Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The present study was conducted to characterize the infectious bursal disease virus (IBDV) circulating in clinically diseased broiler chicken flocks with previous vaccination history during 2015-2016 in Egypt. IBDVs were isolated from 48 out of 63 of the investigated bursae from 10 flocks onto embryonated chicken eggs (ECEs) and verified by reverse transcriptase-poly- merase chain reaction (RT-PCR). Histopathologically, bursae lesions revealed some lymphocytes depletion as well as the presence of vesicles in the lining epithelium. The hyper variable region (HVR) of VP2 and VP1 genes of the 10 isolates (1 isolate/flock) were partially sequenced and subjected to comparative alignment and phyologenetic analysis. Phylogenetically, IBDV isolates were clustered into two distinct genetic lineages: variants of classical virulent (cv) and very viru- lent (vv) IBDV strains based on VP1 and VP2 amino acid (aa) sequences. Alignment analysis of HVR-VP2 aa sequences has demonstrated that the vvIBDV isolates have the conserved residues of the vvIBDV pathotype (A222, I242, and I256), while, the cvIBDV isolates have the same aa sequences of the classical attenuated vaccine strain (D78). Expected single point mutation occurred at position 253 (H253N). All previously characterized isolates were re-subjected to molecular analysis with VP1 protein due to its correlation with virulence and pathogenicity of IBDVs. vvIBDV isolates have the conserved tripeptide (TDN), while, the cvIBDV isolates have aa substitutions at conserved tripeptide including NEG at 145-147 amino acid. The present study has demonstrated that variants of classical virulent and very virulent IBDV circulated among vaccinated flocks in Egypt during 2015-2016.

Go to article

Authors and Affiliations

M.S. Abou El-Fetouh
F.M. Abdallah
Download PDF Download RIS Download Bibtex

Abstract

Stem canker and black scurf of potato (Solanum tuberosum L.) caused by Rhizoctonia solani Kühn are important and epidemic diseases in potato-growing regions worldwide, including Iran. In this study, 120 isolates were retrieved from infected stem canker from six potato- growing regions in Iran (Isfahan, Ardebil, Fars, Hamedan, Kurdestan and Kerman). Out of these, 30 isolates were selected as representatives for genetic and virulence analysis. The isolates were analyzed by one sequence analyzes of the ITS-rDNA region, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR), as well as virulence studies. Based on sequence analysis of the ITS-rDNA region, all 30 isolates were assigned to the anastomosis group (AG) and all were assigned to AG-3 PT. Cluster analysis using the unweighted pair group method with the arithmetic averages (UPGMA) method for both RAPD and ISSR markers revealed that they were divided into three main groups, with no correlation to geographical regions of the isolates. Pathogenicity tests showed that all isolates were pathogenic on potato cv. Agria; however, virulence variability was observed among the isolates. The grouping based on RAPD analysis and virulence variability was not correlated.

Go to article

Authors and Affiliations

Mehdi Nasr Esfahani
Download PDF Download RIS Download Bibtex

Abstract

Neonatal calf diarrhea (NCD) is one of the most important concerns in cattle production. Escherichia coli is the most important bacterial agent of NCD. Although vaccination and antibiotic treatment are common in NCD, the high antigenic diversity of E. coli and the increase in antibiotic resistance cause difficulties in the control. The study aimed to investigate the rate of E. coli in calf diarrhea, isolate an agent of the NCD E. coli strain, determine antimicrobial resistance, and find out about some surface antigens. Fecal samples (n=115) were analyzed to isolate pathogenic E. coli strains with nine mixed infections; sixty-one strains isolate from fifty diarrhoeic calves. Among the isolates from diseased animals, 22 K99+STa+F41, 3 K99+STa, 3 strains F41, 2 strains Stx1, one strain K99, one strain eae, and one strain Stx2+eae were detected. 27 strains of F17- associated fimbriae have been identified. 17 strains F17a, 6 strains F111, 3 strains F17c, one strain carrying the F17a and F17c gene regions, whereas subfamily typing of one strain could not be performed. Serotypes were determined by molecular and serological methods: 32/61 (52.5%) isolates were O101 and 2/61 (3.3%) isolates were O9 serotypes. But 27 strain serotypes could not be detected. The antibiotic resistance profiles of the isolates were determined by the disc diffusion method. The resistance rates to antibiotics were trimethoprim- sulphamethoxazole 91.7%, ampicillin 86.7%, enrofloxacin 86.7%, gentamicin 45%, tobramycin 41.7%, cefotaxime 3.3%, and ceftazidime 1.7%. Due to increasing antibiotic resistance, prophylaxis is gaining importance. In further research, E. coli surface antigenic structures should be examined in detail, and it should form the basis for vaccine and hyperimmunization studies to be developed.
Go to article

