Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Water reaches a river in the form of surface runoff (precipitation that has not seeped into the ground) or underground outflow (groundwater). Both of these factors affect the erosion and river deposition processes that shape the river valley. Understanding them is crucial for effective river management.

Go to article

Authors and Affiliations

Tomasz Falkowski
ORCID: ORCID
Ewa Falkowska
Download PDF Download RIS Download Bibtex

Abstract

The present study tries to quantify soil losses using Geographic Information Systems (GIS) and analytic hierarchy pro-cess (AHP) in the Medjerda watershed (Algerian-Tunisian border). The Analytic Hierarchy Process (AHP) method is used in the quantification of erosion qualitative characteristics, through its weighting. It is used for many problems requiring decision-making. This catchment area is characterized by moderately consistent lithology, irregular rainfall, medium slope and low vegetation cover, which makes it very sensitive to erosion. Therefore we claim to develop a spatialization map of vulnerable areas, based on analytic hierarchy process and GIS that define the combination of specific factors. The integration of the thematic maps of the various factors makes it possible to identify the impact of each factor in the erosion, to classify the sensitive zones, and to quantify the soil losses in the basin. This mapping will be an important tool for land use planning and risk management. From the distribution map of erosive hazards, we have identified four classes of vulnerabil-ity, areas with very high to high vulnerability are mainly in the northern part of the watershed (where the relief is very important).

Go to article

Authors and Affiliations

Moufida Belloula
Hadda Dridi
Mehdi Kalla
Download PDF Download RIS Download Bibtex

Abstract

Water erosion is a critical issue for Morocco, especially in its semi-arid regions, where climatic and edaphic conditions only allow erratic soil formation and vegetation growth. Therefore, water erosion endangers human activity both directly (loss of arable land, landslides, mudflows) and indirectly (siltation of dams, river pollution). This study is part of the Kingdom’s effort to assess the risk of water erosion in its territory. It is dedicated to the Bin El-Ouidane dam water catchment, one of the biggest water storage facilities in the country, located in the High Atlas Mountains. The poorly developed soils are very sensitive to erosion in this mountainous area that combines steep slopes and sparse vegetation cover. The calculation of soil losses is carried out with the RUSLE model and corrected by estimating areas of deposition based on the unit stream power theory. This method produces a mean erosion rate of around 6.3 t·ha -1·y -1, or an overall annual loss of 4.1 mln t, consistently with the siltation rate of the dam. Primary risk areas (erosion rates > 40 t·ha -1·y -1) account for 54% of the total losses, while they cover only 7% of the catchment. This distribution of the soil losses also shows that the erosion risk is mainly correlated to slope, directing the means of control toward mechanical interventions.
Go to article

Authors and Affiliations

Wafae Nouaim
1
ORCID: ORCID
Dimitri Rambourg
2
ORCID: ORCID
Abderrazak El Harti
1
ORCID: ORCID
Ettaqy Abderrahim
3
ORCID: ORCID
Mohamed Merzouki
1
ORCID: ORCID
Ismail Karaoui
1
ORCID: ORCID

  1. University Sultan Moulay Slimane, Faculty of Sciences and Techniques, Team of Remote Sensing and GIS Applied to Geosciences and Environment, Av Med V, BP 591, Beni-Mellal 23000, Morocco
  2. Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, France
  3. University Sultan Moulay Slimane, Faculty of Sciences and Techniques, Environmental, Ecological and Agro-industrial Engineering Laboratory, Beni-Mellal, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The study on water erosion in the catchment basin of the Jeleni Brook was carried out in the years 1995–1999. The catchment of the Jeleni Brook has complex relief, receives frequent pre-cipitations and thus is more threatened by water erosion. Soil cultivation and water from quickly melting snow can also be the factors affecting soil erosion. Waters from the melting snow produce rills of the following dimensions (mean values): width from 11.5 to 13.6 cm, depth – from 6.4 to 7.1 cm and length – from 39 to 112 m. The mean values of soil losses vary from 0.5 to 2.02 t·ha–1.

Erosion caused by intensive storm precipitation occurs less frequently but makes much higher soil losses. One of the registered incidents shows that 51.6 t·ha–1 (4.5 mm of soil layer) can be washed out from the area of 0.66 ha. Combined effect of outwashing and ploughing in lower parts of slopes created new forms of relief such as agricultural terraces (escarps). Agricultural terraces assume the shape of scarps up to 2 m high and of different length (e.g. 150 m) along with the land use border-lines between e.g. forest and field or field and grassland.

