Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 25
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A strategic vision to ensure an adequate, safe and secure drinking water supply presents a challenge, particularly for such a small country as Jordan, faced with a critical supply-demand imbalance and a high risk of water quality deterioration. In order to provide sustainable and equitable long-term water management plans for the future, current and future demands, along with available adaptation options should be assessed through community engagement. An analysis of available water resources, existing demands and use per sector served to assess the nation’s historic water status. Taking into account the effect of both population growth and rainfall reduction, future per sector demands were predicted by linear temporal trend analysis. Water sector vulnerability and adaptation options were assessed by engaging thirty five stakeholders. A set of weighed-criterions were selected, adopted, modified, and then framed into comprehensive guidelines. A quantitative ratio-level approach was used to quantify the magnitude and likelihood of risks and opportunities associated with each proposed adaptation measure using the level of effectiveness and severity status. Prioritization indicated that public awareness and training programs were the most feasible and effective adaptation measures, while building new infrastructure was of low priority. Associated barriers were related to a lack of financial resources, institutional arrangements, and data collection, sharing, availability, consistency and transparency, as well as willingness to adapt. Independent community-based watershed-vulnerability analyses to address water integrity at watershed scale are recommended.

Go to article

Authors and Affiliations

Nezar Hammouri
Mohammad Al-Qinna
Mohammad Salahat
Jan Adamowski
Shiv O. Prasher
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the problem of the growing water deficit and the possibility of sustainable development of water resources in rural areas of Central and Eastern Europe (using the example of Poland). It is estimated that the amount of resources in this region is reduced by about 70% compared to the average for Europe. In drought periods it comes to limitation of economic activity, including agriculture. Particular attention was paid to the necessity to extend landscape, underground, and snow retention, as an alternative to dams, which are currently the most popular in lower-order catchments. It has been shown that the construction of small agricultural reservoirs is not always preceded by adequate consultations and pre-design studies, which may result in financial losses and legal problems. Simultaneous use of many alternative forms of retention should be more effective than the implementation of reservoirs. In addition, increasing the hydraulic roughness of the catchments slows down the outflow of products of erosion and contributes to the protection of surface retention structures (maintaining natural and economic usefulness of reservoirs).

Go to article

Authors and Affiliations

Magdalena Patro
Tomasz Zubala
Download PDF Download RIS Download Bibtex

Abstract

Views on the objectives and role of water management have remarkably changed in the last years. The need of a complex water management that would consider all water users including agriculture and natural environment is often underlined. It is pointed out that agriculture and natural environment (including commercial forests) are basic consumers of precipitation water which is not considered in water and economic balances. More and more importance is attributed to the utilisation of waters from catchment basin and to application of non-technical measures of controlling water cycles. A large impact of agro-ecosystems and natural or semi-natural (forests, wetlands) ecosystems on water balance is underlined. This different approach to the problems of water management is expressed e.g. in Water Framework Directive of European Union devoted to surface and ground water protection. The directive attributes a great role to the protection of aquatic and water related ecosystems. More and more often it is realised that the total water resources are equal to the volume of atmospheric precipitation. Water management should involve not only the water in geological aquifers or river channels but also that which is retained in soil profile. Such elements of water balance as spatial distribution, interception, infiltration and recharge of ground water reservoirs, soil retention capacity, surface runoff and evapotranspiration depend largely on land use in a catchment. Through appropriate land use and catchment management, application of rational agro-technical methods, development of small retention, wetland restoration, and hampering water outflow from draining systems one may significantly affect water cycling in a catchment.

Small water resources of Poland, increasing water consumption, climate changes and requirements of environmental protection enforce the implementation of complex methods of water management and search for environmental-friendly methods of limiting economic losses caused by water deficit or excess. Saving water used for economic purposes and agriculture would permit better fulfilment of the needs of natural environment.

Go to article

Authors and Affiliations

Waldemar Mioduszewski
Download PDF Download RIS Download Bibtex

Abstract

BacBinh is a sand dune area located in the southern part of central Vietnam. This area is confronted with a lack of water supply. The project aims to investigate the site for artificial recharge (AR) and the management of aquifer recharge (MAR) in the sand dune area. The geological setting of the area is characterised by ryo-dacitic bedrock, which forms steep isolated hills (up to 300 m a.s.l.) overlain by a Pleistocene-Holocene marine sand dunes plateau (up to 200 m a. s. l.). This is represented by prevailing white fine sand (Pleistocene) and prevailing red sand (Holocene), which occurs extensively in the coastal area. The hydrological and geological conditions are investigated by collecting all existing data of aerial and satellite photos, rainfall statistics, morphological/geological/ and hydrogeological maps for acquisition and interpretation. The field geophysical surveys are carried out for the location of groundwater aquifers to site selection, monitoring and operation of groundwater recharge. Hydrochemical and isotopic characterisation of surface water and groundwater in different periods showed that the sand dunes aquifers, with electrical conductivity ranging from 100 to 400 μS/cm, are composed of different water types, characterised by complex mixing processes. The site chosen for the artificial recharge, where 162 days of pumping tests have been carried out, proved that the use of the bank filtration technique has considerably improved the quality of water, which was originally highly contaminated by E-coli bacteria. The well field developed within the present project is now capable of supplying 220 m3/day of good water quality to the HongPhong community, BacBinh district, which were recurrently affected by severe droughts.
Go to article

