Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 38
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Environmental applications of carbon nanotubes (CNTs) have recently attracted worldwide attentiondue to their excellent adsorption capacities and promising physical, chemical and mechanical properties, as well asthe preparation of novel membranes with attractive features for water purification. This paper critically reviews therecent progress on the preparation and applications of CNT based membranes in water and wastewater treatment. Various synthesis techniques for the preparation of CNT based membranes are discussed. The functionalization ofCNTs, which involves chemical/physical modification of pristine CNTs with different types of functional groups,improves the capabilities of CNT for water and wastewater treatment and/or removal of waterborne contaminants.The CNT-based membrane applications are found to possess a variety of advantages, including improving waterpermeability, high selectivity and antifouling capability. However, their applications at full scale are still limitedby their high cost. Finally, we highlight that CNT membranes with promising removal efficiencies for respectivecontaminants can be considered for commercialization and to achieve holistic performance for the purpose ofwater treatment and desalination. This paper may provide an insight for the development of CNT based membranesfor water purification in the future. With their tremendous separation performance, low biofouling potential andultra-high water flux, CNT membranes have the potential to be a leading technology in water treatment, especiallydesalination.
Go to article

Bibliography

  1. Adamczak, M., Kaminska, G. & Bohdziewicz, J. (2019). Preparation of polymer membranes by in situ interfacial polymerization. International Journal of Polymer Science, vol. 219, Article ID 6217924, 13 pages, DOI: 10.1155/2019/6217924
  2. Ahmad, A., El-Nour, K.A., Ammar, R.A.A. & Al-Warthan, A., (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterization., Arabian Journal of Chemistry, 5, pp. 1–23, DOI: 10.1016/j.arabjc.2010
  3. Ahmed, F., Santos, C.M., Mangadlao, J., Advincula, R. & Rodrigues, D.F. (2013). Antimicrobial PVK: SWNT nanocomposite coated membrane for water purification: performance and toxicity testing, Water Res., 47, 12, pp. 3966–3975, DOI: 10.1016/j.watres.2012.10.055
  4. Ahn, C.H, Baek, Y., Lee, C., Kim, S.O., Kim, S., Lee, S., Kim, S.H. Bae, S.S., Park, J. & Yoon, J. (2012). Carbon nanotube-based membranes: fabrication and application to desalination. J. Ind. Eng. Chem.,18, pp. 1551–1559, DOI: 10.1016/j.jiec.2012.04.005.
  5. Ajmani, G.S., Goodwin, D., Marsh, K., Fairbrother, D.H., Schwab, K.J., Jacangelo, J.G. & Huang, H. (2012). Modification of low pressure membranes with carbon nanotube layers for fouling control, Water Res., 46, 17, pp. 5645–5654, DOI:10.1016/j.watres.2012.07.059.
  6. Ali, S., Ur Rehman, S.A., Luan, H.Y., Usman Farid, M. & Huang, H. (2019). Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Science of the Total Environment, 646, pp.1126–1139, DOI: 10.1016/j.scitotenv.2018.07.348.
  7. Al-Hakami, S.M., Khalil, A.B., Laoui, T. & Atieh, M.A. (2013). Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorg. Chem. Appl.,458943, DOI: 10.1155/2013/458943.
  8. Al-Khaldi, F.A., Abu-Sharkh, B., Abulkibash, A.M. & Atieh, M.A. (2013). Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: a comparative study. Desalin. Water Treat., 53, pp. 1–13, DOI: 10.1080/19443994.2013.847805.
  9. Ansari, R. & Kazemi, E. (2012). Detailed investigation on single water molecule entering carbon nanotubes. App. Math. Mech., 33, pp.1287–1300, DOI: 10.1007/s10483-012-1622-8.
  10. Atieh, M.A., Bakather, O.Y., Tawabini, B.S., Bukhari, A.A., Khaled, M., Alharthi, M., Fettouhi, M. & Abuilaiwi, F.A. (2010). Removal of chromium (III) from water by using modified and nonmodified carbon nanotubes, J. Nanomater., Article ID 232378, pp.1-9, DOI: 10.1155/2010/232378.
  11. Baek, Y., Kim, C., Kyun, D., Kim, T., Seok, J., Hyup, Y., Hyun, K., Seek, S., Cheol, S., Lim, J., Lee, K. & Yoon, J. (2014), High performance and antifouling vertically aligned carbon nanotube membrane for water purification. J. Membr. Sci., 460, 171–177, DOI: 10.1016/j.memsci.2014.02.042.
  12. Bahgat, M., Farghali, A.A., El Rouby, W.M.A. & Khedr, M.H. (2011). Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications, J. Anal. Appl. Pyrolysis, 92, 2, pp. 307–313, DOI: 10.1016/j.jaap.2011.07.002.
  13. Bai, L., Liang, H., Crittenden, J., Qu, F., Ding, A., Ma, J., Du, X., Guo, S. & Li, G. (2015), Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by nom fractions. J. Membr. Sci., 492, 400–411, DOI: 10.1016/j.memsci.2015.06.006.
  14. Balasubramanian, K. & Burghard, M. (2005). Chemically functionalized carbon nanotubes, Small, 1, pp. 180–192, DOI: 10.1002/smll.200400118.
  15. Bhadra, M., Roy, S. & Mitra, S. (2013). Enhanced desalination using carboxylated carbon nanotube immobilized membranes. Sep. Purif. Technol., 120, pp. 373–377, DOI: 10.1016/j.seppur.2013.10.020.
  16. Bodzek, M. & Konieczny, K. (2017). Membrane techniques in the treatment of geothermal water for fresh and potable water production. [In:] Geothermal Water Management, Bundschuh, J. & Tomaszewska, B. (Eds.). CRC Press/Balkema, Taylor and Francis Group, Ch. 8, pp. 157–231, DOI: 10.1201/9781315734972.
  17. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Environmental Protection, 45, 4, pp. 4-19. DOI: 10.24425/aep.2019.130237.
  18. Bodzek, M., Konieczny, K. & Rajca, M. (2019). Membranes in water and wastewater disinfection – review. Archives of Environmental Protection, 45 (1), pp. 3-18, DOI: 10.24425/aep.2019.126419.
  19. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2020a). Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for next generation of semipermeable membranes. Critical Reviews in Environmental Science and Technology, 50, 15, pp. 1515-1579, DOI: 10.1080/10643389.2019.1664258.
  20. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2020b). The application of nanomaterial adsorbents for the removal of impurities from water and wastewaters: a review, Desalination and Water Treatment, 185, pp. 1-26, DOI: 10.5004/dwt.2020.25454
  21. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak, A. (2020c). The application for nanotechnology and nanomaterials in water and wastewater treatment. Membranes, photocatalysis and disinfection, Desalination and Water Treatment, 186, pp. 88–106, DOI:10.5004/dwt.2020.25231
  22. Brady-Estévez, A.S., Kang, S. & Elimelech, M. (2008). A single‐walled‐carbon‐nanotube filter for removal of viral and bacterial pathogens, Small, 4, 4, pp. 481–484. DOI: 10.1002/smll.200700863.
  23. Brady-Estévez, A.S., Schnoor, M.H., Kang, S. & Elimelech, M. (2010). SWNT–MWNT hybrid filter attains high viral removal and bacterial inactivation, Langmuir, 26, pp. 19153–19158. DOI: 10.1021/la103776y.
  24. Brunet, L., Lyon, D., Zodrow, K., Rouch, J.-C., Caussat, B., Serp, P., Remigy, J.-C., Wiesner, M. & Alvarez, P.J. (2008). Properties of membranes containing semi- dispersed carbon nanotubes, Environ. Eng. Sci., 25, pp. 565–575. DOI: 10.1089/ees.2007.0076.
  25. Celik, E., Park, H., Choi, H. & Choi, H. (2011). Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment, Water Res., 45, pp. 274–282. DOI: 10.1016/j.watres.2010.07.060.
  26. Chan, Y. & Hill, J.M. (2012). Modeling on ion rejection using membranes comprising ultrasmall radii carbon nanotubes, Eur. Phys. J. B, 85, pp. 56. DOI: 10.1140/epjb/e2012-21029-0.
  27. Chan, Y. & Hill, J.M. (2013). Ion selectivity using membranes comprising functionalized carbon nanotubes, J. Math. Chem., 53, pp. 1258–1273. DOI: 10.1007/s10910-013-0142-y.
  28. Chan ,W.-F., Chen, H.-Y., Surapathi, A., Taylor, M.G., Shao, X., Marand, E. & Johnson, J.K. (2013). Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS Nano, 7, pp. 5308–5319.; DOI: 10.1021/nn4011494.
  29. Chen, H., Li, J., Shao, D., Ren, X. & Wang, X. (2012). Poly(acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co(II) removal from aqueous solution, Chem. Eng. J., 210, pp. 475–481. DOI: 10.1016/j.cej.2012.08.082.
  30. Chen, X., Qiu, M., Ding, H., Fu, K. & Fan, Y. (2016). A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification, Nanoscale, 8, pp. 5696–5705./ DOI: 10.1039/c5nr08697c.
  31. Chi, M.F., Wu,W.L., Du,Y., Chin,C.J. & Lin, C.C. (2016). Inactivation of Escherichia coli planktonic cells by multi-walled carbon nanotubes in suspensions: Effect of surface function-nalization coupled with medium nutrition level, J Hazard. Mater., 318, pp. 507-514. DOI: 10.1016/j.jhazmat.2016.07.013.
  32. Choi, J., Jegal, J. & Kim, W. (2006). Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes, J. Membr. Sci., 284, pp. 406–415. DOI: 10.1016/j.memsci.2006.08.013.
  33. Chung, Y.T., Mahmoudi, E., Mohammad, A.W., Benamor, A., Johnson, D. & Hilal, N. (2017). Development of polysulfone-nanohybrid membranes using ZnO-GO composite for enhanced antifouling and antibacterial control, Desalination, 402, pp. 123–132. DOI: 10.1016/j.desal.2016.09.030.
  34. Corry, B. (2008). Designing carbon nanotube membranes for efficient water desalination, J.Phys. Chem. B, 112, pp. 1427–1434. DOI: 10.1021/jp709845u.
  35. Corry, B. (2011). Water and ion transport through functionalised carbon nanotubes: implications for desalination technology, Energy Environ Sci., 4, pp. 751-759. DOI: 10.1039/C0EE00481B.