Agriculturally used soils within this catchment need protection based mainly on agrotechnical measures or on alteration of land use. Some areas should be afforested.

Go to article

Authors and Affiliations

Adam Koćmit
Marek Podlasiński
ORCID: ORCID
Małgorzata Roy
Tomasz Tomaszewicz
Justyna Chudecka
Download PDF Download RIS Download Bibtex

Abstract

Soil erosion has been severely affecting soil and water resources in semi-arid areas like the Mediterranean. In Morocco, this natural process is accelerated by anthropogenic activities, such as unsustainable soil management, overgrazing, and deforestation. With a drainage area of 395,600 ha, the Bouregreg River Watershed extends from the Middle Atlas Range (Jebel Mtourzgane) to the Sidi Mohamed Ben Abdellah (SMBA) dam reservoir south-east of Rabat. Its contrasted eco-geomorphological landscapes make it susceptible to unprecedented soil erosion due to climate change. Resulting changes in erosive dynamics led to huge amounts of solid loads transported to the catchment outlet and, thus, jeopardised the SMBA dam lifespan due to siltation.
The research aims to quantify the average annual soil losses in this watershed using the Revised Universal Equation of Soil Losses (RUSLE) within a GIS environment. To highlight shifts in land use/land cover patterns and their effects on erosional severity, we have resorted to remote sensing through two Landsat 8 satellite images captured in 2004 and 2019. The C factor was combined with readily available local data regarding major erosion factors, e.g. rainfall aggressiveness ( R), soil erodibility ( K), topography ( LS), and conservation practices ( P). The helped to map the erosion hazard and determine erosion prone areas within the watershed where appropriate water and conservation measures are to be considered. Accordingly, from 2004 to 2019, average annual soil losses increased from 11.78 to 18.38 t∙ha –1∙y –1, as the watershed area affected by strong erosion (>30 t∙ha –1∙y –1) evolved from 13.57 to 39.39%.

Go to article

Authors and Affiliations

Fouad Moudden
1
Mohammed El Hafyani
1
Anas El Ouali
2
Allal Roubil
1
Abdelhadi El Ouali
1
ORCID: ORCID
Ali Essahlaoui
1
ORCID: ORCID
Youssef Brouziyne
3

  1. Moulay Ismail University, Faculty of Sciences, Department of Geology, Laboratory of Geoengineering and Environment, Research Group “Water Sciences and Environment Engineering, Zitoune, Meknes BP11201, Morocco
  2. Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology, Functional Ecology and Environmental Engineering Laboratory, Fez, Morocco
  3. Mohammed VI Polytechnic University, International Water Research Institute, Ben Guerir, Morocco
Download PDF Download RIS Download Bibtex

Abstract

Soil erosion is an important factor that should be considered when planning renewable natural resource projects, effects of which can be measured by modelling techniques. Therefore, disintegration models determine soil loss intensity and support soil conservation practices. This study estimates soil loss rates by water erosion using the Erosion Potential Method (EPM) in the Kebir Rhumel Watershed located in Northeast Algeria. The area is north to south sub-humid to semi-arid, receives irregular rainfall, and has steep slopes and low vegetation cover which makes it very vulnerable to erosion. The main factors in the EPM (soil erodibility, soil protection, slope, temperature, and rainfall) were evaluated using the Geographical Information System (GIS) and data provided by remote sensing technologies. The erosion intensity coefficient Z was 0.60, which indicates medium erosion intensity. While the results showed the average annual soil erosion of 17.92 Mg∙ha–1∙y–1, maximum and minimum losses are 190.50 Mg∙ha–1∙y–1 and 0.21 Mg∙ha–1∙y–1, respectively. The EPM model shows satisfactory results compared to some studies done in the basin, where the obtained results can be used for more appropriate management of land and water resources, sustainable planning, and environmental protection.
Go to article