Bibliography

  1. Algammal AM, El-Kholy AW, Riad EM, Mohamed HE, Elhaig MM, Yousef SaA, Hozzein WN, Ghobashy MOI (2020) Genes Encoding the Virulence and the Antimicrobial Resistance in Enterotoxigenic and Shiga-Toxigenic E. coli Isolated from Diarrheic Calves. Toxins 12: 383.
  2. Andersson DI, Hughes D (2011) Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev 35: 901-911.
  3. Bendali F, Bichet H, Schelcher F, Sanaa M (1999) Pattern of diarrhoea in newborn beef calves in south-west France. Vet Res 30: 61-74.
  4. Bertin Y, Martin C, Oswald E, Girardeau J-P (1996) Rapid and specific detection of F17-related pilin and adhesin genes in diarrheic and septicemic Escherichia coli strains by multiplex PCR. J Clinic Microbiol 34: 2921-2928.
  5. Bielaszewska M, Schmidt H, Liesegang A, Prager R, Rabsch W, TschäPe H, Cízek A, Janda J, Bláhová K, Karch H (2000) Cattle can be a reservoir of sorbitol-fermenting Shiga toxin-producing Escherichia coli O157: H− strains and a source of human diseases. J Clin Microbiol 38: 3470-3473.
  6. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48: 1-12.
  7. Caffarena RD, Casaux ML, Schild CO, Fraga M, Castells M, Colina R, Maya L, Corbellini LG, Riet-Correa F, Giannitti F (2021) Causes of neonatal calf diarrhea and mortality in pasture-based dairy herds in Uruguay: a farm-matched case-control study. Braz J Microbiol 52: 977-988.
  8. Cengiz S, Adiguzel MC (2020) Determination of virulence factors and antimicrobial resistance of E. coli isolated from calf diarrhea, part of eastern Turkey. Ankara Univ Vet Fak Derg 67: 365-371.
  9. Cho YI, Yoon KJ (2014) An overview of calf diarrhea - infectious etiology, diagnosis, and intervention. J Vet Sci 15: 1-17.
  10. Coura FM, Freitas MD, Ribeiro J, De Leme RA, De Souza C, Alfieri AA, Facury Filho EJ, De Carvalho AU, Silva MX, Lage AP, Heinemann MB (2015) Longitudinal study of Salmonella spp., diarrheagenic Escherichia coli, Rotavirus, and Coronavirus isolated from healthy and diarrheic calves in a Brazilian dairy herd. Trop Anim Health Prod 47: 3-11.
  11. Debroy C, Maddox C (2001) Identification of virulence attributes of gastrointestinal Escherichia coli isolates of veterinary significanc. Anim Health Res Rev 1: 12.
  12. Donovan GA, Dohoo R, Montgomery DM, Bennett FL (1998) Calf and disease factors affecting growth in female Holstein calves in Florida, USA. Prev Vet Med 33: 10.
  13. Dubreuil JD, Isaacson RE, Schifferli DM (2016) Animal Enterotoxigenic Escherichia coli. EcoSal Plus 7: 47.
  14. Fidock DA, Mcnicholas PA, Lehrbach PR (1989) Nucleotide sequence of the F41 fimbriae subunit gene in Escherichia coli B41. Nucleic Acids Res 17: 2849.
  15. Foster DM, Smith GW (2009) Pathophysiology of diarrhea in calves. Vet Clin North Am Food Anim Pract 25: 13-36, xi.
  16. Franck SM, Bosworth BT, Moon HW (1998) Multiplex PCR for enterotoxigenic, attaching and effacing, and Shiga toxin-producing Escherichia coli strains from calves. J Clini Microbiol 36: 1795-1797.
  17. Guler L, Gunduz K, Ok U (2008) Virulence factors and antimicrobial susceptibility of Escherichia coli isolated from calves in Turkey. Zoonoses Public Health 55: 249-257.
  18. Gulliksen SM, Lie KI, Loken T, Osteras O (2009) Calf mortality in Norwegian dairy herds. J Dairy Sci 92: 2782-2795.
  19. Hang BPT, Wredle E, Börjesson S, Sjaunja KS, Dicksved J, Duse A (2019) High level of multidrug-resistant Escherichia coli in young dairy calves in southern Vietnam. Trop Anim Health Prod 51: 1405-1411.