  36. Dalmas F., Chazeau, L., Gauthier, C., Masenelli-Varlot, K., Dendievel, R., Cavaillé, J.Y. & Forró, L. (2005). Multiwalled carbon nanotube/polymer nanocomposites: processing and properties, J. Polym. Sci. B Polym. Phys., 43, pp.1186–1197. DOI: 10.1002/polb.20409.
  37. Das, R., Abd Hamid, S.B., Ali, M.E., Ismail, A.F., Annuar, M.S.M. & Ramakrishna, S. (2014a). Multifunctional carbon nanotubes in water treatment: the present, past and future, Desalination, 354, pp. 160–179. DOI: 10.1016/j.desal.2014.09.032.
  38. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S. & Chowdhury, Z.Z. (2014b). Carbon nanotube membranes for water purification: a bright future in water desalination, Desalination, 336, pp. 97–109. DOI: 10.1016/j.desal.2013.12.026.
  39. Daer, S., Kharraz, J., Giwa, A. & Hasan, S.W. (2015). Recent applications of nanomaterials in water desalination: a critical review and future opportunities, Desalination, 367, pp. 37–48. DOI: 10.1016/j.desal.2015.03.030.
  40. de Lannoy, C.-F., Soyer, E. & Wiesner, M.R. (2013). Optimizing carbon nanotube-reinforced polysulfone ultrafiltration membranes through carboxylic acid functionalization, J. Membr. Sci.,447, pp. 395–402. DOI: 10.1016/j.memsci.2013.07.023.
  41. Dobrzańska-Danikiewicz, A.D., Łukowiec, D., Cichocki, D. & Wolany, W. (2015). Nanokompozyty złożone z nanorurek węglowych pokrytych nanokryształami metali szlachetnych, Open Access Library, Annal V Issue 2, International OCSCO World Press. (in Polish). http://www.openaccesslibrary.com/vol22015/cover.pdf.
  42. Dufresne, A., Paillet, M., Putaux, J.L., Canet, R., Carmona, F., Delhaes, P. & Cui, S. (2002). Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites, J. Mater. Sci., 37, pp. 3915–3923. DOI: 10.1023/A:1019659624567.
  43. Dumée, L., Campbell, J.L., Sears, K., Schutz, J., Finn, N., Duke, M. & Gray, S. (2011). The Impact of hydrophobic coating on the performance of carbon nanotube bucky paper membranes in membrane distillation, Desalination, 283, pp. 64–67. DOI: 10.1016/j.desal.2011.02.046.
  44. Engel, M. & Chefetz, B. (2016). Adsorption and desorption of dissolved organic matter by carbon nanotubes: effects of solution chemistry, Environ. Pollut., 213, pp. 90–98. DOI: 10.1016/j.envpol.2016.02.009.
  45. Fornasiero, F., Park, H.G., Holt, J.K., Stadermann, M., Grigoropoulos, C.P., Noy, A. & Bakaijn, O. (2008). Ion exclusion by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. Sci., 105, pp. 17250–17255. DOI: 10.1073/pnas.0710437105.
  46. Goh, P.S, Ismail, A.F. & Ng, B.C. (2013a). Carbon nanotubes for desalination: Performance evaluation and current hurdles, Desalination, 308, pp. 2–14. DOI: 10.1016/j.desal.2012.07.040.
  47. Goh, K., Setiawan, L., Wei, L., Jiang, W., Wang, R. & Chen, Y. (2013b). Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process, J. Membr. Sci., 446, pp. 244–254. DOI: 10.1016/j.memsci.2013.06.022.
  48. Goh, P.S. & Ismail, A.F. (2015). Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology, Desalination, 356, pp. 115–128. DOI: 10.1016//j.desal.2014.10.001
  49. Goh, K., Karahan, H.E., Wei, L., Bae, T.-H., Fane, A.G., Wang, R. & Chen, Y. (2016a). Carbon nanomaterials for advancing separation membranes: a strategic perspective, Carbon, 109, pp. 694–710. DOI: 10.1016/j.carbon.2016.08.077.
  50. Goh, P.S., Ismail, A.F. & Hilal, N. (2016b). Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination? Desalination, 380, pp. 100–104. DOI: 10.1016/j.desal.2015.06.002.
  51. Goh, P.S., Matsuura, T., Ismail, A.F. & Hilal, N. (2016c). Recent trends in membranes and membrane processes for desalination, Desalination, 391, pp. 43–60. DOI: 10.1016/j.desal.2015.12.016
  52. Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J. & Liang, Y. (2009). Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent, J. Hazard. Mater., 164, 2-3, pp. 1517-1522. DOI: 10.1016/j.jhazmat.2008.09.072.
  53. Guo, J., Zhang, Q., Cai, Z. & Zhao, K. (2016). Preparation and dye filtration property of electrospun polyhydroxybutyrate–calcium alginate/carbon nanotubes composite nanofibrous filtration membrane, Sep. Purif. Technol., 161, pp. 69-79. DOI: 10.1016/j.seppur.2016.01.036.
  54. Han, Y., Xu, Z. & Gao, C. (2013). Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater., 23, pp. 3693–3700. DOI: 10.1002/adfm.201202601.
  55. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V. & Bachas, L.G. (2004). Aligned multiwalled carbon nanotube membranes, Science, 303, pp. 62–65. DOI: 10.1126/science.1092048.
  56. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P, Noy, A. & Bakajin, O. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312, pp. 1034–1037. DOI: 10.1126/science.1126298.
  57. Hoon, C., Baek, Y., Lee, C., Ouk, S., Kim, S., Lee, S., Kim, S., Seek, S., Park, J. & Yoon, J. (2012). Carbon nanotube-based membranes: fabrication and application to desalination, J.Ind. Eng. Chem., 18, pp. 1551–1559. DOI: 10.1016/j.jiec.2012.04.005.
  58. Hou, C.-H., Liu, N.-L., Hsu, H.-L. & Den, W. (2014). Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization, Sep. Purif. Technol., 130, pp. 7–14. DOIL: 10.1016/j.seppur.2014.04.004.
  59. Huczko, A., Kurcz, M. & Popławska, M. (2015). Nanorurki węglowe. Otrzymywanie, charakterystyka, zastosowania, Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
  60. Hummer, G., Rasaiah,i J.C. & Noworyta, J.P. (2001). Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414, pp. 188–190. DOI: 10.1038/35102535
  61. Ihsanullah, F.A., Al-Khaldi, B. Abu-sharkh, M., Khaled Atieh, M.A., Nasser, M.S., Laoui, T., Saleh, T.A., Agarwal, S., Tyagi, I. & Gupta, V.K. (2015a). Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents, J.Mol.Liq., 204, pp. 255–263. DOI: 10.1016/j.molliq.2015.01.033.
  62. Ihsanullah, H.A., Asmaly, T.A., Saleh, T., Laoui, V.K., Gupta, M.A. & Atieh, M.A. (2015b). Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties, J. Mol. Liq., 206, pp 176–182. DOI: 10.1016/j.molliq.2015.02.028.
  63. Ihsanullah, T.L., Marwan, K., Muataz, A.A., Adnan, M.A., Amjad, B.K. & Aamir, A. (2015c). Novel anti-microbial membrane for desalination pretreatment: a silver nanoparticle-doped carbon nanotube membrane, Desalination, 376, pp. 82–93. DOI: 10.1016/j.desal.2015.08.017.
  64. Ihsanullah A.A., Al-Amer, A.M., Laoui, T., Al-Marri, M.J., Nasser, M.S., Khraisheh, M. & Atieh, M.A. (2016a). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol., 157, pp. 141–161. DOI: 10.1016/j.seppur.2015.11.039.
  65. Ihsanullah, A., Al Amer, A.M., Laoui, T., Abbas, A., Al-Aqeeli, N., Patel, F., Khraisheh, M., Atieh, M.A., Hilal, N. (2016b). Fabrication and antifouling behaviour of a carbon nanotube membrane, Mater. Des., 89, pp. 549–558. DOI: 10.1016/j.matdes.2015.10.018.
  66. Ihsanullah, F.A., Al-Khaldi, B., Abu-sharkh, M., A., Qureshi, M.I., Laoui, T. & Atieh, M.A. (2016c). Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes, Desalin.Water Treat., 57, pp. 7232–7244. DOI: 10.1080/19443994.2015.102184.
  67. Ihsanullah, A.A. (2019). Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future, Sep Purif Technol., 209, pp. 307–337. DOI: 10.1016/j.seppur.2018.07.043.
  68. Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y. & Guo, X. (2005). Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene, Environmental Science & Technology, 39, pp. 1378-1383. DOI: 10.1021/es048729l.
  69. Kabbashi, N.A., Atieh, M.A., Al-Mamun, A., Mirghami, M.E.S., Alam, M.D.Z. & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution, J. Environ. Sci., 21, 4, pp. 539–544. DOI: 10.1016/S1001-0742(08)62305-0.
  70. Kaminska, G., Bohdziewicz, J., Palacio, L., Hernández, A. & Prádanos, P. (2016). Polyacrylonitrile membranes modified with carbon nanotubes: Characterization and micropollutants removal analysis, Desalin. Water Treat., 57, pp. 1344–1353. DOI: 10.1080/19443994.2014.1002277.
  71. Kandah, M.I. & Meunier, J.L. (2007). Removal of nickel ions from water by multi-walled carbon nanotubes, J. Hazard. Mater., 146, 1-2, pp. 283-288. DOI: 10.1016/j.jhazmat.2006.12.019.
  72. Kang, S., Pinault, M., Pfefferle, L.D. & Elimelech, M. (2007). Single-walled carbon nanotubes exhibit strong antimicrobial activity, Langmuir, 23, pp. 8670–8673. DOI: 10.1021/la701067r.
  73. Kang, S., Herzberg, M., Rodrigues, D.F. & Elimelech, M. (2008). Antibacterial effects of carbon nanotubes: Size does matter, Langmuir, 24, pp. 6409–6413. DOI: 10.1021/la800951v.
  74. Kang G.D., Cao Y.M. (2012). Development of antifouling reverse osmosis membranes for water treatment: a review, Water Res., 46, 3, pp. 584–600. DOI: 10.1016/j.watres.2011.11.041.
  75. Kar, S., Bindal, R.C. & Tewari, P.K. (2012). Carbon nanotube membranes for desalination and water purification: challenges and opportunities, Nano Today, 7, pp. 385–389. DOI: 10.1016/j.nantod.2012.09.002.
  76. Khalid, A., Al-Juhani, A.A., Al-Hamouz, O.C., Laoui, T., Khan, Z. & Atieh, M.A. (2015). Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination, Desalination, 367, pp. 134–144./ DOI: 10.1016/j.desal.2015.04.001.
  77. Kim, E.-S., Hwang, G., Gamal El-Din, M. & Liu, Y. (2012). Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Membr. Sci., pp. 394-395, 37-48. DOI: 10.1016/j.memsci.2011.11.041.
  78. Kim, H.J., Choi, K., Baek, Y., Kim, D., Shim, J., Yoon, J. & Lee, J. (2014). High-Performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions, ACS Appl. Mater. Interf., 6, pp. 2819–2829. DOI: 10.1021/am405398f.
