Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract


ZnS-based mechanoluminescent film has been widely used in the fields of stress visualization and stress sensing, due to its high brightness and repeatable stable luminescent characteristics. To evaluate the flexibleelastic deformation performance of ZnS-based mechanoluminescent film, both visual inspection and digital image correlation (DIC) are, respectively, employed for measuring the ZnS-based mechanoluminescent film. ZnS:Cu 2+ mechanoluminescent powders are first mixed with polydimethylsiloxane (PDMS) matrix to produce ZnS:Cu 2+–PDMS mechanoluminescent film. Then, two measurement experiments are, respectively, conducted to investigate the mechanical response and the flexible-elastic deformation performance of the prepared ZnS:Cu2+–PDMS mechanoluminescent film. On one hand, the mechanical response performance of the ZnS:Cu 2+–PDMS mechanoluminescent film is validated by visual monitoring of composite concrete fracture processes. On the other hand, the prepared ZnS:Cu 2+–PDMS mechanoluminescent film is also measured by DIC to obtain its full-field deformations and strains information. The flexible-elastic deformation performance of the ZnS:Cu 2+–PDMS mechanoluminescent film is well demonstrated by the DIC measured results.
Go to article

Authors and Affiliations

Guo-Qing Gu
1 2
Gui-Zhong Xu
1 2
Feng Shen
3
Peng Zhou
4
Hou-Chao Sun
1
Jia-Xing Weng
5

  1. Yancheng Institute of Technology, School of Civil Engineering, Yancheng, 224051, China
  2. Coastal City Low Carbon Construction Engineering Technology Research Center, Yancheng 224056, China
  3. Jiangsu Fiber Composite Company Ltd., Jianhu, Yancheng 224700, China
  4. Yancheng Institute of Supervision & Inspection on Product Quality, Yancheng 224056, China
  5. Jiangsu Water Source Company Ltd. of the Eastern Route of the South-to-North Water Diversion Project, Nanjing 210000, China
Download PDF Download RIS Download Bibtex

Abstract

In the ceramic industry, quality control is performed using visual inspection in three different product stages: green, biscuit, and the final ceramic tile. To develop a real-time computer visual inspection system, the necessary step is successful tile segmentation from its background. In this paper, a new statistical multi-line signal change detection (MLSCD) segmentation method based on signal change detection (SCD) method is presented. Through experimental results on seven different ceramic tile image sets, MLSCD performance is analyzed and compared with the SCD method. Finally, recommended parameters are proposed for optimal performance of the MLSCD method.
Go to article