  20. Hur T-Y, Jung Y-H, Choe C-Y, Cho Y-I, Kang S-J, Lee H-J, Ki K-S, Baek K-S, Suh G-H (2013) The dairy calf mortality: the causes of calf death during ten years at a large dairy farm in Korea. Korean J Vet Res 53: 103-108.
  21. Iguchi A, Iyoda S, Seto K, Morita-Ishihara T, Scheutz F, Ohnishi M (2015) Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J Clini Microbiol 53: 2427-2432.
  22. Jerse AE, Yu J, Tall BD, Kaper JB (1990) A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Nat Acad Sci 87: 7839-7843.
  23. Mohammed S, Marouf S, Erfana AM, El JK, Hessain AM, Dawoud TM, Kabli SA, Moussa IM (2019) Risk factors associated with E. coli causing neonatal calf diarrhea. Saudi J Bio Sci 26: 1084-1088.
  24. Paton AW, Beutin L, Paton JC (1995) Heterogeneity of the amino-acid sequences of Escherichia coli Shiga-like toxin type-I operons. Gene 153: 71-74.
  25. Paton AW, Paton JC, Manning PA (1993) Polymerase chain reaction amplification, cloning and sequencing of variant Escherichia coli Shiga-like toxin type II operons. Microb Pathog 15: 77-82.
  26. Pervez A, Anjum FR, Bukhari AA, Anam S, S. R, Arshad MI (2018) Isolation and virulence genes characterization of diarrheagenic Escherichia coli from calves. Pak Vet J 38: 5.
  27. Prieto A, Lopez-Novo C, Diaz P, Diaz-Cao JM, Lopez-Lorenzo G, Anton C, Remesar S, Garcia-Dios D, Lopez C, Panadero R, Diez-Banos P, Morrondo P, Fernandez G (2022) Antimicrobial susceptibility of enterotoxigenic Escherichia coli from diarrhoeic neonatal calves in Spain. Animals (Basel) 12: 12.
  28. Roosendaal B, Gaastra W, De Graaf FK (1984) The nucleotide sequence of the gene encoding the K99 subunit of enterotoxigenic Escherichia coli. FEMS Microbiol Lett 22: 253-258.
  29. Sekizaki T, Akashi H, Terakado N (1985) Nucleotide sequences of the genes for Escherichia coli heat-stable enterotoxin I of bovine, avian, and porcine origins. Am J Vet Res 46: 909-912.
  30. Shahrani M, Dehkordi FS, Momtaz H (2014) Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. Biol Res 47: 13.
  31. Smith DR (2012) Field disease diagnostic investigation of neonatal calf diarrhea. Vet Clin North Am Food Anim Pract 28: 465-481.
  32. Thiry D, Saulmont M, Takaki S, De Rauw K, Duprez J-N, Iguchi A, Piérard D, Mainil JG (2017) Enteropathogenic Escherichia coli O80: H2 in young calves with diarrhea, Belgium. Emerg Infect Dis 23: 3.
  33. To S (1984) F41 antigen among porcine enterotoxigenic Escherichia coli strains lacking K88, K99, and 987P pili. Infect Immun 43: 549-554.
  34. Umpiérrez A, Acquistapace S, Fernández S, Oliver M, Acuña P, Reolón E, Zunino P (2016) Prevalence of Escherichia coli adhesion-related genes in neonatal calf diarrhea in Uruguay. J Infect Dev Ctries 10: 472-477.
  35. Usda (2008) Dairy 2007, Part II: Changes in the U.S. Dairy Cattle Industry, 1991–2007. Fort Collins, CO: 57-60.
  36. Van Boeckel TP, Glennon EE, Chen D, Gilbert M, Robinson TP, Grenfell BT, Levin SA, Bonhoeffer S, Laxminarayan R (2017) Reducing antimicrobial use in food animals. Science 357: 1350-1352.
  37. Wani S, Bhat M, Samanta I, Nishikawa Y, Buchh A (2003) Isolation and characterization of Shiga toxin‐producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from calves and lambs with diarrhoea in India. Lett Appl Microbiol 37: 121-126.
  38. Yu J, Kaper JB (1992) Cloning and characterization of the eae gene of enterohaemorrhagic Escherichia coli O157: H7. Mol Microbiol 6: 411-417.
  39. Yuyama Y, Yoshimatsu K, Ono E, Saito M, Naiki M (1993) Postnatal change of pig intestinal ganglioside bound by Escherichia coli with K 99 fimbriae. J Biochem 113: 488-492.
Go to article