  79. Kochkodan, V. & Hilal, N. (2015). A comprehensive review on surface modified polymer membranes for biofouling mitigation, Desalination, 356, pp. 187–207. DOI: 10.1016/j.desal.2014.09.015.
  80. Lam, C.-W., James, J.T., McCluskey, R., Arepalli, S. & Hunter, R.L. (2008). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Crit. Rev. Toxicol., 36, 3, pp. 189–217. DOI: 10.1080/10408440600570233.
  81. Lee, C. & Baik, S. (2010). Vertically-aligned carbon nano-tube membrane filters with superhydrophobicity and superoleophilicity, Carbon, 48, pp. 2192–2197. DOI: 10.1016/j.carbon.2010.02.020.
  82. Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J. & Kim, Y.H. (2015). A carbon nanotube wall membrane for water treatment, Nat. Commun., 6, pp. 7109. DOI: 10.1038/ncomms8109.
  83. Lee, J., Jeong, S. & Liu, Z. (2016). Progress and challenges of carbon nanotube membrane in water treatment, Crit. Rev. Environ. Sci. Technol., 46, pp. 999–1046. DOI: 10.1080/10643389.2016.1191894.
  84. Lee, J.-G., Lee, E.-J., Jeong, S., Guo, J., An, A.K., Guo, H., Kim, J., Leiknes, T. & Ghaffour, N. (2017). Theoretical modeling and experimental validation of transport and separation properties of carbon nanotube electrospun membrane distillation, J. Membr. Sci., 526, pp. 395-408. DOI: 10.1016/j.memsci.2016.12.045
  85. Li, J., Chen, S., Sheng, G., Hu, J., Tan, X. & Wang, X., (2011). Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes, Chem. Eng. J., 166, 2, pp. 551-558. DOI: 10.1016/j.cej.2010.11.018.
  86. Li, S., Liao, G., Liu, Z., Pan, Y., Wu, Q., Weng, Y., Zhang, X., Yang, Z. & Tsui O.K.C. (2014). Enhanced water flux in vertically aligned carbon nanotube arrays and polyethersulfone composite membranes, J. Mater. Chem. A., 2, pp. 12171–12176. DOI: 10.1039/C4TA02119C
  87. Li, S., He, M., Li, Z., Li, D. & Pan, Z. (2017). Removal of humic acid from aqueous solution by magnetic multi-walled carbon nanotubes decorated with calcium, J. Mole. Liquids, 230, pp. 520–528. DOI: 10.1016/j.molliq.2017.01.027
  88. Liu, L., Son, M., Chakraborty, S. & Bhattacharjee, C. (2013). Fabrication of ultra-thin polyelectrolyte/carbon nanotube membrane by spray-assisted layer-by- layer technique: characterization and its anti- protein fouling properties for water treatment, Desalin. Water Treat., 51, pp. 6194–6200. DOI: 10.1080/19443994.2013.780767.
  89. Liu, J., Wang, Y., Yu, Z., Cao, X., Tian, L., Sun, S. & Wu, P. (2017). A comprehensive analysis of blue water scarcity from the production, consumption and water transfer perspectives, Ecol. Indic., 72, pp. 870–880. DOI: 10.1016/j.ecolind.2016.09.021.
  90. Lu, C. & Chiu, H. (2006). Adsorption of zinc(II) from water with purified carbon nanotubes, Chem. Eng. Sci., 61, 4, pp. 1138–1145. DOI: 10.1016/j.ces.2005.08.007.
  91. Madhura, L., Kanchi, S., Myalowenkosi, I., Singh, S., Bisetty, K. & Inamuddin (2018). Membrane technology for water purification, Environmental Chemistry Letters, 16, pp. 343–365. DOI: 10.1007/s10311-017-0699-y.
  92. Majumder, M., Chopra, N., Andrews, R. & Hinds, B.J. (2005). Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438, pp. 44. DOI: 10.1038/438044a.
  93. Manawi, Y., Kochkodan, V., Ali Hussein, M., M.A. Khaleel, M.A., Khraisheh M. & Hilal, N. (2016). Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 391, pp. 69–88. DOI: 10.1016/j.desal.2016.02.015.
  94. Manawi, Y.M., Ihsanullah, A. Samara Al-Ansari, T. & Atieh, M.A. (2018). A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method, Materials, 11, pp. 822. DOI: 10.3390/ma11050822.
  95. Mauter, M.S. & Elimelech, M. (2008). Environmental applications of carbon-based nanomaterials, Environ. Sci. Technol., 42, 16, pp. 5843–5859. DOI: 10.1021/es8006904.
  96. McCarthy B., Coleman J.N., Czerw R., Dalton A.B., Panhuis M.I.H., Maiti A., Drury A., Bernier P., Nagy J.B., Lahr B., Byrne H.J., Carroll D.L., Blau W.J. (2002). A microscopic and spectroscopic study of interactions between carbon nanotubes and a conjugated polymer, J. Phys. Chem. B 106, pp. 2210–2216. DOI: 10.1021/jp013745f.
  97. McGinnis R.L., Reimund K., Ren L. Xia M.R., Chowdhury X., Sun M., Abril J.D., Moon M.M., Merrick J., Park K.A., Stevens J.R., McCutcheon B.D., Freeman. (2018). Large-scale polymeric carbon nanotube membranes with sub–1.27-nm pores, Sci. Adv. 4, e1700938. DOI: 10.1126/sciadv.1700938.
  98. Mechrez G., Krepker M.A., Harel Y., Lellouche J.-P., Segal E. (2014). Biocatalytic carbon nanotube paper: A ‘one-pot’ route for fabrication of enzyme-immobilized membranes for organophosphate bioremediation, J. Mater. Chem. B, 2, pp. 915–922. DOI: 10.1039/C3TB21439G.
  99. Mehwish N, Kausar A., Siddiq M. (2015). High-performance polyvinylidene fluoride/poly (styrene – butadiene – styrene)/functionalized MWCNTs-SCN-Ag nanocomposite membranes, Iran. Polym. J. 24, pp. 549–559. DOI: 10.1007/s13726-015-0346-z.
  100. Morsi R.E., Alsabagh A.M., Nasr S.A., Zaki M.M. (2017). Multifunctional nanocomposites of chitosan, silver nanoparticles, copper nanoparticles and carbon nanotubes for water treatment: Antimicrobial characteristics. Int. J. Biol. Macromol., 97, pp. 264-269. DOI: 10.1016/j.ijbiomac.2017.01.032.
  101. Mubarak N.M., Alicia R.F., Abdullah E.C., Sahu J.N., Haslija A.B.A., Tan J. (2013). Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar, J. Environ. Chem. Eng., 1 (3), pp. 486-495. DOI: 10.1016/j.jece.2013.06.011.
  102. Nie C., Yang Y., Cheng C., Ma L., Deng J., Wang L., Zhao C. (2017). Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications, Acta. Biomater., 51, pp. 479-494. DOI: 10.1016/j.actbio.2017.01.027.
  103. Ntim, S.A., Mitra, S. (2011). Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes, J. Chem. Eng. Data, 56, 2077-2083. DOI: https://doi.org/10.1016/j.actbio.2017.01.027.
  104. Ntim, S.A., Mitra, S. (2012). Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification, J. Colloid Interface Sci., 375 (1), 154-159. DOI: 10.1016/j.jcis.2012.01.063.
  105. Park O.-K., Kim N.H., Lau K.-t., Lee J.H. (2010a). Effect of surface treatment with potassium persulfate on dispersion stability of multi-walled carbon nanotubes, Mater. Lett., 64, pp. 718–721. DOI: 10.1016/j.matlet.2009.12.048.
  106. Park J., Choi W., Cho J., Chun B.H., Kim S.H., Lee K.B., Bang J. (2010b). Carbon nanotube based nanocomposite desalination membranes from layer-by-layer assembly, Desalin. Water Treat., 15, pp. 76–83. DOI: 10.5004/dwt.2010.1670.
  107. Park J., Choi W., Kim S.H., Chun B.H., Bang J., Lee K.B., Park J., Choi W., Kim S.H., Chun B.H., Bang J., Lee K.B. (2010c). Enhancement of chlorine resistance in carbon nanotube based nanocomposite reverse osmosis membranes, Desalin. Water Treat., 15, pp. 198–204. DOI: 10.5004/dwt.2010.1686.
  108. Park S.-M., Jung J., Lee S., Baek Y., Yoon J., Seo D.K., et al. (2014). Fouling and rejection behavior of carbon nanotube membranes, Desalination, 343, pp. 180–186. DOI: 10.1016/j.desal.2013.10.005.
  109. Peng X., Jin J., Ericsson E.M., Ichinose I. (2007). General method for ultrathin free-standing films of nanofibrous composite materials, J. Am. Chem. Soc., 129, pp. 8625–8633. DOI: 10.1021/ja0718974.
  110. Pillay K., Cukrowska E.M., Coville N.J. (2009). Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution, J. Hazard. Mater., 166 (2-3), pp. 1067-1075. DOI: 10.1016/j.jhazmat.2008.12.011.
  111. Qadir D., Mukhtar H., Keong L.K. (2017). Mixed matrix membranes for water purification applications, Sep. Purif Rev. 46, pp. 62–80. DOI: 10.1080/15422119.2016.1196460.
  112. Raghavendra S. Hebbar, Arun M. Isloor, Inamuddin, Asiri A.M. (2017). Carbon nanotube- and graphene-based advanced membrane materials for desalination, Environ Chem. Lett., 15, pp. 643–671. DOI: 10.1007/s10311-017-0653-z.
  113. Rashid M., Ralph S.F. (2017). Carbon nanotube membranes: synthesis, properties, and future filtration applications, Nanomaterials, 7 (5), 99-1-99-28. DOI: 10.3390/nano7050099.
  114. Ratto T.V., Holt J.K., Szmodis A.W. (2010). Membranes with embedded nanotubes for selective permeability, Patent Application No. 20100025330 (2010), https://pdfpiw.uspto.gov/.piw?Docid=07993524.
  115. Ren X., Chen C., Nagatsu M., Wang X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: a review, Chem. Eng. J., 170 (2–3) pp. 395–410. DOI: 10.1016/j.cej.2010.08.045.
  116. Roy S., Jain V., Bajpai R., Ghosh P., Pente A.S., Singh B.P., Misra D.S. (2012). Formation of carbon nanotube bucky paper and feasibility study for filtration at the nano and molecular scale, J. Phys. Chem. C, 116, pp. 19025–19031. DOI: 10.1021/jp305677h.
  117. Rodrigues D.F., Elimelech M. (2010). Toxic Effects of Single-Walled Carbon Nanotubes in the Development of E. coli Biofilm, Environmental Science & Technology, 44, pp. 4583-4589. DOI: 10.1021/es1005785.
  118. Scoville C., Cole R., Hogg J., Farooque O., and A. Russell, (2019). CarbonNanotubes, https://courses.cs.washington.edu/courses/csep590a/08sp/projects/CarbonNanotubes.pdf(Accessed:11.25.2019
  119. Sears K., Dumée L., Schütz J., She M., Huynh C., Hawkins S., Duke M., Gray S. (2010). Recent developments in carbon nanotube membranes for water purification and gas separation, Materials 3, pp. 127. DOI: 10.3390/ma3010127.
  120. Seckler, D., R. Barker R., Amarasinghe U. (1999). Water scarcity in the twenty-first century, Int. J. Water Resour. Dev., 15, pp. 29–42. DOI: 10.1080/07900629948916.
  121. Selvan M.E., Keffer D., Cui S., Paddison S. (2010). Proton transport in water confined in carbon nanotubes: a reactive molecular dynamics study, Molecular Simulation, 36 (7-8), pp. 568-578. DOI: 10.1080/08927021003752887.
