Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The different mechanical properties of the materials from which the tailpieces are made have a noticeable effect on the acoustic performance of the violin. These elements are made today from ebony, rosewood, boxwood, aluminium, or plastic. The aim of this study was to check the exact impact of tailpieces made of different materials on the frequency response function (FRF) of a violin’s bridge and the timbre of the instrument’s sound. For this purpose, the bridge FRF measurement was carried out, and a psychoacoustic test was conducted. The material from which the tailpiece is made to the greatest extent affects the modal frequencies in the range 530–610 Hz (mode B1+), which mainly manifested itself in a change in the instrument’s timbre in terms of the brightness factor. The study showed that the lighter the tailpiece, the darker the sound of the violin. It was also revealed that the selection of accessories affects factors such as openness, thickness, and overall quality of the sound.
Go to article

Authors and Affiliations

Adam Łapiński
1
Ewa Skrodzka
2
ORCID: ORCID
Andrzej Wicher
2
ORCID: ORCID

  1. The Ignacy Jan Paderewski Academy of Music in Poznan Poznan, Poland
  2. Department of Acoustics, Faculty of Physics Adam Mickiewicz University
Download PDF Download RIS Download Bibtex

Abstract

One-dimensional experimental modal analysis of an unvarnished trapezoidal violin built after the description of F. Savart and an anonymous trapezoidal violin on display in the Music Instrument Museum of Brussels is described. The analysis has revealed ten prominent modes. A mode that may potentially play a role of the “tonal barometer” of the instrument is pointed out. The mode shapes are symmetric and of high amplitude, due to the construction of the instrument. Subjective evaluation of the sound quality demonstrated no pronounced difference between the trapezoidal violin and normal violin.
Go to article

Authors and Affiliations

Ewa Skrodzka
Tim Duerinck
Bogumił B.J. Linde
Download PDF Download RIS Download Bibtex

Abstract

The feasibility of substituting the types of wood usually employed in the making of guitars and violins was analyzed, but without comparing the properties of involved materials as it is often reported; in this work, the vibrational behavior of twelve guitars and three violins built with alternative types of woods was compared to data of classical instruments available in the literature. In the guitars here measured, the back plate and ribs were not made from traditional woods; while in the violins, only the top plate was made from an alternative type of wood. The results showed that changing the wood of back plate and ribs does not radically affect the typical mobility of a guitar; however, the expected mobility for a violin was not clearly obtained substituting the wood of the top plate. Thus it seems feasible to substitute the wood of back plate and ribs in guitars without causing dramatic changes in their performance; in contrast, a change of the wood type for top plate in violins seems inadvisable unless the design of the top plate is modified to compensate the differences between the woods.
Go to article

Authors and Affiliations

Jesús Alejandro Torres
Reydezel Torres-Martínez

This page uses 'cookies'. Learn more