Authors and Affiliations

M.R. Coşkun
1
M. Şahin
2

  1. Department of Microbiology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
  2. Department of Microbiology, Faculty of Veterinary Medicine, Kyrgyz-Turkish Manas University, 720038, Bishkek, Kyrgyzstan
Download PDF Download RIS Download Bibtex

Abstract

Listeria monocytogenes is a ubiquitous microorganism that is isolated from a variety of sources such as soil, water, decaying vegetation, sewage, animal feeds, silage, farm environments and food-processing environments. This study aimed to determine the prevalence, serogroups, biofilm formation, virulence factor genes, and genetic relationships of L. monocytogenes strains isolated from beef meat and meat contact surfaces obtained from a slaughterhouse in Burdur, Turkey. In this study, a total of 179 beef meat and meat contact surface samples were analyzed for the presence of L. monocytogenes by polymerase chain reaction (PCR). Out of a total of 179 beef meat and meat contact surface samples, 83 (46.37%) were found to be contaminated with L. monocytogenes, with the highest incidence (53.01%) occurring in beef meat. In the present study, most of the isolated strains belonged to serogroups IIB and IVB (lineage I). The L. monocytogenes strain also contained monoA-B, prfA, plcA, plcB, mpl, hlyA, actA, gtcA, dltA, Fri, flaA, InlA, InlC, InlJ, and iap genes. Biofilm formation was not determined in the tested samples at pH 5.5 and different temperatures (4°C, 10°C, 25°C, and 37°C). However, strong biofilm formation was observed in 6.45% (2/31) of the strains at pH 7.0 after 48 h incubation at 37°C, and in 3.22% (1/31) of the strains at pH 7.0 after 48 h incubation at 4°C and 10°C. Pulsed-field gel electrophoresis (PFGE) results showed that L. monocytogenes isolates were clonally related, and cross-contamination was present. In addition, PFGE results also revealed that AscI had more distinguishing power than the ApaI restriction enzyme. These results indicate that L. monocytogenes detected from meat and meat contact surfaces in the slaughterhouse pose a potential risk to public health.
Go to article