  122. Shah P., Murthy C.N. (2013). Studies on the porosity control of MWCNT/polysulfone composite membrane and its effect on metal removal, J. Membr. Sci., 437, pp. 90–98. DOI: 10.1016/j.memsci.2013.02.042.
  123. Shao D., Sheng G., Chen C., Wang X., Nagatsu M. (2010). Removal of polychlorinated biphenyls from aqueous solutions using beta-cyclodextrin grafted multiwalled carbon nanotubes, Chemosphere, 79 (7), pp. 679-685. DOI: 10.1016/j.chemosphere.2010.03.008.
  124. Shawky H.A., Chae S., Lin S., Wiesner M.R. (2011). Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment, Desalination, 272, pp. 46–50. DOI: 10.1016/j.desal.2010.12.051.
  125. Shen J- Nan, Yu C- Chao., Hui min R., Cong jie Gao., Van Der Bruggen B. (2013). Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization, J. Membr. Sci., 442, pp. 18–26. DOI: 10.1016/j.memsci.2013.04.018.
  126. Shen Y.-X., Saboe P.O., Sines I.T., Erbakan M., Kumar M. (2014). Biomimetic membranes: a review, J. Membr. Sci., 454, pp. 359–381. DOI: 10.1016/j.memsci.2013.12.019.
  127. Song X., Wang L., Tang C.Y., Wang Z., Gao C. (2015). Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process, Desalination, 369, pp. 1–9. DOI: 10.1016/j.desal.2015.04. 020.
  128. Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., Ruoff R.S. (2006). Graphene-based composite materials, Nature, 442, pp. 282–286. DOI: 10.1038/nature04969.
  129. Sweetman L.J., Nghiem L., Chironi I., Triani G., In Het Panhuis M., Ralph S.F. (2012). Synthesis, properties and water permeability of swnt buckypapers, J. Mater. Chem. A, 22, pp. 13800–13810. DOI: 10.1039/C2JM31382K.
  130. Sweetman L.J., Alcock, L.J., McArthur J.D., Stewart E.M., Triani G., Ralph S.F. (2013), Bacterial filtration using carbon nanotube/antibiotic buckypaper membranes, J. Nanomater, 2013, 1-11. DOI: 10.1155/2013/781212.
  131. Tian M., Wang R., Goh K, Liao Y., Fane A.G. (2015). Synthesis and characterization of high performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes, J. Membr. Sci., 486, pp. 151–160. DOI: 10.1016.j.memsci.2015.03.054.
  132. Tiede K, Hassellov M., Breitbarth E., Chaudhry Q., Boxall A.B.A. (2009). Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles, J. Chromatogr., A, 1216, pp. 503–509. DOI: 10.1016/j.chroma.2008.09.008.
  133. Tiraferri A., Vecitis C.D., Elimelech M. (2011). Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties, ACS Appl. Mater. Interfaces, 3, pp. 2869–2877. DOI: 10.1021/am200536p.
  134. Tofighy, M.A., Mohammadi, T. (2011). Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater., 185 (1), pp. 140-147. DOI: 10.1016/j.jhazmat.2010.09.008.
  135. Tunuguntla R.H., Henley R.Y., Yao Y.-C., Pham T.A., Wanunu M., Noy A. (2017). Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins, Science, 357, pp. 792–796. DOI: 10.1126/science.aan2438.
  136. Upadhyayula V.K., Deng S., Mitchell M.C., Smith G.B. (2009). Application of carbon nanotube technology for removal of contaminants in drinking water: a review, Sci. Total Environ., 408 (1), pp. 1–13. DOI: 10.1016/j.scitotenv.2009.09.027.
  137. Usman F.M., Luan H.-Y., Wang, Y., Huang H., An A.K., Jalil K.R. (2017). Increased adsorption of aqueous zinc species by Ar/O2 plasma-treated carbon nanotubes immobilized in hollow-fiber ultrafiltration membrane, Chem. Eng. J., 325, pp. 239–248. DOI: 10.1016/j.cej.2017.05.020.
  138. Vatanpour V., Esmaeili M., Hossein M., Abadi D. (2014). Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes, J. Memb. Sci., 466, pp. 70–81. DOI: 10.1016/j.memsci.2014.04.031.
  139. Vatanpour V., Zoqi N. (2017). Surface modification of commercial seawater reverse osmosis membranes by grafting of hydrophilic monomer blended with carboxylated multiwalled carbon nanotubes, Appl. Surf. Sci., 396, pp. 1478–1489. DOI: 10.1016/j.apsusc.2016.11.195.
  140. Vuković G.D., Marinković A.D., Čolić M., Ristić M.Đ., Aleksić R., Perić-Grujić A.A.,Uskoković P.S. (2010). Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes, Chem. Eng. J., 157 (1), pp. 238–248. DOI: 10.1016/j.cej.2009.11.026.
  141. Wang X., Li Q., Xie J., Jin Z., Wang J., Li Y., Jiang K., Fan S. (2009). Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano Lett.,9, pp. 3137–3141. DOI: 10.1021/nl901260b
  142. Wang H., Yan N., Li Y., Zhou X., Chen J., Yu B., Gong M., Chen Q. (2012). Fe nanoparticle-functionalized multi-walled carbon nanotubes: one-pot synthesis and their applications in magnetic removal of heavy metal ions, J. Mater. Chem., 22 (18), pp. 9230-9236. DOI: 10.1039/C2JM16584H.
  143. Wang H., Dong Z., Na C. (2013). Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol, ACS Sustain. Chem. Eng., 1 (7), pp. 746–752. DOI: 10.1021/sc400048m.
  144. Wang S., Liang S., Liang P., Zhang X., Sun J., Wu S., Huang X. (2015a). In-situ combined dual-layer CNT/PVDF membrane for electrically-enhanced fouling resistance, J. Membr. Sci., 491, pp. 37–44. DOI: 10.1016/j.memsci.2015.05.014.
  145. Wang Y., Zhu J., Huang H., Cho H.-H. (2015b). Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: capabilities and potential mechanisms, J. Membr. Sci., 479, pp. 165–174. DOI: 10.1016/j.memsci.2015.01.034.
  146. Wang Y., Ma J., Zhu J., Ye N., Zhang X., Huang H. (2016a). Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products, Water Res., 92, pp. 104–112. DOI: 10.1016/j.watres.2016.01.038.
  147. Wang J., Zhang P., Liang B., Liu Y., Xu T., Wang L., Cao B., Pan K. (2016b). Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment, ACS Appl. Mater. Interfaces, 8, pp. 6211–6218. DOI: 10.1021/acsami.5b12723.
  148. Wang, Y., Huang, H.,Wei, X. (2018). Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes, Chem. Eng. J., 333, pp. 66–75. DOI: 10.1016/j.cej.2017.09.149.
  149. WHO/UNICEF Joint Monitoring Programme. Progress on household drinking water, sanitation, and hygiene 2000-2017. Geneva, Switzerland; New York, NY: WHO; UNICEF, 2019, https://washdata.org
  150. Wu H., Tang B., Wu P. (2010a). MWNTs/Polyester thin film nanocomposite membrane: an approach to overcome the trade-off effect between permeability and selectivity, J. Phys. Chem. C, 114, pp. 16395–16400. DOI: 10.1021/jp107280m.
  151. Wu H., Tang B., Wu P. (2010b). Novel ultrafiltration membranes prepared from a multiwalled carbon nanotubes/polymer composite, J. Membr. Sci., 362, pp. 374–383. DOI: 10.1016/j.memsci.2010.06.064.
  152. www.fizyka.iss.com.pl/nanorurki/01nanorurki_.html (Accessed: 13.03.2021)
  153. Xiu Z.-M., Zhang Q.-B., Puppala H.L., Colvin V.L., Alvarez, P.J.J. (2012). Negligible particle-specific antibacterial activity of silver nanoparticles, Nano Lett., 12, pp. 4271–4275. DOI: 10.1021/nl301934w.
  154. Xue S.-M., Xu Z.-L, Tang Y.-J., Ji C.-H. (2016). Polypiperazine-amide nanofiltration membrane modified by different functionalized multiwalled carbon nanotubes (MWCNTs), ACS Appl. Mater. Interfaces, 8, pp. 19135–19144. DOI: 10.1021/acsami.6b05545.
  155. Yan X.M., Shi B.Y., Lu J.J., Feng C.H., Wang D.S., Tang H.X. (2008). Adsorption and desorption of atrazine on carbon nanotubes, J. Colloi. Interf. Sci., 321 (1), pp. 30-38. DOI: 10.1016/j.jcis.2008.01.047.
  156. Yang H.Y., Han Z.J., Yu S.F., Pey K.L., Ostrikov K., Karnik R. (2013a). Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification, Nat. Commun., 4, pp. 2220. DOI: 10.1038/ncomms3220.
  157. Yang, X., Lee, J., Yuan, L., Chae, S.-R., Peterson, V.K., Minett, A.I., Yin, Y., Harris, A.T. (2013b). Removal of natural organic matter in water using functionalised carbon nanotube buckypaper, Carbon, 59, pp. 160–166. DOI: 10.1016/j.carbon.2013.03.005.
  158. Yin J., Deng B. (2015). Polymer-matrix nanocomposite membranes for water treatment, J.Membr. Sci., 479, pp. 256–275. DOI: 10.1016/j.memsci.2014.11.019.
  159. Zarrabi H., Ehsan M., Vatanpour V., Shockravi A., Safarpour M. (2016). Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube, Desalination, 394, pp. 83–90. DOI: 10.1016/j.desal.2016.05.002.
  160. Zhang L., Chen H. (2011). Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes, Desalin. Water Treat., 34, pp. 19–24. DOI: 10.5004/dwt.2011.2801.
  161. Zhang J., Xu Z., Shan M., Zhou B., Li Y., Li B., Niu J., Qian X. (2013). Synergetic effects of oxidized carbon nanotubes and graphene oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 448, pp. 81–92. DOI: 10.1016/j.memsci.2013.07.064.
  162. Zhang Y., Wu B., Xu H., Liu H., Wang M., He Y., Pan B. (2016). Nanomaterials-enabled water and wastewater treatment, NanoImpact, 3-4, pp. 22–39. DOI: 10.1016/j.impact.2016.09.004.
  163. Zhao Y.L., Stoddart J.F. (2009). Noncovalent functionalization of single-walled carbon nanotubes, Acc. Chem. Res., 42, pp. 1161–1171. DOI: 10.1021/ar900056z.
  164. Zhao C., Xu X., Chen J., Yang F. (2013a). Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes, J. Environ. Chem. Eng., 1, pp. 349–354. DOI: 10.1016/j.jece.2013.05.014.
  165. Zhao H., Wu L., Zhou Z., Zhang L., Chen H. (2013b). Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated Graphene oxide, Phys. Chem. Chem. Phys., 15, pp. 9084–9092. DOI: 10.1039/c3cp50955a.
  166. Zhao H., Qiu S., Wu L., Zhang L., Chen H., Gao C. (2014). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes, J. Membr. Sci., 450, pp. 249–256. DOI: 10.1016/j.memsci.2013.09.014.
  167. Zheng J., Li M., Yu K., Hu J., Zhang X., Wang L. (2017). Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property, J. Membr. Sci., 524, pp. 344–353. DOI: 10.1016/j.memsci.2016.11.032
Go to article