Bibliography

[1] P. Bono, R. Gonfiantini, M. Alessio, C. Fiori, L. D’Amelio, Stable isotope (δ18O, δ2H) and Tritium in precipitation: Results and comparison with groundwater perched aquifers in Central Italy. TEC-DOC (IAEA) (2004).
[2] P.J. Dillon, M. Miller, H. Fallowfield, J. Hutson, The potential of riverbank filtration for drinking water supplies in relation to microsystem removal in brackish aquifers. J. Hydrol. 266 (3-4), 209-221 (2002).
[3] P.J. Dillon (Ed.), Management of Aquifer Recharge for Sustainability, A.A. Balkema Publishers, Australia, (2002).
[4] P.J. Dillon, Future Management of Aquifer Recharge, UNESCO-VIETNAM Workshop on Augmenting groundwater resources by Artificial Recharge in South East Asia, HCM city, Dec. 15-17-2004 (2005).
[5] P.J. Dillon, S. Toze, D. Page, J. Vanderzalm, E. Bekele, J. Sidhu, S. Rinck-Pfeiffer, Managed aquifer recharge: rediscovering nature as a leading edge technology. Water Sci. Technol. 62 (10), 2338-2345 (2010). DOI: https://doi.org/10.2166/wst.2010.444
[6] I . Gale, I. Neumann, R. Calow, M. Moench, The effectiveness of Artificial Recharge of Groundwater: a review. Phase 1 Final report R/02/108N, British Geological Survey, (2002).
[7] I . Gale, D.M.J. Macdonald, I. Neumann, R. Calow, Augmenting Groundwater Resources by Artificial Recharge. AGRAR, Phase 2 Inception report, British Geological Survey, (2003).
[8] N.V. Giang, M. Bano, T.D. Nam, Groundwater investigation on sand dunes area in southern part of Vietnam by Magnetic Resonance Sounding. Acta Geophysica 60 (1), 157-172 (2012). DOI: https://doi.org/10.2478/s11600-010-0040-2
[9] N.V. Giang, The role of geophysical techniques for hydrogeological and environmental study in the sand-dunes area in Vietnam. Poster presentation at the IUGG XXIV General Assembly 2-13 July, Perugia, Italy (2007).
[10] N.V. Giang, N. Hida, Study of Hydrological Characteristics and Hydrogeological Conditions for Management of Aquifer Recharge in NW Hanoi Vietnam. Proc. of International Symposium on Efficient Groundwater resources Management, Feb.16-21, Bangkok, Thailand (2009).
[11] N.V. Giang, N.B. Duan, L.C. Khiem, L.N. Thanh, N.Q. Dung, The interpretation of geophysical data for studying hydrogeological characteristics of BacBinh, BinhThuan area. Vietnam J. Earth Sci. 68B (4), 410-422, (2016), (in Vietnamese-Abstract in English).
[12] N.V. Giang, N.B. Duan, L.N. Thanh, N. Hida, Geophysical techniques to aquifer locating and monitoring for industrial zones in North Hanoi, Vietnam. Acta Geophysica 61 (6), 1573-1597 (2013). DOI: https://doi.org/10.2478/s11600-013-0147-8.
[13] N.V. Giang, L.N. Thanh, V.Q. Hiep, N. Hida, Hydrological and hydrogeological characterization of groundwater and river water in the North Hanoi industrial area, Vietnam. Environmental Earth Sciences 71 (11), 4915-4924 (2014). DOI: https://doi.org/10.1007/s12665-014.3086-z.
[14] N.V. Giang, L.B. Luu, T.D. Nam, Determination of water bearing layers on dry sand dune of the Bac Binh-Binh Thuan area by electromagnetic data. Vietnam J. Earth Sci. 30 (4), 472-480 (2008), (in Vietnamese-Abstract in English).
[15] N. Hida, N.V. Giang, Artificial recharge of groundwater in the Rokugo alluvial fan: Experiment of April and September. Proceedings of Japanese Association of Hydrological Sciences (JAHS-21) at Matsumoto, Japan, Oct. 28-29, (2006).
[16] N. Hida, N.V. Giang, M. Kagabu, Experience of Managed Aquifer Recharge Using Basin Method in the Rokugo Alluvial Fan, Northern Japan. Proc. of International Symposium on Efficient Groundwater resources Management, Feb. 16-21, Bangkok, Thailand (2009).
Go to article

Authors and Affiliations

Nguyen Van Giang
1
ORCID: ORCID

  1. BinhDuong University, Faculty of Architecture and Construction, 504 Binhduong Ave., Thu-Dau Mot city, BinhDuong province
Download PDF Download RIS Download Bibtex

Abstract

Forecasts suggest that the freshwater resources available to our civilization will shrink by 30% in the coming two decades. How can we reverse the degradation of water resources and create a balance between the society’s demand for water and the capacity of the hydrosphere?

