Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Investigation for heat transfer behaviour of Al 2O 3 and CuO nano-fluid in helical coil heat exchangers was carried out in this study. The thermo-physical properties of the fluids have temperature dependent nature. The main emphasis was to depict the influence of nano-particle concentration by volume on the characteristics of temperature, rate of heat transfer and heat transfer coefficients (convective). In order to enhance efficiency, density and thermal conductivity are considered to be the most important variables. In comparison towater and for equal flowrate, the rate of heat transfer of nano-fluid increases conspicuously. Efficiency of the helical coil heat exchanger increased by 38.80%.
Go to article

Authors and Affiliations

Malik Parveez
1
Mohammad Hanief
2

  1. National Institute of Technology, Chemical Engineering Department, Srinagar, Jammu and Kashmir,190006, India
  2. National Institute of Technology, Mechacahnical Engineering Department, Srinagar, Jammu and Kashmir, 190006, India
Download PDF Download RIS Download Bibtex

Abstract

Recently, the need to develop fuel efficient transport systems has led to the development of a range of materials of low density, high stiffness and high strength each can be made at a reasonable cost. The aluminium based alloys are particularly important because of their improved mechanical, physical and technical properties. Fatigue failures have been recognised since the early days of the industrial revolution. Fatigue response of most of materials is related with the microstructural variations in the structure. Hence, in this study, influence of particle size and volume fractions on fatigue properties of Al-alloy composites was investigated. It was found that particle size and volume fraction of reinforcement particles play significant role on fatigue propagation rates, stress intensity threshold values, crack tip opening distance and crack tip plastic zone sizes.
Go to article

Authors and Affiliations

I. Uygur
1
ORCID: ORCID

  1. Duzce University, Faculty of Engineering, Department of Mechanical Eng. 81620, Duzce
Download PDF Download RIS Download Bibtex

Abstract

Gas explosions are major disasters in coal mining, and they typically cause a large number of deaths, injuries and property losses. An appropriate understanding of the effects of combustible gases on the characteristics of methane explosions is essential to prevent and control methane explosions. FLACS software was used to simulate an explosion of a mixture of CH4 and combustible gases (C2H4, C2H6, H2, and CO) at various mixing concentrations and different temperatures (25, 60, 100, 140 and 180℃). After adding combustible gases to methane at a constant volume and atmospheric pressure, the adiabatic flame temperature linearly increases as the initial temperature increases. Under stoichiometric conditions (9.5% CH4-air mixture), the addition of C2H4 and C2H6 has a greater effect on the adiabatic flame temperature of methane than H2 and CO at different initial temperatures. Under the fuel-lean CH4-air mixture (7% CH4-air mixture) and fuel-rich mixture (11% CH4-air mixture), the addition of H2 and CO has a greater effect on the adiabatic flame temperature of methane. In contrast, the addition of combustible gases negatively affected the maximum explosion pressure of the CH4-air mixture, exhibiting a linearly decreasing trend with increasing initial temperature. As the volume fraction of the mixed gas increases, the adiabatic flame temperature and maximum explosion pressure of the stoichiometric conditions increase. In contrast, under the fuel-rich mixture, the combustible gas slightly lowered the adiabatic flame temperature and the maximum explosion pressure. When the initial temperature was 140℃, the fuel consumption time was approximately 8-10 ms earlier than that at the initial temperature of 25℃. When the volume fraction of the combustible gas was 2.0%, the consumption time of fuel reduced by approximately 10 ms compared with that observed when the volume fraction of flammable gas was 0.4%.
Go to article