Bibliography

ABDULWAHAB F., JASIM S. 2019. Building a model for the risk of water erosion in Kifri Basin by the use of fuzzy logic. Journal of Tikrit University for Humanities. Vol. 26. No. 9 p. 281–257. DOI 10.25130/hum.v26i9.819.
ABU HAMMAD A. 2011. Watershed erosion risk assessment and management utilizing revised universal soil loss equation- geographic information systems in the Mediterranean environments. Water and Environment Journal. Vol. 25 p. 149–162. DOI 10.1111/j.1747-6593.2009.00202.x.
AHMED A., ADIL D., HASNA B., ELBACHIR A., LAZAAR R. 2019. Using EPM Model and GIS for estimation of soil erosion in Souss Basin, Morocco. Turkish Journal of Agriculture – Food Science and Technology. Vol. 7 p. 1228–1232. DOI 10.24925/turjaf.v7i8.1228-1232.2562. BEHERA M., SENA D.R., MANDAL U., KASHYAP P.S., DASH S.S. 2020. Integrated GIS-based RUSLE approach for quantification of potential soil erosion under future climate change scenarios. Environmental Monitoring and Assessment. Vol. 192, 733 p. 1–18. DOI 10.1007/s10661-020-08688-2.
BOUGUERRA H., BOUANANI A., KHANCHOUL K., DERDOUS O., TACHI S.E. 2017. Mapping erosion prone areas in the Bouhamdane watershed (Algeria) using the revised universal soil loss equation through GIS. Journal of Water and Land Development. No. 32 p. 13–23. DOI 10.1515/jwld-2017-0002.
BOUHADEB C.E., MENANI M.R., BOUGUERRA H., DERDOUS O. 2018. Assessing soil loss using GIS based RUSLE methodology. Case of the Bou Namoussa watershed – North-East of Algeria. Journal of Water and Land Development. No. 36 p. 27–35. DOI 10.2478/ jwld-2018-0003.
BOU-IMAJJANE L., BELFOUL M.A., ELKADIRI R., STOKES M. 2020. Soil erosion assessment in a semi-arid environment: A case study from the Argana Corridor, Morocco. Environmental Earth Sciences. Vol. 79 p. 1–14. DOI 10.1007/s12665-020-09127-8.
CERDÀ A., DOERR S.H. 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena. Vol. 74 p. 256–263. DOI 10.1016/j.catena.2008.03.010.
CHAAOUAN J., FALEH A., SADIKI A., MESRAR H. 2013. Télédétection, sig et modélisation de l’érosion hydrique dans le bassin versant de l’oued Amzaz, Rif Central [Remote sensing, sig and modeling of water erosion in the watershed of Wadi Amzaz, Central Rif]. Revue française de photogrammétrie et de télédétection. No. 203 p. 19–25. DOI 10.52638/rfpt.2013.26.
DRAGIČEVIĆ N., KARLEUŠA B., OŽANIĆ N. 2017. Erosion potential method (Gavrilović method) sensitivity analysis. Soil and Water Research. Vol. 12 p. 51–59. DOI 10.17221/27/2016-SWR.
EFTHIMIOU N., LYKOUDI E., KARAVITIS C. 2017. Comparative analysis of sediment yield estimations using different empirical soil erosion models. Hydrological Sciences Journal. Vol. 62 p. 2674–2694. DOI 10.1080/02626667.2017.1404068.
EFTHIMIOU N., LYKOUDI E., PANAGOULIA D., KARAVITIS C. 2016. Assessment of soil susceptibility to erosion using the EPM and RUSLE models: The case of Venetikos River Catchment. Global NEST Journal. Vol. 18 p. 164–179. DOI 10.30955/gnj.001847.
FERNANDEZ C., WU J.Q., MCCOOL D.K., STÖCKLE C.O. 2003. Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. Journal of Soil and Water Conservation. Vol. 58 p. 128–136.
GAVRILOVIC Z. 1988. Use of an empirical method (erosion potential method) for calculating sediment production and transportation in unstudied or torrential streams. In: International Conference on River Regime. 18–20.05.1988 Wallingford, England. Oxon UK. Hydraulics Research Limited, Wallingford p. 411–422.
GITAS I.Z., DOUROS K., MINAKOU C., SILLEOS G.N., KARYDAS C.G. 2009. Multi-temporal soil erosion risk assessment in N. Chalkidiki using a modified USLE raster model. EARSeL eProceedings. Vol. 8 p. 40–52.
GLOBEVNIK L., HOLJEVIC D., PETKOVSEK G., RUBINIC J. 2003. Applicability of the Gavrilovic method in erosion calculation using spatial data manipulation techniques. Proceedings of symposium HS01 held during IUGG2003 at Sapporo, July 2003 International Association of Hydrological Sciences Publications. No. 279 p. 224–233.
HAAN C.T., BARFIELD, B.J., HAYES J.C. 1994. Design hydrology and sedimentology for small catchments. Elsevier. ISBN 978-0-12- 312340-4 pp. 588.
IGHODARO I.D., LATEGAN F.S., YUSUF S.F. 2013. The impact of soil erosion on agricultural potential and performance of Sheshegu community farmers in the Eastern Cape of South Africa. Journal of Agricultural Science. Vol. 5. No. 5 p. 140–147. DOI 10.5539/jas.v5n5p140. KOSTADINOV S., DRAGOVIĆ N., ZLATIĆ M., TODOSIJEVIĆ M. 2008. Erosion control works and the intensity of soil erosion in the upper part of the river Toplica drainage basin. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing. Vol. 4. No. 1, 012040.