Bibliography

  1.  G.M.A. Rahaman and M. Hossain, “Automatic Defect Detection and Classification Technique from Image: A Special Case Using Ceramic”, Int. J. Comput. Sci Inf. Secur. 1(1), 9 (2009).
  2.  M. Villalon-Hernandez, D. Almanza-Ojeda, and M. Ibarra- Manzano, “Color-Texture Image Analysis for Automatic Failure Detection in Tiles”, in Pattern Recognition, MCPR 2017. Lecture Notes in Computer Science, vol. 10267, pp. 159–168, eds. J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad, and J.A. Olvera-López, Springer International Publishing, Cham, 2017.
  3.  M.H. Karimi and D. Asemani, “Surface defect detection in tiling industries using digital image processing methods: Analysis and evaluation”, ISA Trans. 53(3), 834‒844 (2014).
  4.  F.S. Najafabadi and H. Pourghassem, “Corner defect detection based on dot product in ceramic tile images”, In 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, Penang, Malaysia, 2011, pp. 293–297.
  5.  R. Mishra, C.L. Chandrakar, and R. Mishra, “Surface Defects Detection for Cermaic Tiles Using Image Processing and Morphological Techniques”, Appl. Sci. 2(2), 17 (2012).
  6.  T. Czimmermann et al., “Visual-Based Defect Detection and Classification Approaches for Industrial Applications – A SURVEY”, Sensors 20(5), 1459, (2020).
  7.  V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Acad. Sci. Tech. Sci. 66(6), 799–810 (2018).
  8.  N. Wang, X. Zhao, Z. Zou, P. Zhao, and F. Qi, “Autonomous damage segmentation and measurement of glazed tiles in historic buildings via deep learning”, Comput.-Aided Civil Infrastruct. Eng. 35(3), 277–291 (2020).
  9.  X. Gu and Y. Sun, “Image analysis of ceramic burning based on cellular automata”, EURASIP J. Image Video Process. 2018(1), 110 (2018).
  10.  T. Matić, I. Vidović, and Ž. Hocenski, “Real Time Contour Based Ceramic Tile Edge and Corner Defects Detection”, Teh. Vjesn.-Technical Gazette 20(6), 8 (2013).
  11.  Ž. Hocenski, T. Keser, and A. Baumgartner, “A Simple and Efficient Method for Ceramic Tile Surface Defects Detection”, In 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007, pp. 1606–1611.
  12.  T. Matić, I. Aleksi, and Ž. Hocenski, “CPU, GPU and FPGA Implementations of MALD: Ceramic Tile Surface Defects Detection Algorithm”, Automatika 55(1), 9–21 (2014).
  13.  J. Zhuang, L. Yang, and J. Li, “An Improved Segmentation Algorithm Based on Superpixel for Typical Industrial Applications”, In 2018 11th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 2018, pp. 366–370.
  14.  X. Zhou, Y. Wang, Q. Zhu, J. Mao, C. Xiao, X. Lu, and H. Zhang, “A Surface Defect Detection Framework for Glass Bottle Bottom Using Visual Attention Model and Wavelet Transform”, IEEE Trans. Ind. Inform. 16(4), 2189–2201 (2020).
  15.  X. Yan, L. Wen, and L. Gao, “A Fast and Effective Image Preprocessing Method for Hot Round Steel Surface”, Math. Probl. Eng., 2019, 1–14 (2019).
  16.  R. Cunha et al., Applying Non-destructive Testing and Machine Learning to Ceramic Tile Quality Control”, In 2018 VIII Brazilian Symposium on Computing Systems Engineering (SBESC), Salvador, Brazil, 2018, pp. 54–61.
  17.  T. Matić, I. Aleksi, Ž. Hocenski, and D. Kraus, “Real-time biscuit tile image segmentation method based on edge detection”, ISA Transactions 76, 246–254 (2018).
  18.  S.M. Kay, Fundamentals of Statistical Signal Processing: Practical Algorithm Development, Prentice-Hall PTR, 2013.
  19.  L.G. Shapiro and R.M. Haralick, Computer and Robot Vision, Addison-Wesley Publishing Company, 1992.
  20.  Z. Hocenski and T. Keser, “Failure detection and isolation in ceramic tile edges based on contour descriptor analysis”, In 2007 Mediterranean Conference on Control & Automation, Athens, Greece, 2007, pp. 1–6.
  21.  R.C. Gonzalez and R.E.Woods, Digital Image Processing, Pearson, 2018.
  22.  Ž. Hocenski, T. Matić, and I. Vidović, “Technology transfer of computer vision defect detection to ceramic tiles industry”, In 2016 International Conference on Smart Systems and Technologies (SST), Osijek, Croatia, 2016, pp. 301–305.
  23.  M. Montorsi, C. Mugoni, A. Passalacqua, A. Annovi, F. Marani, L. Fossa, R. Capitani, and T. Manfredini, “Improvement of color quality and reduction of defects in the ink jet-printing technology for ceramic tiles production: A design of experiments study”, Ceram. Int. 42(1, Part B), 1459–1469 (2016).
  24.  The GIMP Development Team. GIMP, 2019.
  25.  A.Z. Arifin and A. Asano, “Image Segmentation by Histogram Thresholding Using Hierarchical Cluster Analysis”, Pattern Recognit. Lett., 27(13), 1515–1521 (2006).
Go to article

Authors and Affiliations

Filip Sušac
1
Tomislav Matić
1
Ivan Aleksi
1
Tomislav Keser
1

  1. J. J. Strossmayer University of Osijek, Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Kneza Trpimira 2B, 31000 Osijek, Croatia
Download PDF Download RIS Download Bibtex

Abstract

Deterioration and defects in building components are key aspects to consider when assessing buildings’ conditions, as they may influence the building’s functionality. The typical defects include cracking, moisture, dampness, and architectural defects. This paper aims to evaluate the defects in a building using a non-destructive testing (NDT), which is the Infrared Thermography (IRT) method. A visual inspection method is then conducted to verify the results of the IRT method. The combination of IRT and visual inspection methods can identify the type of defect and level of severity more accurately. In both methods, ratings or scores are given to the collected defect data to determine the consistency between them. Two (2) buildings were selected as case studies; AA1 and BB2 are multistorey buildings. From those, 51 and 67 spots were taken from the IRT method and further verification process, respectively. Among the defects that were found were moisture, dampness, cracking, staining, chipping, and flaking paint. From all the findings, IRT was found to be comparable with the visual inspection results for serious defects such as cracking and flaking paint. However, IRT was believed to underestimate the architectural defects of staining and chipping. Even so, serious defects such as dampness were also underestimated in IRT due to the fact that the temperature difference between different ratings will not differ much. In conclusion, the IRT method has the potential to be used as a tool for building condition rating. However, it should be assisted with a visual inspection, and more research needs to be conducted for its practicality.
Go to article

Authors and Affiliations

Muhd Zubair Tajol Anuar
1
ORCID: ORCID
Noor Nabilah Sarbini
1
ORCID: ORCID
Izni Syahrizal Ibrahim
1
ORCID: ORCID
Siti Hajar Othman
2
ORCID: ORCID
Mohd Nadzri Reba
3
ORCID: ORCID

  1. Department of Structure & Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  2. School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  3. Geoscience & Digital Earth Centre (Insteg), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

This page uses 'cookies'. Learn more