Authors and Affiliations

Michał Bodzek
1
ORCID: ORCID
Krystyna Konieczny
2
ORCID: ORCID
Anna Kwiecińska-Mydlak
3
ORCID: ORCID

  1. Institute of Environmental Engineering Polish Academy of Sciences, Poland
  2. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Poland
  3. Institute for Chemical Processing of Coal, Poland
Download PDF Download RIS Download Bibtex

Abstract

The primary objective of the present study was to determine the seasonal dynamics of ciliates in activated sludge. Studies were carried out in order to verify the hypothesis that fertility of a habitat may significantly influence the seasonal dynamics of the abundance of ciliates, as well as the number and intensity of correlations between physic-chemical parameters and ciliates. It seems that the values of numbers of ciliates were seasonally changeable. The highest numbers of ciliates were found in spring and summer, however the lowest numbers of ciliate communities were noted in winter. The studies showed that protozoa community is determined by ammonia mainly in summer. In spring and winter additional factors may be important. Probably suspended solid, total organic carbon and concentration of appropriate food (bacteria and flagellates) are the major regulator of abundance of ciliates.
Go to article

Authors and Affiliations

Monika Tarkowska-Kukuryk
Tomasz Mieczan
Wojciech Pęczuła
Jacek Rechulicz
Wojciech Płaska
Katarzyna Radomska
Download PDF Download RIS Download Bibtex

Abstract

In the present investigation we have studied the effects of static magnetic field on removal of organic compounds and ammonium nitrogen by high loading activated sludge. The research was carried out on laboratory scale at room temperature. Three or two continuously operating test systems were used in the experiment. In two test systems the return activated sludge was exposed to magnetic field strength of 20 mT or 40 mT. The magnets were attached to a pipe used for activated sludge recirculation. The nitrification rate for test systems when the return activated sludge was exposed to magnetic field was higher than for control system in absence of magnetic field. The best data was observed for test system which was exposed to magnetic field of 40 mT. The nitrification rate was 2 times higher than for control system when the loading of activated sludge was in the range of 0.6 to 0,9 g COD/gMLSS ·d for. The results show that magnetic field improves nitrification of domestic wastewater by high loading activated sludge.
Go to article