Go to article

Authors and Affiliations

Maciej Zalewski
Edyta Kiedrzyńska
Joanna Mankiewicz-Boczek
Katarzyna Izydorczyk
Tomasz Jurczak
Paweł Jarosiewicz
Download PDF Download RIS Download Bibtex

Abstract

According to the Water Framework Directive 2000/60 EC, the river basin is the basic unit for integrated water management at the basin level. In this sense, the knowledge of the morphometric parameters of the river takes on special importance. Morphometric analysis helps in understanding the geo-hydrological characteristics of a river basin. Various authors point out that the morphometric analyses of a drainage watershed demonstrate the dynamic equilibrium that has been achieved due to the interaction between matter and energy. The analysis of morphometric parameters also facilitates and helps to understand the hydrological relations of the basin. This paper deals with the morphometric analysis of sub-basins in the Klina River basin which is located in the northeastern part of the Dukagjini depression. To determine the morphometric parameters in the Klina River basin, the digital relief model from the Advanced Land Observation Satellite (ALOS) platform with a resolution of 20 × 20 m and the ArcMap 10.5 software were used. The results reveal that the total number of streams is 753 of which 602 are 1<sup>st</sup> order streams, 119 – 2<sup>nd</sup> order, 23 – 3<sup>rd</sup> order, 6 – 4<sup>th</sup> order, 2 – 5<sup>th</sup> order, and 1 – 6<sup>th</sup> order streams. The mean bifurcation ratio is 3.81, drainage density is 1.52 km∙km<sup>–2</sup>. The data and information presented in this study will be helpful and interesting in the plan of the management of Klina River basin which covers an area of 477 km<sup>2</sup> within which is estimated to live about 100,000 inhabitants.

Go to article

Authors and Affiliations

Hazir Çadraku
1
ORCID: ORCID
Xhesika Hasa
2

  1. University for Business and Technology, Faculty of Civil Engineering and Infrastructure, Lagjja Kalabria, 10000 Prishtine, Republic of Kosovo
  2. Kosovo Energy Corporation J.S.C., Department of Geodesy, Prishtine, Republic of Kosovo
Download PDF Download RIS Download Bibtex

Abstract

The Water Framework Directive (WFD), whose basic aim was to create a legal back-ground for water bodies’ protection, undoubtedly affects all economic sectors. Being a specific and distinctly different water user, agriculture will have the greatest share in the implementation of WFD out of all sectors of national economy. This results from its special character (60% of the country area used by agriculture), large volume of water consumed by evapotranspiration, diffuse pollution etc. Implementation of WFD will call for undertaking of many activities to restrict an unfavourable im-pact of agriculture on water resources and water related ecosystems. It is assumed that agriculture should also protect water resources. Accomplishment of this task imposes significant changes in the land use of river basins. Water management can be an essential factor deciding about the sustainable development of rural areas and biological diversity of agricultural landscape. Actions undertaken so far to implement the WFD are mainly limited to the protection of water quality from agricultural pol-lution. It is also necessary to undertake implementation of other aims of WFD. This refers especially to the provision of good hydromorphological status of water bodies, protection of water related eco-systems and effective water use.

Go to article

Authors and Affiliations

Waldemar Mioduszewski
Download PDF Download RIS Download Bibtex

Abstract

Polish water resources depend on precipitations, which are variable in time and space. In dry years the water balance is negative in central parts of Poland but sudden thaws and downfalls may result in periodical water excess and dangerous floods almost in the entire country. The retention capacity of artificial reservoirs in Poland permits to store only 6% of the average annual runoff, which is commonly considered insufficient. Another method to increase retention is soil water con-trol. About fifty percent of soils in Poland consist of light and very light sandy soils with low water capacity. Loams and organogenic soils cover approximately 25% and 8.5% area of the country, re-spectively. Almost half of agricultural lands (48%) have relatively good water conditions, but the rest requires soil water control measures. An increase of the soil water content could be achieved by changes of soil properties, water table control and soil water management. Modernization and recon-struction of drainage and irrigation systems, which were built mainly in the period 1960–1980, is needed.

Go to article

Authors and Affiliations

Edward Pierzgalski
Jerzy Jeznach
Download PDF Download RIS Download Bibtex

Abstract

Irrigation in Croatia was until recently a neglected measure in food production, especially in continental part of the country. Development of drainage system in the last fifty years was more important due to the problems caused by floods and excess water in the fields. In the last decade the hydrological regime has been changed and drought events became as frequent as flood events, causing even more damage. Future development of agriculture in the northern counties of Croatia depends on the introduction of new, profitable crops which imply irrigation as an essential factor of future social and economic growth.

The first step in the implementation of irrigation was the development of National Irrigation Master

Plan as a framework for future activities.