Bibliography

[1] Z. Li, M. Gong, E. Sun, J. Wu, Y. Zhou, Effect of low temperature on the flammability limits of methane/nitrogen mixtures. Energy 36, 5521-5524 (2011). DOI: https://doi.org/10.1016/j.energy.2011.07.023
[2] B. Su, Z. Luo, T. Wang, J. Zhang, F. Cheng, Experimental and principal component analysis studies on minimum oxygen concentration of methane explosion. Int. J. Hydrog. Energy 45, 12225-12235 (2020). DOI: https://doi. org/10.1016/j.ijhydene.2020.02.133
[3] T. Wang, Z. Luo, H. Wen, F. Cheng, J. Deng, J. Zhao, Z. Guo, J. Lin, K. Kang, W. Wang, Effects of flammable gases on the explosion characteristics of CH4 in air. J. Loss Prev. Process Ind. 49, 183-190 (2017). DOI: https:// doi.org/10.1016/j.jlp.2017.06.018
[4] G. Cui, S. Wang, J. Liu, Z. Bi, Z. Li, Explosion characteristics of a methane / air mixture at low initial temperatures. Fuel 234, 886-893 (2018). DOI: https://doi.org/10.1016/j.fuel.2018.07.139
[5] M. Gieras, R. Klemens, G. Rarata, P. Wolan, Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm 3 at normal and elevated temperature. J. Loss Prev. Process Ind. 19, 263-270 (2006). DOI: https://doi.org/10.1016/j.jlp.2005.05.004
[6] H . Li, J. Deng, C.M. Shu, C.H. Kuo, Y. Yu, X. Hu, Flame behaviours and deflagration severities of aluminium powder-air mixture in a 20-L sphere: Computational fluid dynamics modelling and experimental validation. Fuel 276, 118028 (2020). DOI: https://doi.org/10.1016/j.fuel.2020.118028
[7] M. Mitu, V. Giurcan, D. Razus, M. Prodan, D. Oancea, Propagation indices of methane-air explosions in closed vessels. J. Loss Prev. Process Ind. 47, 110-119 (2017). DOI: https://doi.org/10.1016/j.jlp.2017.03.001
[8] M. Mitu, M. Prodan, V. Giurcan, D. Razus, D. Oancea, Influence of inert gas addition on propagation indices of methane-air deflagrations. Process Saf. Environ. Protect. 102, 513-522 (2016). DOI: https://doi.org/10.1016/j. psep.2016.05.007
[9] B. Su, Z. Luo, T. Wang, C. Xie, F. Cheng, Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture. J. Hazard. Mater. 404, 123680 (2021). DOI: https://doi.org/10.1016/j.jhazmat.2020.123680
[10] X.J. Gu, M.Z. Haq, M. Lawes, R. Woolley, Laminar burning velocity and Markstein lengths of methane-air mixtures. Combust. Flame. 121, 41-58 (2000). DOI: https://doi.org/10.1016/S0010-2180(99)00142-X
[11] L. Liu, Z. Luo, T. Wang, F. Cheng, S. Gao, H. Liang, Effects of initial temperature on the deflagration characteristics and flame propagation behaviors of CH4 and its blends with C2H6, C2H4, CO, and H2. Energy Fuels 35, 785-795 (2021). DOI: https://doi.org/10.1021/acs.energyfuels.0c03506
[12] Z. Luo, L. Liu, F. Cheng, T. Wang, B. Su, J. Zhang, S. Gao, C. Wang, Effects of a carbon monoxide-dominant gas mixture on the explosion and flame propagation behaviors of methane in air. J. Loss Prev. Process Ind. 58, 8-16 (2019). DOI: https://doi.org/10.1016/j.jlp.2019.01.004
[13] M. Reyes, F. V Tinaut, A. Horrillo, A. Lafuente, Experimental characterization of burning velocities of premixed methane-air and hydrogen-air mixtures in a constant volume combustion bomb at moderate pressure and temperature. Appl. Therm. Eng. 130, 684-697 (2018). DOI: https://doi.org/10.1016/j.applthermaleng.2017.10.165