Authors and Affiliations

Marta Janosz-Rajczyk
Agnieszka Tomska
Download PDF Download RIS Download Bibtex

Abstract

In the present investigation we studied the effects of static magnetic field on transformation of organic compounds and ammonium nitrogen. The research was carried out on laboratory scale at room temperature. Two continuously operating test systems were run in parallel. In one of the systems the raw sewage was exposed to magnetic field strength of 180 mT. The magnets were attached to a pipe used for raw sewage. The second system was used as a control. The research was carried out without activated sludge and with activated sludge. The investigation carried out in an experiment without activated sludge showed that the removal of COD for system with the raw sewage exposed to magnetic field strength of 180 mT was 15% higher then system in absence of magnetic field. During investigation carried out in an experiment with activated sludge it was observed that the removal of COD was similar in both systems. The nitrification rate for system in which raw sewage was exposed to magnetic field was lower than the system in which it was not.
Go to article

Authors and Affiliations

Marta Janosz-Rajczyk
Agnieszka Tomska
Download PDF Download RIS Download Bibtex

Abstract

Two different porous ceramic carriers with immobilized activated sludge comprised a stationary filling of the reactors. Municipal wastewater was treated at hydraulic retention times from 15 to 70 min and internal circulation capacity of 20, 40 and 60 drn':h'. Depending on hydraulic retention time, the sludge yield ranged from 0.138 to 0.066 g TSS·g COD·' in reactor I and from 0.175 to 0.107 g TSS·g COD·' in reactor li. An increase in volumetric loading rate and internal circulation capacity caused a reduction in sludge yield. A decrease in the sludge yield corresponded to an increase in the ratio of endogenous to substrate respiration by the immobilized biomass
Go to article

Authors and Affiliations

Magdalena Zielińska
Irena Wojnowska-Baryła
Download PDF Download RIS Download Bibtex

Abstract

Azo dye wastewater treatment is urgent necessary nowadays. Electrochemical technologies commonly enable more efficient degradation of recalcitrant organic contaminants than biological methods, but those rely greatly on the energy consumption. A novel process of biofilm coupled with electrolysis, i.e., bioelectrochemical system (BES), for methyl orange (MO) dye wastewater treatment was proposed and optimization of main influence factors was performed in this study. The results showed that BES had a positive effect on enhancement of color removal of MO wastewater and 81.9% of color removal efficiency was achieved at the optimum process parameters: applied voltage of 2.0 V, initial MO concentration of 20 mg/L, glucose loads of 0.5 g/L and pH of 8.0 when the hydraulic retention time (HRT) was maintained at 3 d, displaying an excellent color removal performance. Importantly, a wide range of effective pH, ranging from 6 to 9, was found, thus greatly favoring the practical application of BES described here. The absence of a peak at 463 nm showed that the azo bond of MO was almost completely cleaved after degradation in BES. From these results, the proposed method of biodegradation combined with electrochemical technique can be an effective technology for dye wastewater treatment and may hopefully be also applied for treatment of other recalcitrant compounds in water and wastewater.

Go to article

Authors and Affiliations

Haiming Zou
Lin Chu
Yan Wang
Download PDF Download RIS Download Bibtex

Abstract

Advanced automotive fleet repair facility wastewater treatment was investigated with Zero-Valent Iron/Hydrogen Peroxide (Air/ZVI/H2O2) process for different process parameters: ZVI and H2O2 doses, time, pH. The highest Chemical Oxygen Demand (COD) removal efficiency, 76%, was achieved for ZVI/H2O2 doses 4000/1900 mg/L, 120 min process time, pH 3.0. COD decreased from 933 to 227 mg/L. In optimal process conditions odor and color were also completely removed. COD removal efficiency was increasing with ZVI dose. Change pH value below and over 3.0 causes a rapid decrease in the treatment effectiveness. The Air/ZVI/H2O2 process kinetics can be described as d[COD]/dt = −a [COD]tm, where ‘t’ corresponds with time and ‘a’ and ‘m’ are constants that depend on the initial reagent concentrations. H2O2 influence on process effect was assessed. COD removal could be up to 40% (560 mg/L) for Air/ZVI process. The FeCl3 coagulation effect was also evaluated. The best coagulation results were obtained for 700 mg/L Fe3+ dose, that was slightly higher than dissolved Fe used in ZVI/H2O2 process. COD was decreased to 509 mg/L.

Go to article

Authors and Affiliations

Jan Paweł Bogacki
Hussein Al-Hazmi
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of research concerning operating of five small wastewater treatment plants working in two different technologies: hydrobotanical wastewater treatment plant and constructed wetland. Each object was designed for the treatment of domestic sewage after preliminary mechanical treatment in a septic tank. Hydrobotanical wastewater treatment plants and one of constructed wetland beds were built for treating sewage produced in educational institutions and resort. In the article attention is paid to possibility of exceeding the maximum allowable concentration of pollutants for three main indicators of pollution: BOD5, COD, and total suspension. The reduction of these indices is required by the Regulation of the Minister of Environment [14] for wastewater treatment plants with PE < 2000. In addition, the paper presents the effects of wastewater treatment to reduce biogens. The best quality of outflow was reached by outflows from constructed wetland treatment plants. None of the observed objects fulfilled the requirements in terms of allowable concentrations for total suspension. The most effective were objects operating in technology of “constructed wetland”.

Go to article

Authors and Affiliations

Katarzyna Pawęska
Krzysztof Kuczewski
Download PDF Download RIS Download Bibtex

Abstract

Scaling and corrosion associated with the use of natural hard water in cooling towers during recirculation pose great problems from both economical and technical points of view, such as decreased system efficiency and increased frequency of chemical cleaning. Treated municipal wastewater (MWW) is a promising alternative to freshwater as power plant cooling system makeup water, especially in arid regions. In this work, hybrid systems of salt precipitation (SP), nanofiltration (NF) and reverse osmosis (RO) were investigated, as potential pretreatment processes for wastewater reuse as cooling water in the planned Jordan nuclear power plants. The As-Samra wastewater was used to calculate the potential of carbonate and sulfate scale formation. The results were compared to scale potentials from Palo Verde wastewater. Four cases were investigated; SP, NF, SP-RO and NF-RO. The SP pretreatment cases showed the highest monovalent to divalent ratio because of a high removal of Ca and Mg and addition of Na from the chemicals of the SP step. The NF pretreatment cases, showed the lowest calcium sulfate scale potential and this potential decreases with the % pretreatment. The scale amount increases very slightly with concentration times when the SP and NF product is desalinated by RO step.

Go to article

Authors and Affiliations

Aiman Eid Al-Rawajfeh
Kamal Araj
Download PDF Download RIS Download Bibtex

Abstract

Microbiological studies were carried out of atmospheric air sampled on the area and in the surroundings of a mechanical and biological wastewater treatment plant (WTP) treating municipal sewage. The capacity of the wastewater treatment plant, which also received some wastewater from the dairy industry, was ca 3· 103 m3d-1. Counts ofheterotrophic psychrophilic, psychrotrophic and mesophilic bacteria as well as some physiological groups of microorganisms which belong to Enterobacteriaceae family, Staphylococcus and Enterococcus genera, Pseudomonas fluorescens and P. aeruginosa species, hemolysing bacteria and actinomycetes were analyzed. Air samples were collected in summer, autumn, winter and spring seasons simultaneously by the sedimentation and impact methods at 6 sites located on the area of the WTP and at 5 sites situated in its surroundings. The background was established depending on the direction of wind, always on the windward side in relation to the location of the WTP. In addition, temperature and air humidity as well as wind speed and direction at each sampling sites were observed. Statistically significant differences were found in studied groups of microorganisms counts between air samples collected in different seasons of the year (with the exception of psychrophilic bacteria and by the two different methods (with the exception of psychrophilic bacteria) and microorganisms which belong to Enterobacteriaceae family). The highest mean counts of the microorganisms were usually determined in air samples collected by the sedimentation method, especially during the autumn (with the exception of actinomycetes, which are the most numerous in spring), the lowest ones in winter and/or in summer. No statistically significant differences were observed in counts of the analyzed groups of microorganisms in air sampled at particular sites (with the exception of Enterobacteriaceae bacteria isolated on Chromocult medium). However, higher counts of these microorganisms were typically found in the air sampled in the area of the WTP, particularly near the grit chamber, phosphorus removal tank, nitrification and denitrification chambers and secondary settling tank. According to the Polish Standards used for evaluation of atmospheric air pollution, the air sampled in the area of wastewater treatment plant and in its surroundings was classified as only slightly and sporadically strongly polluted. It was mainly in the spring and autumn seasons that the air was strongly polluted with psychrophilic and mesophilic bacteria. No increased emission of the analyzed groups of microorganisms, including faecal bacteria was determined in the air samples collected outside the WT
Go to article

Authors and Affiliations

Ewa Korzeniewska
Zofia Filipkowska
Anna Gotkowska-Płachta
Wojciech Janczukowicz
Bartosz Rutkowski
Download PDF Download RIS Download Bibtex

Abstract

The constructed wetland integrated with microbial fuel cell (CW-MFC) has gained attention in wastewater treatment and electricity generation owing to its electricity generation and xenobiotic removal efficiencies. This study aims to use the CW-MFC with different macrophytes for domestic wastewater treatment and simultaneously electricity generation without chemical addition. The various macrophytes such as Crinum asiaticum, Canna indica, Hanguana malayana, Philodendron erubescens, and Dieffenbachia seguine were used as a cathodic biocatalyst. The electrochemical properties such as half-cell potential and power density were determined. For wastewater treatment, the chemical oxygen demand (COD) and other chemical compositions were measured. The results of electrochemical properties showed that the maximal half-cell potential was achieved from the macrophyte D. seguine. While the maximal power output of 5.42±0.17 mW/m2 (7.75±0.24 mW/m3) was gained from the CW-MFC with D. seguine cathode. Moreover, this CW-MFC was able to remove COD, ammonia, nitrate, nitrite, and phosphate of 94.00±0.05%, 64.31±0.20%, 50.02±0.10%, 48.00±0.30%, and 42.05±0.10% respectively. This study gained new knowledge about using CW-MFC planted with the macrophyte D. seguine for domestic wastewater treatment and generation of electrical power as a by-product without xenobiotic discharge.
Go to article