According to the recommendations of the National Master Plan all counties have created County Irrigation Plans considering local natural conditions, social and economic background.

This paper is going to present how is that process of integrated water resources management developing in the continental part of Croatia on the example of Osijek County Irrigation Plan located in the Danube river basin.

Go to article

Authors and Affiliations

Lidija Tadić
Download PDF Download RIS Download Bibtex

Abstract

The proper management of water resources is currently an important issue, not only in Poland, but also worldwide. Water resource management involves various activities including monitoring, modelling, assessment and designing the condition and extent of waters sources. The efficient management of water resources is essential, especially in rural areas where it ensures greater stability and efficiency of production in all sectors of the economy and leads to the well-being of the ecosystem.
The performed analyses have demonstrated that the time of origin of the cadastral data defining the course of water boundaries has a significant effect on their quality. Having analysed the factors (timeliness, completeness, redundancy) used to assess the quality of cadastral data, their clear trend of changes in time was noticed. Thus, it is possible to specify the estimated degree of quality of cadastral data defining the course of watercourse boundaries only based on the information about the method, time and area of data origin in the context of the former partition sector.
This research paper presents an original method of assessing the quality of spatial data that is used to determine the course of the shoreline of natural watercourses with unregulated channels flowing through agricultural land.
The research has also demonstrated that in order to increase the efficiency of work, the smallest number of principal factors should be selected for the final analysis. Limiting the analyses to a smaller number of factors does not affect the final result, yet it definitely reduces the amount of work.
Go to article

Authors and Affiliations

Anita Kwartnik-Pruc
1
ORCID: ORCID
Aneta Mączyńska
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, al. Adama Mickiewicza 30, 30-059 Kraków
  2. Geodetic and Construction Company “Geo-bud”, 26-220 Stąporków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In Vietnam, drought has been occurring persistently and in very complicated patterns, with a great impact on the water, energy, and food security nexus and regional development sustainability. The uncertainty surrounding annual water resources in combination with the low reliability of interbasin water transfer (IBWT) operations is the key driver of water deficits in several affected regions. This study aims to assess the impacts of four big IBWT projects in the Central Highlands of Vietnam, based on a proposed matrix of five evaluation criteria to quantify related impacts and to draw out lessons learned for future development of IBWT. The proposed criteria matrix was formulated on the basis of intensive reviews of IBWT assessments worldwide and relevant Vietnamese laws in force. The impacts were analysed and quantified mainly based on assessment of their operational database and water balance simulations for donor and recipient river basins in current and future states. The results show that the studied IBWT projects did not fully satisfy the proposed criteria set, all project did not meet the criteria of benefit sharing and information transparency; noticeably the Don Duong project fulfilled only one from five. Four lessons were determined for proper planning in river basins, flexibility in system design for unknown future, inadequate environmental impact assessment and delay in enactment of policies for IBWT project management. The results provide sound knowledge to revise the existing projects in the Central Highlands and procedures for impact assessment and approval of new IBWT systems.
Go to article

Authors and Affiliations

Dang Thi Kim Nhung
1
ORCID: ORCID
Nguyen Van Manh
1
ORCID: ORCID
Nguyen Quang Kim
2

  1. Institute of Water Resources Planning, Division for Water Resources Planning for South Central and Central Highland Region, 162A Tran Quang Khai, Hoan Kiem, 100000, Hanoi, Vietnam
  2. Thuy Loi University (TLU), Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of this study is to determine the optimum water consumption for achieving water savings and obtaining good yields in cotton production, which has been expanding in Central Asia and Turkmenistan since the 1960s. In the last few decades, water resources in the region have been difficult to access, due to the expansion of agricultural activity and population growth. The oscillation of the amount of water released from dams of the Amudarya River to obtain energy for the upper countries in the winter season has been causing crises in countries of Central Asia.
An experiment was carried out in an agricultural field at a cotton research centre in the Yolöten district of Turkmenistan. The experiment led to the observation that it is possible to achieve higher efficiency and lower water consumption in cotton production. At the same time, the water savings that can be achieved as a result of using the drip irrigation method in cotton production throughout the country have been calculated. The calculations have provided the basis for recommending irrigation as a solution to the problems in question.
Go to article