KUNTA K. 2009. Effects of geographic information quality on soil erosion prediction. ETH Zurich. ISBN 978-3-906467-84-9 pp. 153.
LENSE G.H.E., MOREIRA R.S., PARREIRAS T.C., SANTANA D.B., BOLELLI T. DE M., MINCATO R.L. 2020. Water erosion modeling by the Erosion Potential Method and the Revised Universal Soil Loss Equation: A comparative analysis. Revista Ambiente & Água. Vol. 15(4). DOI 10.4136/ambi-agua.2501.
MAROUF N., REMINI B. 2011. Temporal variability in sediment concentration and hysteresis in the Wadi Kebir Rhumel Basin of Algeria. HKIE Transactions. Vol. 18 p. 13–21. DOI 10.1080/1023697X.2011.10668219.
MAZOUR M., ROOSE E. 2002. Influence de la couverture végétale sur le ruissellement et l’érosion des sols sur parcelles d’érosion dans les bassins versants du Nord-ouest de l’Algérie. En: Techniques traditionnelles de GCES en milieu méditerranéen [Influence of plant cover on runoff and soil erosion on erosion plots in the watersheds of northwestern Algeria. In: Traditional GCES techniques in the Mediterranean environment]. Eds. E. Roose, M. Sabir, G. De Noni. Bulletin – Réseau Erosion. No. 21 p. 320– 330.
MEDDI M., TOUMI S. 2015. Spatial variability and cartography of maximum annual daily rainfall under different return periods in Northern Algeria. Journal of Mountain Science. Vol. 12 p. 1403– 1421. DOI 10.1007/s11629-014-3084-3.
MEGHRAOUI M., HABI M., MORSLI B., REGAGBA M., SELADJI A. 2017. Mapping of soil erodibility and assessment of soil losses using the RUSLE model in the Sebaa Chioukh Mountains (northwest of Algeria). Journal of Water and Land Development. No. 34 p. 205–213. DOI 10.1515/jwld-2017-0055.
MOSTEPHAOUI T., MERDAS S., SAKAA B., HANAFI M.T., BENAZZOUZ M.T. 2013. Cartographie des risques d’érosion hydrique par l’applica-tion de l’équation universelle de pertes en sol à l’aide d’un système d’information géographique dans le bassin versant d’El hamel (Boussaâda) Algérie [Mapping of water erosion risks by applying the universal soil loss equation using a Geographical Information System in El Hamel (Boussaâda) watershed]. A Journal algérien des régions arides. No. Special p. 131–147.
NEARING M.A., JETTEN V., BAFFAUT C., CERDAN O., COUTURIER A., HERNANDEZ M., LE BISSONNAIS Y., NICHOLS M.H., NUNES J.P., RENSCHLER C.S. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena. Vol. 61 p. 131–154. DOI 10.1016/j.catena.2005.03.007.
NEHAÏ S.A., GUETTOUCHE M.S. 2020. Soil loss estimation using the revised universal soil loss equation and a GIS-based model: A case study of Jijel Wilaya, Algeria. Arabian Journal of Geosciences. Vol. 13, 152. DOI 10.1007/s12517-020-5160-z.
NUNES A.N., DE ALMEIDA A.C., COELHO C.O. 2011. Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal. Applied Geography. Vol. 31. No. 2 p. 687–699. DOI 10.1016/j.apgeog.2010.12.006.
PANAGOS P., STANDARDI G., BORRELLI P., LUGATO E., MONTANARELLA L., BOSELLO F. 2018. Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models. Land Degradation & Development. Vol. 29 p. 471–484. DOI 10.1002/ldr.2879.
ROOSE E. 1994. Introduction à la gestion conservatoire de l’eau, de la biomasse et de la fertilité des sols (GCES) [Introduction to the conservation management of water, biomass and soil fertility (GCES)]. Bulletin pédologique de la FAO. No. 70. ISBN 92-5- 203451-X pp. 420.