Bibliography

  1. Almeida-Naranjo, C.E, Guachamin, G., Guerrero, V.H. & Villamar, C.V. (2020). Heliconia stricta hubber behavior on hybrid constructed wetlands fed with synthetic domestic wastewater. Water, 12, 5, pp. 1373. DOI:10.3390/w12051373
  2. APHA AWWA WEF (2005). Standard methods for the examination of water and wastewater. American Public Health Association, Washington 2005.
  3. Araneda, I., Tapia, N.F., Allende, K.L. & Vargas, I.T. (2018). Constructed wetland-microbial fuel cell for sustainable greywater treatment. Water, 10, 7, pp. 940. DOI:10.3390/w10070940
  4. Bracher, G.H., Carissmi, E., Wolff, D.B., Graepin, C. & Hubner, A.P. (2020). Optimization of an electrocoagulation-flotation system for domestic wastewater treatment and reuse. Environmental Technology, 42, 17, pp. 2669-2679. DOI:10.1080/09593330.2019.1709905
  5. Chaijak, P., Lertworapreecha, M., Changkit, N. & Sola, P. (2022). Electricity generation from hospital wastewater in microbial fuel cell using radiation tolerant bacteria. Biointerface Research in Applied Chemistry, 12, 4, pp. 5601-5609. DOI:10.33263/BRIAC124.56015609
  6. Chaijak, P., Sukkasem, C., Lertworapreecha, M., Boonsawang, P., Wijasika, S. & Sato, C. (2018). Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on the cathode. Journal of Microbiology and Biotechnology, 28, 8, pp. 1360-1366. DOI:10.4014/jmb.1803.03015
  7. Corbella, C. & Puigagut, J. (2018). Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. Science of the Total Environment, 631-632, 1, pp. 1406-1414. DOI:10.1016/j.scitotenv.2018.03.084
  8. Das, B., Gaur, S.S., Katha, A.R., Wang, C.T. & Katiyar, V. (2021). Crosslinked poly(vinyl alcohol) membrane as separator for domestic wastewater fed dual chambered microbial fuel cells. International Journal of Hydrogen Energy, 46, 10, pp. 7073-7086. DOI:10.1016/j.ijhydene.2020.11.213
  9. Dincer, I. & Siddiqui, O. (2020). Ammonia fuel cells, Elsevier, Amsterdam 2020.
  10. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W.. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour Technol, 296, pp.122350. DOI:10.1016/j.biortech.2019.122350
  11. Guadarrama-Perez, O., Bahena-Rabadan, K., Dehesa-Carrasco, U., Perez, V.H.G. & Estrada-Arriaga, E.B. (2020). Bioelectricity production using macrophytes in constructed wetland-microbial fuel cells. Environmental Technology, 2020. DOI:10.1080/09593330.2020.1841306
  12. Han, J.L., Yang, Z.N., Wang, H., Zhou, H.Y., Xu, D., Yu, S. & Gao, L. (2021). Decomposition of pollutants from domestic sewage with the combination system of hydrolytic acidification coupling with constructed wetland microbial fuel cell. Journal of Cleaner Production, 319, 1, pp. 128650. DOI:10.1016/j.jcliepro.2021.128650
  13. Ho, V.T.T., Dang, M.P., Lien, L.T., Huynh, T.T., Hung, T.V. & Bach, L.G. (2020). Study on domestic wastewater treatment of the horizontal subsurface flow wetlands (HSSF-CWs) using Brachiaria mutica. Waste and Biomass Valorization, 11, 10, pp. 5627-5634. DOI:10.1007/s12649-020-01084-4
  14. Karla, M.R., Alejandra, V.A.C., Lenys, F. & Patricio, E.M. (2022). Operational performance of corncobs/sawdust biofilters coupled to microbial fuel cells treating domestic wastewater. Science of the Total Environment, 809, 1, pp. 151115. DOI:10.1016/j.scitotenv.2021.151115
  15. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for enhancing the bioelectricity generation of microbial fuel cells. Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
  16. Klimsa, L., Melcakova, I., Novakova, J., Bartkova, M., Hlavac, A., Krakovska, A., Dombek, V. & Andras, P. (2020). Recipient pollution caused by small domestic wastewater treatment plants with activated sludge. Carpathian Journal of Earth and Environmental Science, 15, 1, pp. 19-25. DOI:10.26471/cjees/2020/015/104
  17. Libecki, B. & Mikolajczyk, T. (2021). Phosphorus removal by microelectrolysis and sedimentation in the integrated devices. Archives of Environmental Protection, 47, 1, pp. 3-9. DOI:10.24425/aep.2021.136442
  18. Moondra, N., Jariwala, N.D. & Christian, R.A. (2020). Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22, 14, pp. 1480-1486. DOI:10.1080/15226514.2020.1782829
  19. Nhut, H.T., Hung, N.T.Q., Sac, T.C., Bang, N.H.K., Tri, T.Q., Hiep, N.T. & Ky, N.M. (2020). Removal of nutrients and pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor. Environmental Engineering Research, 25, 5, pp. 652-658. DOI:10.4491/eer.2019.285
  20. Ni, J., Steinberger-Wilckens, R. & Wang, O.H. (2021). Simultaneous domestic wastewater treatment and electricity generation in microbial fuel cell with Mn(IV) oxide addition. Chemistry Select, 6, 3, pp.369-375. DOI:10.1002/slct.202004680
  21. Pasquini, L., Munoz, J.F., Pons, M.N., Yvon, J., Dauchy, X., France, X., Le, N.D., France-Lanord, C. & Gorner, T. (2014). Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. The Science of the Total Environment, 481, 1, pp. 456-468. DOI:10.1016/j.scitotenv.2014.02.075
  22. Rajasulochana, P. & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2, 4, pp.175-184. DOI:10.1016/j.reffit.2016.09.004
  23. Shukla, R., Gupta, D., Singh, G. & Mishra, V.K. (2021). Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustainable Environment Research, 31, 1, pp. 13. DOI:10.1186/s42834-021-00087-7
  24. Vega de Lille, M.I., Hernandez Cardona, M.A., Tzakum Xicum, Y.A., Giacoman-Vallejos, G. & Quintal-Franco, C.A. (2021). Hybrid constructed wetlands system for domestic wastewater treatment under tropical climate: Effect of recirculation strategies on nitrogen removal. Ecological Engineering, 166, 1, pp.106243. DOI:10.1016/j.ecoleng.2021.106243
  25. Vo, N.X.P., Hoang, D.D.N., Huu, T.D., Van, T.D., Thanh, H.L.P. & Xuan, Q.V.N. (2021). Performance of vertical up-flow-constrcuted wetland integrating with microbial fuel cell (VFCW-MFC) treating ammonium in domestic wastewater. Environment Technology, 1, 1, pp. 1-16. DOI:10.1080/09593330.2021.2014574
  26. Wang, J.F., Song, X.S., Wang, Y.H., Bai, J.H., Li, M.J., Dong, G.Q., Lin, F.D., Lv, Y.F. & Yan, D.H. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophyte. Science of the Total Environment, 607, 1, pp. 53-62. DOI: 10.1016/j.scitotenv.2017.06.243
  27. Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y.L. & Cao, S.W. (2018). Degradation of nitrobenzene-containing wastewater by a microbial fuel cell coupled constructed wetland. Ecological Engineering, 112, 1, pp. 65-71. DOI:10.1016/j.ecoleng.2017.12.018
  28. Xu, F., Cao, F.Q., Kong, Q., Zhou, L.I., Yuan, Q., Zhu, Y.J., Wang, Q., Du, Y.D. & Wang, Z.D. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339, pp. 476-486. DOI:10.1016/j.cej.2018.02.003
  29. Yang, S.L., Zheng, Y.F., Mao, Y.X., Xu, L., Jin, Z., Zhao, M., Kong, H.N., Huang, X.F. & Zheng, X.Y. (2021). Domestic wastewater treatment for single household via novel subsurface wastewater infiltration systems (SWISs) with NiiMi process: Performance and microbial community. Journal of Cleaner Production, 279, 1, pp. 123434. DOI:10.1016/j.jclepro.2020.123434
  30. Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Tan, S.K. & Ng, W.J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013). Journal of Environmental Sciences, 30, 1, pp. 30-46. DOI:10.1016/j.jes.2014.10.013
Go to article

Authors and Affiliations

Pimprapa Chaijak
1
ORCID: ORCID
Phachirarat Sola
2

  1. Thaksin University, Thailand
  2. Thailand Institute of Nuclear Technology (Public Organization) (TINT), Thailand
Download PDF Download RIS Download Bibtex

Abstract

The remarkable development of sanitation in Morocco has inevitably led to the production of sludge generated from wastewater treatment plants in increasing quantities. Consequently, the problem of sludge management becomes persistent and worrying.