Bibliography

ALIMOVA M. 2021. Agropromyshlennyy kompleks [Agro-industrial complex]. Neytral’nyy Turkmenistan. Gosudarstvennaya gazeta Turkmenistana. No. 49 (29742) 25.02.2021 p. 4.
BERDIMYRADOV D. 2014. Ýyllyk hasabat [Annual report]. Mary welaýatynyň Ýolöten şäherindäki ylmy-tohumçylyk merkezi. Yoloten pp. 6.
IBRAGIMOV N., EVETT S.R., ESANBEKOV Y., KAMILOV B.S., MIRZAEV L., LAMERS J.P. 2007. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agricultural Water Management. Vol. 90(1–2) p. 112–120. DOI 10.1016/j.agwat.2007.01.016
KULMEDOV B., SHCHERBAKOV V.I. 2014. Ispol’zovaniye kapel’nogo orosheniya sel’skokhozyaystvennykh zemel’ v basseyne reki Amudar’ya. V: Tekhnologii ochistki vody «TEKHNOVOD- 2014». Materialy VIII mezhdunarodnoy nauchno-prakticheskoy konferentsii «TEKHNOVOD» [Use of drip irrigation of agri-cultural lands in the Amu Darya river basin. In: Water purification technologies “TECHNOVOD-2014”. Materials of the VIII International Scientific and Practical Conference “TECHNOVOD”]. 23–24.10.2014 Sochi. Novocherkatstsk. Lik p. 29–33.
KURTOVEZOV G.D., TAGANOV CH.K., KURTOVEZOV B. 2019. Rekomendatsii po proyektirovaniyu sistem kapel’nogo orosheniya sel’skokho-zyaystvennykh kul’tur, vinogradnikov, sadov i lesnykh nasazhde-niy dlya usloviy Turkmenistana [Recommendations for the design of a drip irrigation system for crops, vineyards, orchards and forest plantations for the conditions of Turkmenistan]. Ashgabat pp. 242.
LIU S., LUO G., WANG H. 2020. Temporal and spatial changes in crop water use efficiency in Central Asia from 1960 to 2016. Sustainability. Vol. 12(2), 572 pp. 18. DOI 10.3390/su12020572.
NARBAYEV M., ISMAILOVA G.K., NARBAYEVA K.T. 2014. Ekologicheskiye voprosy oroshayemogo zemledeliya v Tsentral’noy Azii. Mezh-dunarodnyy forum «Inzhenernoye obrazovaniye i nauka v XXI veke: Problemy i perspektivy» posvyashchennoy [Environmental issues of irrigated land in Central Asia. International Forum “Engineering Education and Science in the XXI Century: Problems and Prospects”]. 22–24.10.2014. Almaty. Kazakhskiy natsional’nyy tekhnicheskiy universitet p. 627–633.
REDDY J.M., MUHAMMEDJANOV S., JUMABOEV K., ESHMURATOV D. 2012. Analysis of cotton water productivity in Fergana Valley of Central Asia. Agricultural Sciences. Vol. 3(6) p. 822–834. DOI 10.4236/as.2012.36100.
SHCHERBAKOV V.I., KULMEDOV B. 2017. Ratsional’noye ispol’zovaniye i okhrana vodnykh resursov basseyna reki Amudar’ya. V: Yakovlevskiye chteniya: sbornik dokladov XII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, posvyashchennoy pamyati akademika
RAN S.V. Yakovleva [Rational use and protection of water resources of the Amu Darya river basin. In: Yakovlev Readings: A collection of reports of the XII International Scientific and Technical Conference dedicated to the memory of Academician of the Russian Academy of Sciences S.V. Yakovlev]. Moscow. NIU MGTSU p. 241–247. STANCHIN I., LERMAN Z. 2017. Wheat production in Turkmenistan: Reality and expectations. In: The Eurasian wheat belt and food security: Global and regional aspects. Eds. S.G. Paloma, S. Mary, S. Langrell, P. Ciaian. Cham. Springer p. 215–228. Turkmen Stat 2020. Türkmenistanyň ýyllyk statistik neşiri 2019 [Statistical yearbook of Turkmenistan 2019]. Ashgabat. Türkme-nistanyň Statistika baradaky döwlet komiteti pp. 182.
UNDP, WHO 2009. The Energy Access Situation In Developing Countries. A Review Focusing on the Least Developed Countries and Sub-Saharan Africa [online]. New York, NY. United Nations Development Programme, World Health Organization. [Access 28.10.2019] Available at: http://www.undp.org/content/dam/ undp/library/Environment%20and%20Energy/Sustainable%20Energy/energy-access-situation-in-developing-countries.pdf
ZHUPANKHAN A., TUSSUPOVA K., BERNDTSSON R. 2017. Could changing power relationships lead to better water sharing in Central Asia? Water. Vol. 9(2), 139. DOI 10.3390/w9020139.
ZONN I.S., KOSTIANOY A.G. 2013. The Turkmen Lake Altyn Asyr and water resources in Turkmenistan. Ser. The Handbook of Environmental Chemistry. Vol. 28. Berlin, Heidelberg Springer. ISBN 978-3-642-38607-7 pp. XII+123.
Go to article

Authors and Affiliations

Begmyrat Kulmedov
1
ORCID: ORCID
Vladimir I. Shcherbakov
2
ORCID: ORCID

  1. Nile University of Nigeria, Department of Civil Engineering, Plot 681, Cadastral Zone C-OO, Research & Institution Area, Jabi Airport Bypass, Abuja FCT, 900001, Nigeria
  2. Voronezh State Technical University, Department of Hydraulics, Water Supply and Water Disposal, Voronezh, Russia
Download PDF Download RIS Download Bibtex

