Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of investigating the influence of tooth contact ratio in helical cylindrical gears on vibroactivity of the gearbox. Based on the measurements carried out on a laboratory test stand, time-domain and frequency-domain start-up characteristics of vibrations and acoustic pressure were determined, and vibroactivity was assessed for a gearbox in which 4 pairs of gears were successively mounted with different face contact ratios equal to, respectively, epsilon beta=1,001; 1,318; 1,574; 2,636.

Go to article

Authors and Affiliations

Tomasz Figlus
Andrzej Wilk
Henryk Madej
Bogusław Łazarz
Download PDF Download RIS Download Bibtex

Abstract

The paper is another step in discussion concerning the method of determining the distributions of pulses forcing vibrations of a system. Solving a stochastic problem for systems subjected to random series of pulses requires determining the distribution for a linear oscillator with damping. The goal of the study is to minimize the error issuing from the finite time interval. The applied model of investigations is supposed to answer the question how to select the parameters of a vibrating system so that the difference between the actual distribution of random pulses and that determined from the waveform is as small as possible.
Go to article

Authors and Affiliations

Agnieszka Ozga
Download PDF Download RIS Download Bibtex

Abstract

Acoustic signal is more and more frequently used to diagnose machines operated in industrial conditions where installation of sensors is hindered. Impact of background noise seems to be the major problem as part of analysis of such signal. In most cases of industrial environments, background level is high; thus, it prevents against concluding as per standard methods that have been used in diagnostic testing. This study specifies the problem related to diagnosing machines operated under variable loads. Synchronous methods are used for diagnosing these types of machines, those include synchronisation of diagnostic signal with revolutions of the diagnosed machine. For the purpose of this study an acoustic signal was used as the diagnostic signal. Application of the synchronous method (order analysis) enables eliminating an impact of background noise derived from other sources. This study specifies application of acoustic signal to diagnose planetary gear in laboratory testing rig in order to discover damages at early stage of degradation. This method was compared with the method basing on measurement of vibrations.

Go to article

Authors and Affiliations

Paweł Pawlik
Download PDF Download RIS Download Bibtex

Abstract

The above-presented methodology for spatial classification of roads in relation to their acoustic annoyance can be used in preparing acoustic maps of towns. The classification of roads with the view of the level of acoustic hazard enables, just in the initial phase of acoustic map preparation, to identify the areas potentially endangered with excessive noise. These areas need taking immediate corrective actions, aimed at reducing the noise level. An important problem, when analyzing the propagation of noise in a highly urbanized area, is the selection of locations in which the measurements of emission of the noise source are performed with the aim to determine its acoustic parameters for calibration of the assumed methodology. Solving this problem makes it possible to use uniform methods of computation. The development of the proposed method and supplementing the layers with next ones, containing information about the range of influence of vibration generated by roadway transport routes, or information on the effects of mining on the roads and building structures, using the proposed methodology, will enable to make an unambiguous categorization of transport routes in the aspect of their vibro-acoustic impact on the environment.
Go to article

Authors and Affiliations

Janusz Kompała
Download PDF Download RIS Download Bibtex

Abstract

The presented work focuses on the experimental investigation of a vibroacoustic metamaterial integrated into a spinning circular saw blade. Vibroacoustic metamaterials are a novel technology for broadband vibration reduction. Built from an array of local resonators, a broadband vibration reduction characteristic in the frequency domain (a so-called stop band) can be achieved. A design of a vibroacoustic metamaterial suitable for integration into a circular saw blade is developed and a numerical stop band prediction is performed. The resonators of the vibroacoustic metamaterial are integrated into the saw blade with a water jet cutting machine to create slots, forming flaps that are free to oscillate. The structural dynamic behavior of the saw blade with integrated vibroacoustic metamaterial is experimentally investigated on a rotor dynamic test bench and compared to that of a standard saw blade. The saw blades are excited by an automatic impulse hammer and the resulting out-of-plane vibrations are measured with a laser vibrometer at two different radii. Measurements are conducted at different rotational speeds up to 1800 rpm. Up to rotational speeds of 1000 rpm a stop band characteristic in the frequency range of 1900–2500 Hz is observed.
Go to article

Authors and Affiliations

Sebastian Rieß
1
ORCID: ORCID
William Kaal
1
ORCID: ORCID
Sven Herold
1
ORCID: ORCID

  1. Fraunhofer Institute for Structural Durability and System Reliability LBF, 64298, Darmstadt, Germany
Download PDF Download RIS Download Bibtex