Bibliography

1. Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43: 1-14.
2. Agostinho Davanzo EF, Dos Santos RL, Castro VH, Palma JM, Pribul BR, Dallago BS, Fuga B, Medeiros M, Titze de Almeida SS, da Costa HM, Rodrigues DD, Lincopan N, Perecmanis S, Santana AP (2021) Molecular characterization of Salmonella spp. and Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goia´s, Brazil. PLoS One 16: e0259687.
3. Andrade JC, João AL, Alonso CS, Barreto AS, Henriques AR (2020) Genetic subtyping, biofilm-forming ability and biocide suscepti-bility of Listeria monocytogenes strains isolated from a ready-to-eat food industry. Antibiotics (Basel) 9: 416.
4. Arslan S, Baytur S (2019) Prevalence and antimicrobial resistance of Listeria species and subtyping and virulence factors of Listeria monocytogenes from retail meat. J Food Saf 39: e12578.
5. Ayaz ND, Cufaoglu G (2016) Listeria monocytogenes as a foodborne pathogen: Biocontrol in foods using lytic bacteriophages. J Clin Microbiol Biochem Technol 2: 035-039.
6. Bubert A, Köhler S, Goebel W (1992) The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl Environ Microbiol 58: 2625-2632.
7. Bubert A, Riebe J, Schnitzler N, Schönberg A, Goebel W, Schubert P (1997) Isolation of catalase-negative Listeria monocytogenes strains from listeriosis patients and their rapid ıdentification by anti-p60 antibodies and/or PCR. J Clin Microbiol 35: 179-183.
8. Bubert A, Sokolovic Z, Chun SK, Papatheodorou L, Simm A, Goebel W (1999) Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261: 323-336.
9. Boukili M, Filali FR, Lafkih N, Bouymajane A, Sefiani M, Moumni M (2020) Prevalence, characterization and antimicrobial resistance of Listeria monocytogenes isolated from beef meat in Meknes city, Morocco. Germs 10: 74-80.
10. Çadırcı Ö, Gücükoğlu A, Terzi GG, Uyanık T, Alişarlı M (2018) The existence of Listeria monocytogenes in a cattle slaughterhouse and identification of serotypes by mPCR. Ankara Univ Vet Fak Derg 65: 305-311.
11. CDC (2017) Standard Operating Procedure for PulseNet PFGE of Listeria monocytogenes. https://www.cdc.gov/pulsenet/pdf/listeria-pfge-protocol-508c.pdf
12. Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68: 728-737.
13. Chen M, Cheng J, Zhang J, Chen Y, Zeng H, Xue L, Lei T, Pang R, Wu S, Wu H, Zhang S, Wei X, Zhang Y, Ding Y, Wu Q (2019) Isolation, potential virulence, and population diversity of Listeria monocytogenes from meat and meat products in China. Front Microbiol 10: 946.
14. Cherifi T, Arsenault J, Pagotto F, Quessy S, Côté JC, Neira K, Fournaise S, Bekal S, Fravalo P (2020) Distribution, diversity and per-sistence of Listeria monocytogenes in swine slaughterhouses and their association with food and human listeriosis strains. PLoS One 15: e0236807.
15. Coban A, Pennone V, Sudagidan M, Molva C, Jordan K, Aydin A (2019) Prevalence, virulence characterization, and genetic related-ness of Listeria monocytogenes isolated from chicken retail points and poultry slaughterhouses in Turkey. Braz J Microbiol 50: 1063-1073.
16. Costa M, Pracca G, Sucari A, Galli L, Ibargoyen J, Gentiluomo J, Brusa V, Zugazua MM, Figueroa Y, Londero A, Roge A, Silva H, Der Ploeg CV, Signorini M, Oteiza JM, Leotta GA (2020) Comprehensive evaluation and implementation of improvement actions in bovine abattoirs to reduce pathogens exposure. Prev Vet Med 176: 104933.
17. Demaître N, Van Damme I, De Zutter L, Geeraerd AH, Rasschaert G, De Reu K (2020) Occurrence, distribution and diversity of Lis-teria monocytogenes contamination on beef and pig carcasses after slaughter. Meat Sci 169: 108177.
18. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P (2004) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42: 3819-3822.
19. Dussurget O, Dumas E, Archambaud C, Chafsey I, Chambon C, Hébraud M, Cossart P (2005) Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol Lett 250: 253-261.
20. Furrer B, Candrian U, Hoefelein C, Luethy J (1991) Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol 70: 372-379.