[14] T. Wang, Z. Luo, H. Wen, J. Zhao, F. Cheng, C. Liu, Y. Xiao, J. Deng, Flammability limits behavior of methane with the addition of gaseous fuel at various relative humidities. Process Saf. Environ. Protect. 140, 34 (2019). DOI: https://doi.org/10.1016/j.psep.2020.05.005
[15] T. Wang, Z. Luo, H. Wen, F. Cheng, L. Liu, The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy 214, 119042 (2021). DOI: https://doi.org/10.1016/j.energy.2020.119042
[16] Y. Zhang, C. Yang, Y. Li, Y. Huang, J. Zhang, Y. Zhang, Q. Li, Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 242, 287-294 (2019). DOI : https://doi.org/10.1016/j.fuel.2019.01.043
[17] J. Zhao, J. Deng, T. Wang, J. Song, Y. Zhang, C.M. Shu, Q. Zeng, Assessing the effectiveness of a high-temperatureprogrammed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy 169, 587-596 (2019). DOI: https://doi.org/10.1016/j.energy.2018.12.100
[18] A.A. Pekalski, H.P. Schildberg, P.S.D. Smallegange, S.M. Lemkowitz, J.F. Zevenbergen, M. Braithwaite, H.J. Pasman, Determination of the explosion behaviour of methane and propene in air or oxygen at standard and elevated conditions. Process Saf. Environ. Protect. 83, 421-429 (2005).
[19] K. Holtappels, Report on the experimentally determined explosion limits, explosion pressures and rates of explosion pressure rise – Part 1: methane, hydrogen and propylene Contact. Explosion 1, 1-149 (2002).
[20] M. Gieras, R. Klemens, G., Experimental Studies of Explosions of Methane-Air Mixtures in a Constant Volume Chamber. Combust. Sci. Technol. 37-41 (2009). DOI: https://doi.org/10.1080/00102200802665102
[21] E. Salzano, F. Cammarota, A. Di Benedetto, V. Di Sarli, Explosion behavior of hydrogene methane / air mixtures. J. Loss Prev. Process Ind. 25, 443-447 (2012). DOI: https://doi.org/10.1016/j.jlp.2011.11.010
[22] K.L. Cashdollar, I.A. Zlochower, G.M. Green, R.A. Thomas, M. Hertzberg, Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process Ind. 13, 327-340 (2000).
[23] H . Li, J. Deng, X. Chen, C.M. Shu, C.H. Kuo, X. Zhai, Q. Wang, X. Hu, Transient temperature evolution of pulverized coal cloud deflagration in a methane-oxygen atmosphere. Powder Technol. 366, 294-304 (2020). DOI: https://doi.org/10.1016/j.powtec.2020.02.042
[24] S. Zhang, H. Ma, X. Huang, S. Peng, Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel. Process Saf. Environ. Protect. 140, 100-110 (2020). DOI: https://doi.org/10.1016/j.psep.2020.04.025
[25] Y. Zhu, D. Wang, Z. Shao, X. Zhu, C. Xu, Y. Zhang, Investigation on the overpressure of methane-air mixture gas explosions in straight large-scale tunnels. Process Saf. Environ. Protect. 135, 101-112 (2019). DOI: https://doi.org/10.1016/j.psep.2019.12.022
[26] J. Deng, F. Cheng, Y. Song, Z. Luo, Y. Zhang, Experimental and simulation studies on the influence of carbon monoxide on explosion characteristics of methane. J. Loss Prev. Process Ind. 36, 45-53 (2015). DOI: https://doi.org/10.1016/j.jlp.2015.05.002
[27] Gexcon, FLACS Manual. Gexcon, 2009.
[28] Z. Luo, R. Li, T. Wang, F. Cheng, Y. Liu, Z. Yu, S. Fan, X. Zhu, Explosion pressure and flame characteristics of CO/CH4/air mixtures at elevated initial temperatures. Fuel 268, 117377 (2020). DOI: https://doi.org/10.1016/j.fuel.2020.117377
Go to article