ROUSEL J.W., HAAS R.H., SCHELL J.A., DEERING D.W. 1973. Monitoring vegetation systems in the great plains with ERTS. In: Proceedings of the Third Earth Resources Technology Satellite – 1 Symposium; NASA SP-351 p. 309–317.
SAHLI Y., MOKHTARI E., MERZOUK B., LAIGNEL B., VIAL C., MADANI K. 2019. Mapping surface water erosion potential in the Soummam watershed in Northeast Algeria with RUSLE model. Journal of Mountain Science. Vol. 16 p. 1606–1615. DOI 10.1007/s11629-018-5325-3.
SAKUNO N.R.R., GUIÇARDI A.C.F., SPALEVIC V., AVANZI J.C., SILVA M.L.N., MINCATO R.L. 2020. Adaptation and application of the erosion potential method for tropical soils. Revista Ciência Agronômica. Vol. 51 p. 1–10.
SEKERTEKIN A., BONAFONI S. 2020. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox imple-mentation. Remote Sensing. Vol. 12 p. 294. DOI 10.3390/rs12020294.
SHARDA V.N., MANDAI D., OJASVI P.R. 2013. Identification of soil erosion risk areas for conservation planning in different states of India. Journal of Environmental Biology. Vol. 34 p. 219–226.
SHARPLEY A.N., WILLIAMS J.R. (eds.) 1990. EPIC-Erosion/Productivity Impact Calculator. I: Model documentation. II: User manual. USDA. Technical Bulletin. No. 1768 pp. 127.
SOLAIMANI K., MODALLALDOUST S., LOTFI S. 2009. Investigation of land use changes on soil erosion process using geographical information system. International Journal of Environmental Science & Technology. Vol. 6 p. 415–424. DOI 10.1007/BF03326080.
TAMRABET Z., MAROUF N., REMINI B. 2019. Quantification of suspended solid transport in Endja watercourse [Dehamecha basin-Algeria]. GeoScience Engineering. No. 4 p. 71–91. DOI 10.35180/gse-2019-0025.
TANG Q., XU Y., BENNETT S.J., LI Y. 2015. Assessment of soil erosion using RUSLE and GIS: A case study of the Yangou watershed in the Loess Plateau, China. Environmental Earth Sciences. Vol. 73 p. 1715–1724. DOI 10.1007/s12665-014-3523-z.
TOUMI A., REMINI B. 2018. Perte de la capacité de stockage d’eau au barrage de Beni Haroun, Algérie [Loss of water storage capacity at the Beni Haroun dam, Algeria]. Systèmes Agraires et Environnement. Vol. 2 p. 80–97.
ZAHNOUN A.A., MAKHCHANE M., CHAKIR M., AL KARKOURI J., WATFAE A. 2019. Estimation and cartography the water erosion by integra-tion of the Gavrilovic “EPM” model using a GIS in the Mediterranean watershed: Lower Oued Kert watershed (Eastern Rif, Morocco). International Journal of Advance Research, Ideas and Innovations in Technology. Vol. 5 p. 367–374.
ZAKERINEJAD R., MAERKER M. 2015. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Natural Hazards. Vol. 79 p. 25–50. DOI 10.1007/s11069-015-1700-3.
ZANTER K. 2019. Landsat 8 (L8) data users handbook. Version 5.0. Sioux Falls, SD. EROS pp. 106.
ZEMLJIC M. 1971. Calcul du debit solide – Evaluation de la vegetation comme un des facteurs antierosif [Calculation of the solid flow – Evaluation of the vegetation as one of the anti-erosive factors]. In: International Symposium Interpraevent. Villaco. Vol. 2 p. 379– 391.
ZORN M., KOMAC B. 2008. The response of soil erosion to land-use change with particular reference to the last 200 year (Julian Alps, Western Slovenia). [24th Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management]. [02–06.2008 Bled, Slovenia].