Abstract

The study covered water resources of two mountain streams in the Polish Carpathians. These were the Biała Woda and Czarna Woda streams, the catchments of which are adjacent to each other. Water flows in both streams were measured during the hydrological years from 2006 to 2020. Next, water outflows from the catchments were calculated. The study aimed to determine differences in the water resources of those catchments in a very small mountainous area. The study showed quantitative similarity in water resources in the entire multi-annual period but at the same time large differences in shorter periods. Instantaneous and daily outflows showed the largest differences, but differences in annual outflows of up to 20% were also recorded. Therefore, hydrological data from operational cross-sections to assess water resources of neighbouring uncontrolled watercourses should cover multi-annual mean values. It was found that during periods of increased runoff (from melting snow or precipitation), the outflow from the Biała Woda catchment was much larger, while during rain-free periods, the outflow from the Czarna Woda catchment prevailed. All short- term flood like outflows were at least several tens of per cent higher in the Biała Woda catchment. The higher retention capacity of the Czarna Woda catchment can be attributed to the land use (mainly forest areas). The results can be used for modelling catchments of similar parameters and determining their retention capacity.
Go to article

Authors and Affiliations

Agnieszka W. Kowalczyk
1
ORCID: ORCID
Andrzej Jaguś
2

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland
  2. University of Bielsko-Biala, Faculty of Materials, Civil and Environmental Engineering, Bielsko-Biała, Poland
Download PDF Download RIS Download Bibtex

Abstract

The exceptionally high spatial-temporal variability of the river runoff and the significance of its transboundary component considerably worsen the problem of the water supply of the republic. Due to the disadvantageous geographical location in the lower reaches of transboundary river basins, the Republic of Kazakhstan is largely dependent on water economy activities taking place in neighbouring countries. In the article the modern change of the resources of river runoff in Kazakhstan, taking into account climatic and anthropogenic influences is considered. For the assessment of the impact of economic activities on the river runoff and changes in climatic-related runoff, the complex of integral methods was used, and appropriate methodologies were developed. The obtained results of the modern influence of a complex of factors, as well as their significance for the future (till 2030), can be used for the development of scientifically based solutions for sustainable management and protection of water resources. An assessment of the anthropogenic activity of this study shows that the water resources of the river runoff of the Republic of Kazakhstan have decreased by 16.0 km 3∙y –1. According to our forecasts, there will be a further decrease in the water resources of the republic due to the expected decrease in transboundary flow to 87.1 km 3∙y –1 by 2030, in dry years less than 50.0 km 3∙y –1. We propose a set of measures to prevent the negative impact of possible reduction of river runoff resources in the future in the water basins of Kazakhstan.
Go to article

Authors and Affiliations

Aisulu Tursunova
1
ORCID: ORCID
Akhmetkal Medeu
1
ORCID: ORCID
Sayat Alimkulov
1
ORCID: ORCID
Assel Saparova
2
ORCID: ORCID
Gaukhar Baspakova
1 3
ORCID: ORCID

  1. Institute of Geography and Water Security of the Ministry of Education of the Republic of Kazakhstan, Kabanbai batyr/Pushkin St, 67/99, Almaty, 050010, Republic of Kazakhstan
  2. Satbayev University, Satpaev St, 22a, Almaty, 050013, Republic of Kazakhstan
  3. Kazakh National Agrarian Research University, Faculty of Water, Land and Forest Resources, Abai Ave, 8, Almaty, 050010, Republic of Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the design and construction of the Włocławek water barrage operating on Vistula River for more than 50 years. The construction of the barrage and the damming up of the Vistula River caused changes in the hydraulic and thermal regime of a fifty-kilometre long stretch of the Vistula River, resulting in some ecological changes as well. Some ecologists consider these changes as eminently unfavourable and call for the dismantling of the barrage, but not all experts are of the same opinion as the construction may be regarded as a important technical, economic and social achievement, primarily because of the electricity produced, which is renewable and ecologically clean.
Go to article

Authors and Affiliations

Wojciech Majewski
1

  1. Instytut Budownictwa Wodnego PAN w Gdańsku
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the paper is to analyze the spatial variability of precipitation in Poland in the years 1981–2010. The av-erage annual rainfall was 607 mm. Precipitation in Poland is characterized by high spatial and temporal variability. The lowest annual precipitation was recorded in the central part of the country, where they equaled 500 mm. The highest annual precipitation totals were determined in the south, equaling 970 mm. The average precipitation in the summer half-year is 382 mm (63% of the annual total). On the basis of data from 53 climate stations, maps were made of the spatial distribution of precipitation for the period of the year and winter and summer half-year. The kriging method was used to map rainfall distribution in Poland. In the case study, cross-validation was used to compare the prediction performances of three periods. Kriging, with exponential type of semivariogram, gave the best performance in the statistical sense. Their application is justices especially in areas where landform is very complex. In accordance with the assumptions, the mean prediction error (ME), mean standardized prediction error (MSE), and root mean-square standardized prediction error (RMSSE) values are approximately zero, and root-mean-square prediction error (RMSE) and average standard error (ASE) reach values well below 100.

