields. The common tests used to evaluate rock strength include the uniaxial compressive strength test ( UCS), Brazilian tensile strength ( BTS) and flexural strength ( FS). These tests can only be carried out in the laboratory and involve some difficulties such as preparation of the samples according to standards, amount of samples, and the long duration of test phases. This article aims to suggest equations for the prediction of mechanical properties of aggregates as a function of the P-wave velocity ( Vp) and Schmidt hammer hardness ( SHH) value of intact or in-situ rocks using regression analyses. Within the scope of the study, 90 samples were collected in the south of Türkiye. The mechanical properties, such as uniaxial compressive strength, Brazilian tensile strength and flexural strength of specimens, were determined in the laboratory and investigated in relation to P-wave velocity, and Schmidt hardness. Using regression techniques, various models were developed, and comparisons were made to find the optimum models using a coefficient of determination (R2) and p value (sig) performance indexes. Simple and multiple regression analysis found powerful correlations between mechanical properties and P-wave velocity and Schmidt hammer hardness. In addition, the prediction equations were compared with previous studies. The results obtained from this study indicate that the results of simple test methods, such as Vp or SHH values, of rock used for aggregate could be used to predict some mechanical properties. Thus, it will be possible to obtain information about the mechanical properties of aggregates in the study area in a faster and more practical way by using predictive models.
Go to article

Authors and Affiliations

Esma Kahraman
1
ORCID: ORCID

  1. Çukurova University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In view of the high cost and difficulty of ensuring the accuracy in the measurement of fire smoke velocity, the measurement system developed using platinum resistance temperature detectors and an 8-bit microcontroller, is used to realize the fast measurement of high-temperature fire smoke velocity. The system is based on the thermodynamic method and adopts the Kalman filter algorithm to process the measurement data, so as to eliminate noise and interference, and reduce measurement error. The experimental results show that the Kalman filter algorithm can effectively improve the measurement accuracy of fire smoke velocity. It is also shown that the system has high measurement accuracy, short reaction time, low cost, and is characterized by high performance in the measurement of high-temperature smoke velocity in experiments and practice.
Go to article

Authors and Affiliations

Haoyu Wang
1

  1. Department of Fire Engineering, China Fire and Rescue Institute, Nanyan 4, Changping District, 102202, Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

The aim of this research is to use a simple acoustic method of a very near field recording, which enables measurement and display of oscillation modes, to estimate the velocity of flexural waves, based on the wavelengths of standing waves measured on the sample. The paper analyses cases of 1D geometry, flexural waves that occur on a beam excited by an impulse. Measurements were conducted on two different samples: steel and a wooden beam of the same length. Due to the appearance of evanescent waves at the boundary regions, the distance between the nodes of standing waves that occur deviates from half the wavelength, which can be compensated using a correction factor. Cases of fixed and free boundary conditions were analysed. By quantifying how much the boundary conditions change the mode shape function, it can be predicted how the mode of oscillation changes if the boundary conditions change, which can also find application in musical acoustics and sound radiation analysis.
Go to article

Authors and Affiliations

Filip Pantelić
1
Dragana Šumarac-Pavlović
2
Miomir Mijić
2
Danial Ridley-Ellis
3

  1. The School of Electrical and Computer Engineering of Applied Studies, Academy of Technical and Art Applied Studies, Belgrade, Serbia
  2. The School of Electrical Engineering, Belgrade University, Belgrade, Serbia
  3. The Centre for Wood Science and Technology, Edinburgh Napier University, Edinburgh, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

The dependence of piezoelectric wave impedance on the rotation speed is investigated theoretically and numerically. The Coriolis force due to rotation is introduced into the piezoelectric motion equations, which is solved by the harmonic plane wave solution. It is shown that the wave impedance variations of longitudinal and transverse waves due to rotation are clearly different. The longitudinal wave impedance continuously increases with a small rotation ratio and one transverse wave impedance is almost irrespective of a rotation ratio. In contrast, the rotation applies a big impact on the other transversal wave impedances in the piezoelectric crystal which decreases monotonically with the rotation speed. Such characteristics are significant in piezoelectric transducers and sensors.
Go to article

Authors and Affiliations

Xiaoguang Yuan
1
Chaoyu Hao
1
Quan Jiang
1

  1. School of Transportation and Civil Engineering, Nantong University, Nantong, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research upon the gas distribution in a physical model and the computer simulation of dust separation in a horizontal electrostatic precipitator (ESP) with a flat inlet diffuser. The research of a gas flow was carried out using the visualization method and the velocity measurement in cross sections of a model chamber. By selecting suitable choking diffusion screens and deflecting vanes in a diffuser the oblique profiles of a gas velocity were obtained for different obliqueness degree. It was assumed that the velocity profiles obtained should guarantee higher performance of an ESP than those uniform profiles as used so far. Those assumptions were proved by the results of computer simulation obtained using a program SYMULA-X. The results of experiments and computer simulation arc presented in a graphical form.
Go to article

Authors and Affiliations

Maria Jędrusik
Arkadiusz Świerczok
Edward Nowaczewski
Marian Sarna

This page uses 'cookies'. Learn more