Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The different mechanical properties of the materials from which the tailpieces are made have a noticeable effect on the acoustic performance of the violin. These elements are made today from ebony, rosewood, boxwood, aluminium, or plastic. The aim of this study was to check the exact impact of tailpieces made of different materials on the frequency response function (FRF) of a violin’s bridge and the timbre of the instrument’s sound. For this purpose, the bridge FRF measurement was carried out, and a psychoacoustic test was conducted. The material from which the tailpiece is made to the greatest extent affects the modal frequencies in the range 530–610 Hz (mode B1+), which mainly manifested itself in a change in the instrument’s timbre in terms of the brightness factor. The study showed that the lighter the tailpiece, the darker the sound of the violin. It was also revealed that the selection of accessories affects factors such as openness, thickness, and overall quality of the sound.
Go to article

Authors and Affiliations

Adam Łapiński
1
Ewa Skrodzka
2
ORCID: ORCID
Andrzej Wicher
2
ORCID: ORCID

  1. The Ignacy Jan Paderewski Academy of Music in Poznan Poznan, Poland
  2. Department of Acoustics, Faculty of Physics Adam Mickiewicz University
Download PDF Download RIS Download Bibtex

Abstract

Experimental modal analysis of a violin with three different tensions of a bass bar has been performed. The bass bar tension is the only intentionally introduced modification of the instrument. The aim of the study was to find differences and similarities between top plate modal parameters determined by a bass bar perfectly fitting the shape of the top plate, the bass bar with a tension usually applied by luthiers (normal), and the tension higher than the normal value. In the modal analysis four signature modes are taken into account. Bass bar tension does not change the sequence of mode shapes. Changes in modal damping are insignificant. An increase in bass bar tension causes an increase in modal frequencies A0 and B(1+) and does not change the frequencies of modes CBR and B(1-).

Go to article

Authors and Affiliations

Ewa B. Skrodzka
Bogumił B.J. Linde
Antoni Krupa
Download PDF Download RIS Download Bibtex

Abstract

Two violins were investigated. The only intentionally introduced difference between them was the type of varnish. One of the instruments was covered with a spirit varnish, the other was oil varnished. Experimental modal analysis was done for unvarnished/varnished violins and a questionnaire inquiry on the instrument’s sound quality was performed. The aim of both examinations was to find differences and similarities between the two instruments in the objective (modal parameters) and subjective domain (subjective evaluation of sound quality). In the modal analysis, three strongly radiating signature modes were taken into account. Varnishing did not change the sequence of mode shapes. Modal frequencies A0 and B(1+) were not changed by oil varnishing compared to the unvarnished condition. For the oil varnished instrument, the frequency of mode B(1+) was lower than that of the same mode of the spirit varnished instrument. Our two violins were not excellent instruments, but before varnishing they were practically identical. However, after varnishing it appeared that the oil-varnished violin was better than the spirit-varnished instrument. Therefore, it can be assumed with a fairly high probability that also in general, the oil-varnished violins sound somewhat better than initially identical spirit-varnished ones.
Go to article

Authors and Affiliations

Ewa B. Skrodzka
Bogumił B.J. Linde
Antoni Krupa

This page uses 'cookies'. Learn more