Go to article

Authors and Affiliations

Antoni Grzywna
ORCID: ORCID
Andrzej Bochniak
Agnieszka Ziernicka-Wojtaszek
ORCID: ORCID
Joanna Krużel
Krzysztof Jóźwiakowski
Andrzej Wałęga
Agnieszka Cupak
ORCID: ORCID
Agnieszka Mazur
Radomir Obroślak
Artur Serafin
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This research addresses the growing complexity and urgency of climate change’s impact on water resources in arid regions. It combines advanced climate modelling, machine learning, and hydrological modelling to gain profound insights into temperature variations and precipitation patterns and their impacts on the runoff. Notably, it predicts a continuous rise in both maximum and minimum air temperatures until 2050, with minimum temperatures increasing more rapidly. It highlights a concerning trend of decreasing basin precipitation. Sophisticated hydrological models factor in land use, vegetation, and groundwater, offering nuanced insights into water availability, which signifies a detailed and comprehensive understanding of factors impacting water availability. This includes considerations of spatial variability, temporal dynamics, land use effects, vegetation dynamics, groundwater interactions, and the influence of climate change. The research integrates data from advanced climate models, machine learning, and real-time observations, and refers to continuously updated data from various sources, including weather stations, satellites, ground-based sensors, climate monitoring networks, and stream gauges, for accurate basin discharge simulations (Nash–Sutcliffe efficiency – NSE RCP2.6 = 0.99, root mean square error – RMSE RCP2.6 = 1.1, and coefficient of determination R 2 RCP2:6= 0.95 of representative concentration pathways 2.6 (RCP)). By uniting these approaches, the study offers valuable insights for policymakers, water resource managers, and local communities to adapt to and manage water resources in arid regions.
Go to article

Authors and Affiliations

Barno S. Abdullaeva
1
ORCID: ORCID

  1. Tashkent State Pedagogical University, Vice-Rector for Scientific Affairs, 27 Bunyodkor Ave, 100070, Tashkent, Uzbekistan
Download PDF Download RIS Download Bibtex

Abstract

Rainfall in the Lake Tana basin is highly seasonal and the base flow contribution is also low resulting in the need for reservoirs to meet the agricultural demand during the dry season. Water demand competition is increasing because of in-tense agricultural production. The objective of this study is to develop water balance models. The Mike Basin model has been selected for water allocation modelling and identifying potential changes needed to the existing water allocation scheme to reduce the stress due to increased water demand. The study considers baseline and future development scenarios. The construction of new dams results in two competing effects with respect to evaporation loss. The first effect is increased evaporation from new reservoirs, while the other is reduced evaporation from the Lake Tana as a result of a decreased sur-face area of the lake and reduced inflow of water to the lake. Once a dam is built, there will be an additional free water sur-face area and more evaporation loss. In dry months from January to May, the irrigation water demand deficit is up to 16 Mm3. It is caused by reservoirs built in the basin, which reduce the inflow to the Lake Tana. The inflow varies between wet and dry months, and there is more water flow in wet months (July, August and September) and reduced flow in dry months because of the regulatory effects produced by the reservoirs.
Go to article