21. Graves LM, Hunter SB, Ong AR, Schoonmaker-Bopp D, Hise K, Kornstein L, DeWitt WE, Hayes PS, Dunne E, Mead P, Swaminathan B (2005) Microbiological aspects of the investigation that traced the 1998 outbreak of listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet Network. J Clin Microbiol 43: 2350-2355.
22. Hellström S (2011) Contamination routes and control of Listeria monocytogenes in food production. Academic dissertation. University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. SBN 978-952-10-7109-6 (PDF)
23. Hitchins AD, Jinneman K, Chen Y (2022) Chapter 10: Detection of Listeria monocytogenes in foods and environmental samples, and enumeration of Listeria monocytogenes in foods. In: Food and Drug Administraiton Bacteriological Analytical Manual (BAM), Food and Drug Administraiton. https://www.fda.gov/food/laboratory-methods-food/bamchapter-10-detection-listeria-monocytogenes-foods-andenvironmental-samples-and-enumeration
24. Iglesias MA, Kroning IS, Decol LT, de Melo Franco BD, da Silva WP (2017) Occurrence and phenotypic and molecular characteriza-tion of Listeria monocytogenes and Salmonella spp. in slaughterhouses in southern Brazil. Food Res Int 100: 96-101.
25. ISO (2017) International Organization for Standardization, EN ISO 11290-1:2017. Microbiology of the food chainHorizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. Part 1: Detection method. https://www.iso.org/obp/ui/#iso:std:iso: 11290:-1:ed-2:v1:en
26. Jang YS, Moon JS, Kang HJ, Bae D, Seo KH (2021) Prevalence, characterization, and antimicrobial susceptibility of Listeria monocytogenes from raw beef and slaughterhouse environments in Korea. Foodborne Pathog Dis 18: 419-425.
27. Jaradat ZW, Schutze GE, Bhunia AK (2002) Genetic homogeneity among Listeria monocytogenes strains from infected patients and meat products from two geographic locations determined by phenotyping, ribotyping and PCR analysis of virulence genes. Int J Food Microbiol 76: 1-10.
28. Jennison AV, Masson JJ, Fang NX, Graham RM, Bradbury MI, Fegan N, Gobius KS, Graham TM, Guglielmino CJ, Brown JL, Fox EM (2017) Analysis of the Listeria monocytogenes population structure among isolates from 1931 to 2015 in Australia. Front Microbiol 8: 603.
29. Kayode AJ, Igbinosa EO, Okoh AI (2019) Overview of listeriosis in the Southern African Hemisphere-Review. J Food Saf 40: e12732.
30. Kyoui D, Takahashi H, Miya S, Kuda T, Kimura B (2014) Comparison of the major virulence-related genes of Listeria monocytogenes in Internalin A truncated strain 36-25-1 and a clinical wild-type strain. BMC Microbiol 14: 15.
31. Leimeister-Wachter M, Domann E, Chakraborty T (1991) Detection of a gene encoding a phosphatidylinositolspecific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol 5: 361-366.
32. Li X, Shi X, Song Y, Yao S, Li K, Shi B, Sun J, Liu Z, Zhao W, Zhao C, Wang J (2022) Genetic diversity, antibiotic resistance, and virulence profiles of Listeria monocytogenes from retail meat and meat processing. Food Res Int 162: 112040.
33. Liu D, Ainsworth AJ, Austin FW, Lawrence ML (2004) Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. Int J Food Microbiol 91: 297-304.
34. Liu D, Lawrence ML, Ainsworth AJ, Austin FW (2008) Genotypic identification. In: Liu D (ed) Handbook of Listeria monocytogenes, 1st ed., Boca Raton: CRC Press, Taylor & Francis Group, pp 169-202.
35. Liu D, Lawrence ML, Austin FW, Ainsworth AJ (2007) A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. J Microbiol Methods 71: 133-140.
36. Mazaheri T, Ripolles-Avila C, Hascoët AS, Rodríguez-Jerez JJ (2020) Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control 114: 107266.
37. Neves E, Lourenco A, Silva AC, Coutinho R, Brito L (2008) Pulsed-field gel electrophoresis (PFGE) analysis of Listeria monocytogenes isolates from different sources and geographical origins and representative of the twelve serovars. Syst Appl Microbiol 31: 387-392.
38. Nishibori T, Cooray K, Xiong H, Kawamura I, Fujita M, Mitsuyama M (1995) Correlation between the presence of virulence-associated genes as determined by PCR and actual virulence to mice in various strains of Listeria spp. Microbiol Immunol 39: 343-349.