Abstract

Implementation of European directives is closely related to the quality of production and the associated operational safety, maintenance of machines and mechanical systems, both mobile or stationary, in order to reduce the dynamic load (vibration and noise) on the working environment, not only during their operating state but also during their design, production, and setting of the vibration isolation components. Reducing the dynamic load of mechanical systems and their components is reflected in the working environment by reduced emissions and immissions of noise and vibration. The presented paper investigates the methods and conditions for noise and vibration control, focusing mainly on increasing the quality of rotating machine components, such as bearings by means of effective vibration isolation of the machines. The solution of this problem requires theoretical analysis and methodology for the measurement of the mechanical systems involved. The results of the vibroacoustic measurements were analysed in terms of the low frequency vibration and noise level (quality) of bearings and conditions for effective vibration isolation of the machines using vibroacoustic diagnostic method. Furthermore, the impact on the working environment was also analysed. Finally, the paper suggests some actions to be taken to effectively reduce the unwanted vibrosound energy in working places, also using recycled material as a vibration isolation element.

Go to article

Authors and Affiliations

Stanislav Žiaran
Ľubomír Šooš
Ondrej Chlebo
Download PDF Download RIS Download Bibtex

Abstract

The almost unlimited possibilities of modern computational tools create the temptation to study phenomena related to the operation of engineering objects exclusively using complex numerical simulations. However, the fascination with multi-parametric complex computational models, whose solutions are obtained using iterative techniques, may result in qualitative discrepancies between reality and virtual simulations. The need to verify on real objects the conclusions obtained from numerical calculations is therefore indisputable. The enormous cost and uniqueness of large-scale test stands significantly limit the possibility of conducting tests under real conditions. The solution may be an experiment focused on testing features relevant to the given task, while minimising the dimensions of the objects under consideration. Such conditions led to the concept of conducting a series of field experiments to verify the effectiveness of prototype track components, which were developed using numerical simulations to reduce the noise caused by passing trains. The main aim of this study is to examine the acoustic efficiency of prototype porous concrete sound absorbing panels, in relation to the ballasted and ballastless track structures. Presented results of the proposed unconventional experiments carried out on an improvised test stand using the recorded acoustic signals confirm the effectiveness of the developed vibroacoustic isolators.
Go to article

Authors and Affiliations

Cezary Kraśkiewicz
1
ORCID: ORCID
Grzegorz Klekot
2
ORCID: ORCID
Piotr Książka
3
Artur Zbiciak
1
ORCID: ORCID
Przemysław Mossakowski
1
ORCID: ORCID
Patrycja Chacińska
3
Anna Al Sabouni-Zawadzka
1
ORCID: ORCID

  1. Faculty of Civil Engineering, Warsaw University of Technology
  2. Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology
  3. National Research Institute, Department of Environmental Acoustics, Institute of Environmental Protection Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

49th Winter School on Wave and Quantum Acoustics constituted platforms for sharing the results and achievements obtained in different branches of physical acoustics, as molecular acoustics, quantum acoustics, acousto-optics, magnetoacoustics, photoacoustics, acoustics of solid state, acoustic emission, and others. Moreover, researches in some selected topics related to those mentioned above (e.g. optoelectronics, relaxation processes) were presented during the school.

The conference consisted of the 16th Workshop on Acoustoelectronics and the 16th Workshop on Molecular Acoustics, Relaxation and Calorimetric Methods. However, the organizers are opened to organizing workshops on other subjects in future. We would like to invite scientific centers and other professional groups to cooperate in organizing workshops on the subjects of their interests.

XLVIIIth Winter School on Environmental Acoustics and Vibroacoustics was a forum for all environmental and vibroacoustics fields. Particularly it was concerned with traffic noise, vibroacoustics of machines, room acoustics, building acoustics, noise protection and similar problems. During the Conference, seminars on “Measurement of noise and vibration at the workplace” and Environmental noise monitoring”, combined with measurement workshops, were organised in association with SVANTEK.

The Conferences began with the special, joined session dedicated to celebration of the 15th Jubilee Conference Integrated Optics – Sensors, Sensing Structures and Methods. In summary, 48 people participated in Conferences and seminars, presenting 37 lectures, reports and posters. In this issue one can find abstracts of some lectures and posters, which were presented during the Conferences.

Go to article

Authors and Affiliations

Winter Schools on Acoustics

This page uses 'cookies'. Learn more