Authors and Affiliations

Zhenmin Luo
1 2
ORCID: ORCID
Litao Liu
1 2
ORCID: ORCID
Shuaishuai Gao
1 2
ORCID: ORCID
Tao Wang
1 2 3
ORCID: ORCID
Bin Su
1 2
ORCID: ORCID
Lei Wang
1 2
ORCID: ORCID
Yong Yang
4 2
ORCID: ORCID
Xiufang Li
4
ORCID: ORCID

  1. Xi’an University of Science and Technology, School of Safety Science & Engineering, 58, Yanta Mid. Rd., Xi’an, 710054, Shaanxi, PR China
  2. Shaanxi Key Laboratory of Prevention and Control of Coal Fire, 58, Yanta Mid. Rd, Xi’an, 710054, Shaanxi, PR China
  3. Xi’an University of Science and Technology, Postdoctoral Program, 58, Yanta Mid. Rd., Xi’an 710054, Shaanxi, PR China
  4. Xi’an University of Science and Technology, School of Safety Science & Engineering, 58, Yanta Mid. Rd., Xi’an, 710054, Shaanxi, PR
Download PDF Download RIS Download Bibtex

Abstract

The high-temperature deformation process and dynamic recrystallization (DRX) process of 21-4N were investigated under the conditions of the deformation temperature range of 1273~1453K, the strain rate range of 0.01~10s–1 and the deformation degree of 60% (the total deformation is 0.916) by using Gleeble-1500D thermal simulated test machine. The curves of stress-strain (σ – ε) were obtained, and the curves of work hardening rate (θ) and strain (ε) were obtained by taking derivative of σ – ε. The DRX critical strains under different conditions were determined by the curves of work hardening rate (θ – ε), and the DRX critical strain model was established. The peak strains of 21-4N were obtained by the curves of σ – ε, the relationship between peak stress (σp) and critical strain (εc) was determined, and the peak strain model was established. The DRX volume fraction models of 21-4N were established by using Avrami equation. The DRX grain size of 21-4N was calculated by Image Pro Plus 6.0, and its DRX grain size models were established.

Go to article

Authors and Affiliations

Yiming Li
Xiaomin Huang
Hongchao Ji
Yaogang Li
Baoyu Wang
Xuefeng Tang
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with problems of failure mechanisms of S235JR structural steel. One of the fundamental parameters of the Gurson-Tvergaard-Needleman damage mechanics-based material model is considered in order to describe the behaviour of the material at the plastic range. The analysis was performed on the void volume fraction fF determined at failure of S235JR steel. The case of low initial stress triaxiality η = 1/3 was taken into consideration. Different from the most popular methods such as curve-fitting, the experimental method based on the digital image analysis of the fracture surface of S235JR steel is proposed in order to determine the critical parameter fF.

Go to article

Authors and Affiliations

P.G. Kossakowski
Download PDF Download RIS Download Bibtex

Abstract

The effect of the initial porosity on the material response under multi-axial stress state for S235JR steel using the Gurson-Tvergaard-Needleman (GTN) material model was examined. Three levels of initial porosity, defined by the void volume fraction f₀, were considered: zero porosity for fully dense material without pores, average and maximum porosity according to the metallurgical requirements for S235JR steel. The effect of the initial porosity on the material response was noticed for tensile elements under multi-axial stress state defined by high stress triaxiality σₘ/σe = 1.345. This effect was especially noticeable at the range of the material failure. In terms of the load-bearing capacity of the elements, the conservative results were obtained when maximum value of f₀ = 0.0024 was used for S235JR steel under multi-axial stress state, and this value is recommended to use in the calculations in order to preserve the highest safety level of the structure. In usual engineering calculations, the average porosity defined by f₀ = 0.001 may be applied for S235JR.

Go to article

Authors and Affiliations

P.G. Kossakowski

This page uses 'cookies'. Learn more