Go to article

Authors and Affiliations

Amer Zeghmar
1
ORCID: ORCID
Nadir Marouf
1
ORCID: ORCID
Elhadj Mokhtari
2
ORCID: ORCID

  1. University of Larbi-Ben-M’hidi, Faculty of Sciences and Applied Sciences, Department of Hydraulic, Laboratory of Functional Ecology and Environment, Laboratory of Natural Resources and Management of Sensitive Environments, PO Box 358, 04000 Oum El Bouaghi, Algeria
  2. University Mohamed Boudiaf M’sila, Faculty of Technology, Department of Hydraulic, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The control of water erosion is an important economic and societal challenge. Reduction of the agronomic potential of the parcels, muddy flows, siltation of dams are harmful consequences that mobilize farmers, water managers, local authorities and scientific researchers. This study focuses on mapping and quantifying seasonal soil losses in the territory of the former Nord-Pas-de- Calais administrative region, using the Revised Universal Soil Loss Equation (RUSLE) which incorporates five factors: rainfall erosivity, soil erodibility, topography, land use and erosion control practices. The seasonal (3-months) time scale is chosen to better account for the parameters governing the soil water erosion, especially rainfall and vegetation cover, that show great asynchronous intra-annual variability. Also, high resolution data concerning agricultural plots allows to evaluate which type of culture are the more subject to soil losses. In Nord-Pas-de-Calais, water erosion occurs almost ubiquitously, but the areas characterized by steep slopes are the most at risk (Artois Hills and Flanders), with loss rates up to 54 t∙ha–1∙y–1. The majority of erosion occurs during fall (46% of the computed annual losses of 1.69∙Mt), on plots left bare after harvest (especially corn and beets crops). The study also demonstrates that extending the intercrop technique over the region, and therefore maintaining a fall and winter cover, could reduce the soil losses by 37%.
Go to article

Authors and Affiliations

Wafae Nouaim
1
ORCID: ORCID
Dimitri Rambourg
2
ORCID: ORCID
Mohamed Merzouki
1
ORCID: ORCID
Abderrazak El Harti
1
ORCID: ORCID
Ismail Karaoui
1
ORCID: ORCID

  1. Faculty of Sciences and Techniques, Team of Remote Sensing and GIS Applied to Geosciences and Environment, University Sultan Moulay Slimane, Av Med V, BP 591 Beni-Mellal 23000, Maroc
  2. Institut Terre et Environnement de Strasbourg, University of Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg Cedex, France
Download PDF Download RIS Download Bibtex

Abstract

Water and wind erosion are the most powerful factors in the decrease of soil fertility and a threat to food security. The study was conducted on the steppe zone in Ukraine (total area of 167.4 thous. km2), including agricultural land (131.6 thous. km2). At the first stage, the modeling of spatial differentiation of water and wind erosion manifestations was carried out to calculate losses of soil (Mg·ha–1) and to determine their degradation. At the second stage, soil-climatic bonitet of zonal soils (points) is carried out to determine their natural fertility (Mg·ha–1). At the third stage, the spatial adjustment of the natural soil fertility to the negative effect of erosion was carried out. This made it possible to calculate crop losses and total financial losses due to water and wind erosion. The integrated spatial modeling showed that about 68.7% of arable land was constantly affected by the combined erosion, in particular the area of low eroded arable land (16.8%), and medium and highly eroded land (22.1%). Due to erodibility of soil, about 23.3% of agricultural land transferred from the category of high and medium quality to medium, low and very low quality, which is caused by the loss of soil fertility of up to 70%, crop losses of up to 1.93 Mg·ha–1 ha–1 and eduction of agricultural income up to 390 USD·ha–1. In the steppe region under the research, gross crop losses from erosion were up to 15.11 thous. Mg·ha–1 (3.05 mln USD). In order to protect soils, improve fertility and increase crop yields in the steppe zone in Ukraine, the following measures were suggested: adaptive and landscape erosion control design with elements of conservation farming in accordance with the spatial differentiation of soil quality and extent of water erosion deflation danger.
Go to article

Authors and Affiliations

Nataliia Dudiak
1
ORCID: ORCID
Vitalii Pichura
1
ORCID: ORCID
Larisa Potravka
1
ORCID: ORCID
Natalia Stratichuk
1
ORCID: ORCID

  1. Kherson State Agrarian and Economic University, Faculty of Fisheries and Nature Management, Stritens'ka str. 23, Kherson, 73006, Ukraine

This page uses 'cookies'. Learn more