39. Oevermann A, Zurbriggen, A Vandevelde M (2010) Rhombencephalitis caused by Listeria monocytogenes in humans and ruminants: a zoonosis on the rise? Interdiscip Perspect Infect Dis 2010: 632513.
40. Oh H, Kim S, Lee S, Lee H, Ha J, Lee J, Choi Y, Choi KH, Yoon Y (2018) Prevalence, serotype diversity, genotype and antibiotic resistance of Listeria monocytogenes isolated from carcasses and human in Korea. Korean J Food Sci Anim Resour 38: 851-865.
41. Olaimat AN, Al-Holy MA, Shahbaz HM, Al-Nabulsi AA, Abu Ghoush MH, Osaili TM, Ayyash MM, Holley RA (2018) Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: a comprehensive review. Compr Rev Food Sci Food Saf 17: 1277-1292.
42. Orsi RH, den Bakker HC, Wiedmann M (2011) Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301: 79-96.
43. Orsi RH, Wiedmann M (2016) Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 100: 5273-5287.
44. Papatzimos G, Kotzamanidis C, Kyritsi M, Malissiova E, Economou V, Giantzi V, Zdragas A, Hadjichristodoulou C, Sergelidis D (2022) Prevalence and characteristics of Listeria monocytogenes in meat, meat products, food handlers and the environment of the meat processing and the retail facilities of a company in Northern Greece. Lett Appl Microbiol 74: 367-376.
45. Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR (2021) Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms and Microbiomes, 7: 80.
46. Poimenidou SV, Dalmasso M, Papadimitriou K, Fox EM, Skandamis PN, Jordan K (2018) Virulence gene sequencing highlights similarities and differences in sequences in Listeria monocytogenes Serotype 1/2a and 4b strains of clinical and food origin from 3 different geographic locations. Front Microbiol 9: 1103.
47. Promadej N, Fiedler F, Cossart P, Dramsi S, Kathariou S (1999) Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene. J Bacteriol 181: 418-425.
48. Sahin S, Mogulkoç MN, Kalın R (2020) Prevalence and serotype distribution of Listeria monocytogenes isolated from retail raw meats. J Fac Vet Med Erciyes Univ 17: 22-27.
49. Slama RB, Miladi H, Chaieb K, Bakhrouf A (2013) Survival of Listeria monocytogenes cells and the effect of extended frozen storage (-20°C) on the expression of its virulence gene. Appl Biochem Biotechnol 170: 1174-1183.
50. Soni DK, Singh M, Singh DV, Dubey SK (2014) Virulence and genotypic characterization of Listeria monocytogenes isolated from vegetable and soil samples. BMC Microbiol 14: 241.
51. Sudagidan M, Cavusoglu C, Bacakoglu F (2008) Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces. Mikrobiyol Bul 42: 29-39.
52. Teixeira LA, Carvalho FT, Vallim DC, Pereira RC, Neto AC, Vieira BS, Carvalho RC, Figueiredo EE (2020) Listeria monocytogenes in export-approved beef from Mato Grosso, Brazil: prevalence, molecular characterization and resistance to antibiotics and disinfectants. Microorganisms 8: 18.
53. Vasquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P (1992) Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60: 219-230.
54. Yan H, Neogi SB, Mo Z, Guan W, Shen Z, Zhang S, Li L, Yamasaki S, Shi L, Zhong N (2010) Prevalence and characterization of an-timicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005-2007. Int J Food Mi-crobiol 144: 310-316.
55. Yucel N, Citak S, Onder M (2005) Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol 22: 241-245.
56. Zhang H, Wang J, Chang Z, Liu X, Chen W, Yu Y, Wang X, Dong Q, Ye Y, Zhang X (2021) Listeria monocytogenes contamination characteristics in two ready-to-eat meat plants from 2019 to 2020 in Shanghai. Front Microbiol 12: 729114.
Go to article

Authors and Affiliations

F. Tasci
1
M. Sudagidan
2
O. Yavuz
2
A. Soyucok
3
A. Aydin
4

  1. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
  2. Scientific and Technology Application and Research Center, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Istiklal Campus, Burdur, Turkey
  3. Department of Food Processing, Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
  4. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine,Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey

This page uses 'cookies'. Learn more