The aim of this paper was to contribute to the study of sewage sludge management issue in Morocco by identifying the various constraints hampering the sustainable disposal and/or recovery of municipal sewage sludge and drawing up rec-ommendations for the decision-makers. Moreover, in the context of improving by learning from best practices and seeking common solutions regarding this problematic, benchmarking with other countries has been conducted as well.

To carry out this study, a methodological approach was defined based on bibliographic research, surveys, interviews and benchmarking.

The constraints hampering the sustainable management of sludge are numerous and complex, they have not been tech-nical and environmental but also a regulatory, institutional-organizational and economic-financial nature yet. Therefore, municipalities, government and academia ideally would be encouraged to participate in the decision-making process re-garding the management of sewage sludge. Technical solutions, when coupled with stakeholder participation, can lead to policy implementation with a higher chance of improving the present situation.

In the case of Morocco, when comparing with others sludge recovery and disposal routes, land application (reuse in ag-riculture, silviculture and rehabilitation of degraded soils) remains the most environmentally friendly option, as well as a sustainable and economically viable solution.

Go to article

Authors and Affiliations

Abdessamad Ghacha
Lailal Ben Alla
Mohammed Ammari
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to determine the technological reliability of the selected pollution indicators removal BOD5, CODCr and total suspension from the sewage treatment plant working with the bioreactor Pomiltek Mann type. Wastewater treatment plant which is a subject of this study is located in Lesser Poland, in Siepraw commune. The analysis was per-formed using the Weibull method for basic indicators of impurities, BOD5, CODCr and total suspended solids. Physico-chemical analyses of raw and treated wastewater, were carried out in the period from 2003 to 2014 (11 years). The research period included measured values of pollutions indicators in 38 samples of raw and treated sewage. For each of pollution indicators descriptive statistic, percentage reduction (��) and treatment plant reliability factors (RF) were calculated. Aver-age reduction for BOD5 and TSS was on level equal 94%, only for COD the average reduction was lower and was on level 89%. The reliability values determined by Weibull method, were: 75% (BOD5), 90% (CODCr) and 89.5% (TSS). The relia-bility results have been lower than the presented by literature source, which means that work of wastewater treatment plant in Siepraw was not satisfied in 11 years of research.

Go to article

Authors and Affiliations

Karolina Kurek
Piotr Bugajski
ORCID: ORCID
Agnieszka Operacz
ORCID: ORCID
Dariusz Młyński
Andrzej Wałęga
Download PDF Download RIS Download Bibtex

Abstract

The research aims to study the purification performance of a local and natural material as an input or as a biological filter for treating urban domestic wastewater. For this purpose, pozzolan was used as the biofiltration support that was provided from Beni Saf located in the North-West of Algeria. Tests were carried out with a specially modified pilot unit (TE900) for wastewater treatment over a period of four months.
To assess the efficiency of the treatment, two main parameters have been focused on – the height of the sprinkler filter (40 cm and 80 cm) and the flow rate (10, 16, and 25 dm 3∙h –1). Physicochemical and bacteriological analyses were carried out on raw wastewater and treated water. The obtained results show that the Beni Saf pozzolan-filled trickling filter eliminates a large fraction of the studied pollutants. The purification yields obtained are fairly encouraging; 98% for turbidity, 88% for suspended solids ( SS), 94% for chemical oxygen demand ( COD), and 98% for biological oxygen demand ( BOD 5). As for bacterial indicators, the formation of biofilms has significantly reduced bacterial activity with a percentage of over 80%.
It can be concluded that the reduction of pollutant parameters clearly indicates the effectiveness of the treatment by this ecological process. Therefore, the use of local and natural materials for wastewater treatment can be a promising alternative based on sustainable environmental technologies and development.
Go to article

Authors and Affiliations

Amina Hamidi
1
ORCID: ORCID
Fadila Belarbi
1
ORCID: ORCID
Hamid Bouchelkia
1
ORCID: ORCID
Racha M. Bouchenak Khelladi
1 2
ORCID: ORCID

  1. University of Tlemcen, Faculty of Technology, Department of Hydraulics, URMER, BP 230, 13000, Tlemcen, Algeria
  2. University of Tlemcen, Faculty of Technology, Department of Hydraulics, Laboratory of Valorization of Water Resources, Tlemcen, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents preliminary results of investigations on a relationship between turbidity and other quality parameters in the SBR plant effluent. The laboratory tests demonstrated a high correlation between an effluent turbidity and a total suspended solids (TSS) concentration as well as between TSS and COD. Such a relationship would help to continuously monitor and control quality of a wastewater discharge using turbidity measurement.

Go to article

Authors and Affiliations

Zbigniew Mucha
Przemysław Kułakowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to assess the effects of two flocculants that are often used to overcome activated sludge bulking problems - aluminium chloride, AlCl3, and aluminium sulphate, Al2(SO4)3 - on Lecaneinermis (Rotifera, Monogononta) at three different temperatures: 8, 15 and 20°C. The mean EC50 value (effective concentration, mg dm-3) calculated for the 24 h mortality test was 0.012 mg Al3+dm-3. Next, the effects of low concentrations of the Al-salts on the population development from single individuals (parthenogenetic females) were tested in a 21-day experiment. At concentrations as low as EC4.8 and EC0.48, both Al-salts affected rotifer population negatively. However, temperature was the most pronounced factor that modified the toxicity of the Al-salts to the rotifers. On the 12th day of the experiment, there were significant interactions between temperature and the Al-salts, indicating that the chemicals were more toxic to the rotifers at 20°C than at lower temperatures. The weaker rotifers sensitivity to Al-salts (especially to AlCl3) in temperatures below 15°C, when the biggest problems associated with sludge bulking occurs,may means use both rotifers and chemicals reasonable and effective.

Go to article

Authors and Affiliations

Beata Klimek
Edyta Fiałkowska
Janusz Fyda
Wioleta Kocerba-Soroka
Agnieszka Pajdak-Stós
Łukasz Sobczyk
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the impact of the temperature of wastewater in a biological reactor with activated sludge and the BOD5/N-NH4 ratio in the influent to the treatment plant on nitrification efficiency and the concentration of ammonium nitrogen in treated wastewater. Tests were carried out in a household wastewater treatment plant which collects and treats sewage from a school building and a teacher’s house. During the 3-year study, large fluctuations in the sewage temperature in bioreactor were noted which was closely related to the ambient temperature. There were also large fluctuations in the concentration of organic matter and the concentration of ammonium nitrogen in inflowing sewage. The influence of wastewater temperature in the bioreactor and the BOD5/N-NH4 ratio on the concentration of ammonium nitrogen in treated wastewater was determined using Pearson’s linear correlation. A statistical analysis showed that a 1°C decrease in the temperature of wastewater in the bioreactor increased the concentration of ammonium nitrogen in treated wastewater by 2.64 mgN-NH4·L-1. Moreover, it was found that nitrification depended on the ratio of BOD5 to the concentration of ammonium nitrogen in wastewater flowing into the bioreactor. An increase in the BOD5/N-NH4 ratio by 1 value led to a 5.41 mgN-NH4·L-1 decrease in the concentration of ammonium nitrogen.

Go to article

Authors and Affiliations

Piotr Bugajski
Karolina Kurek
Krzysztof Jóźwiakowski
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with wastewater treatment systems placed in motorway service areas (MSAs). In the years 2008-2009 eight of such facilities installed on the stretch of the A2 motorway between Poznań and Nowy Tomyśl were examined and analyzed. The system consists of a septic tank, a submerged aerated biofilter and an outflow filter. The volume of traffic on the highway was analyzed, the amount of water use was measured and peak factors were calculated. On this basis it was concluded that the inflows to the wastewater treatment systems in many cases exceeded the nominal design values.

Based on the analysis of effluent quality it was found that the effects of plant operation in large part did not meet the requirements. It was found that the bioreactor aeration system and the design of the suspension separator (outflow filter) should be modified. One of the solutions was to use the soil-reed bed for wastewater treatment. The treatment of wastewater from the MSAs is a task that must take into account the unusual character of these facilities and the atypical quality of the effluent.

Go to article

Authors and Affiliations

Małgorzata Makowska
Jakub Mazurkiewicz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the use of multi-criteria analysis as a tool that helps choosing an adequate technology for a household wastewater treatment plant. In the process of selection the criteria of sustainable development were taken into account. Five municipal mechanical-biological treatment plants were chosen for the comparative multi-criteria analysis. Different treatment technologies, such as sand filter, activated sludge, trickling filter, a hybrid system - activated sludge/trickling filter and a hybrid constructed wetland system VF-HF type (vertical and horizontal fl ow) were taken into account. The plants’ capacities were 1 m3∙d-1 (PE=8) and they all meet the environmental regulations. Additionally, a solution with a drainage system was included into the analysis. On the basis of multi-criteria analysis it was found that the preferred wastewater treatment technologies, consistent with the principles of sustainable development, were a sand filter and a hybrid constructed wetland type VF-HF. A drainage system was chosen as the best solution due to the economic criteria, however, taking into consideration the primary (ecological) criterion, employment of such systems on a larger scale disagree with the principles of sustainable development. It was found that activated sludge is the least favourable technology. The analysis showed that this technology is not compatible with the principles of sustainable development, due to a lack of proper technological stability and low reliability.

Go to article

Authors and Affiliations

Krzysztof Jóźwiakowski
Zbigniew Mucha
Agnieszka Generowicz
Stanisław Baran
Jolanta Bielińska
Włodzimierz Wójcik

This page uses 'cookies'. Learn more