Bibliography

ADSWE, LUPESP 2015. Hydrology and water resource assessment in Tana sub basin [online]. Vol. 3. Bahir Dar, Ethiopia. Amhara National Regional State, BoEFPLAU. [Access 23.11.2015]. Available at: https://mahiderzewdie.files.wordpress.com/2015/08/livestock-final-draft.pdf
ASCE 1993. Criteria for evaluation of watershed models. American Society of Civil Engineering. Journal of Irrigation and Drainage Engineering. Vol. 119(3) p. 429–442. DOI 10.1061/(ASCE)0733-9437(1993)119:3(429).
EL-RAEY M., EL-QUOSY D.H., EL-SHAER M., EL-KHOLY O.A., SOLIMAN A. 1995. Egypt: Inventory and mitigation options, and vulnerability and adaptation assessment. CSP Interim Report – Egypt, U.S. Country Studies Program.
HASHIMOTO T., STENDINGER J.R., LOUCKS D.P. 1982. Reliability, resiliency, and vulnerability criteria for water resources system performance evaluation. Water Resources Research. Vol. 18. No. 1 p. 14–20.
JHA M.K., GUPTA A.D. 2003. Application of Mike Basin for water management strategies in a watershed. Water International. Vol. 28. No. 1 p. 27–35. DOI 10.1080/02508060308691662.
KEBEDE S., TRAVI Y., ALEMAYEHU T., MARC V. 2006. Water balance of Lake Tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. Journal of Hydrology. Vol. 316 p. 233–247.
LEGATES D.R., MCCABE G.J. Jr. 1999. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Resources. Vol. 35(1) p. 233–241. DOI 10.1029/1998WR900018.
MACDONALD M. 2004. Koga irrigation project interim report. Addis Ababa, Ethiopia. Ministry of Water Resource.
MORIASI D.N., ARNOD J.G., VAN LIEW M.W., BINGNER R.L., HARME R.D., VEITH T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50(3) p. 885−900.
MoWR 2009. Growth corridor for Tana and Beles Sub-Basin: Endowment, potential and constraints. Vol. I. Main Text. Addis Ababa. Ministry of Water Resource.
NASH J.E., SUTCLIFFE J.V. 1970. River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology. Vol. 10(3) p. 282–290.
PASTOR A.V., LUDWIG F., BIEMANS H., HOFF H, KABAT P. 2014. Accounting for environmental flow requirements in global water assessments. Hydrology and Earth System Sciences. Vol. 18 p. 5041–5059. DOI 10.5194/hess-18-5041-2014.
SETEGN S.G., SRINVASAN R., DARGAHI B. 2008. Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. The Open Hydrology Journal. Vol. 2 p. 49–62.
SMEC 2008. Hydrological study of the Tana-Beles Sub-Basin main Report. Addis Ababa, Ethiopia. Ministry of Water Resources. Melbourne, Australia. SMEC (Snowy Mountains Engineering Corporation) pp. 110.
Studio Pietrangli 1990. Tana Beles project. Part 2. Chara Chara Weir General Report. Addis Ababa, Ethiopia.
WALE A. 2008. Hydrological Balance of Lake Tana, Upper Blue Nile basin, Ethiopia [online]. MSc thesis. Enschede. ITC, Netherlands. [Access 23.11.2015]. Available at: https://webapps.itc.utwente.nl/librarywww/papers_2008/msc/wrem/wale.pdf
WALKER G.R., ZHANG L. 2001. Plot-scale models and their application to recharge studies. In: Studies in catchment hydrology: The basics of recharge and discharge. Eds. L. Zhang, G.R. Walker. Melbourne. CSIRO Publishing. DOI 10.1071/ 9780643105423.
YOHANNES D. 2007. Remote sensing based assessment of water resource potential for Lake Tana [online]. MSc Thesis. Addis Ababa University Civil Engineering. [Access 23.11.2015]. Available at: http://etd.aau.edu.et/handle/123456789/2719

Go to article

Authors and Affiliations

Asegdew G. Mulat
1

  1. Bahir Dar University, Bahir Dar Institute of Technology, Faculty of Civil and Water Resource Engineering, P.O. Box. 26, Bahir Dar, Ethiopia
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the research is to summarise quantitative characteristics and to analyse the spatial distribution of artificial water bodies as anthropogenic fragmentation elements of medium and small rivers within the Dnipropetrovsk Region, Ukraine. The paper uses current data pertaining to existing reservoirs and mineralisation of water in rivers. Comparison included quantitative characteristics, water surface area, and the volume water in ponds and reservoirs. It has been established that although the total ratio was 97% for ponds to 3% for reservoirs, whereas their water surface area 48%, and the volume of water stored only 23% of the total resources. The paper shows the inexpediency and low efficiency of using ponds as water reservoirs feeding small rivers. Increasing the number of ponds in the river basin has a negative impact on the quality of water resources, in particular, by increasing water mineralisation – total dissolved solids ( TDS). Depending on the river, the following indicator of river basin fragmentation has been determined: 6–20 reservoirs per 100 km2 of the river catchment area, and on average 18–36 ponds and reservoirs are built for every 100 km of the river in relation to the length of the hydrographic network. It has shown the regularity of growing water mineralisation due to the fragmentation of rivers by a large number of artificial reservoirs. A strong correlation between regulation and fragmentation of river basins has been established (coefficient of determination R 2 ranges from 0.72 to 0.91). It proves the possibility to estimate the degree of change (increase) of water mineralisation based on the water flow coefficient K w and the river fragmentation coefficient K s fr in the Dnipropetrovsk Region. The paper offers ways of further research for planning and implementation of a water management strategy concerning ecologically safe levels of water use in small and medium-sized river basins.
Go to article

Authors and Affiliations

Hennadii Hapich
1
ORCID: ORCID
Vasyly Andrieiev
2
ORCID: ORCID
Volodymyr Kovalenko
1
ORCID: ORCID
Tatiana Makarova
1
ORCID: ORCID

  1. Dnipro State Agrarian and Economic University, Faculty of Water Management Engineering and Ecology, Serhiia Yefremova St, 25, Dnipro, Dnipropetrovs’ka oblast, 49600, Ukraine
  2. Institute for Nature Management Problems and Ecology, Dnipro, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Changes of land use, population and climate cause spatial and temporal changes in renewable water resources. For better understanding of the changes and effective management of water resources, hydrological investigations in river catchments are carried out around the world. A special investigation involves a study of hydrological processes in small site-specific catchments. The aim of the study is to analyse three characteristic river flows of a small lowland river on the basis of field surveys over two multiannual periods and to evaluate the applicability of indirect methods for determining characteristic flows in the catchment. Hydrological studies in the small agricultural catchment of the Mławka River, located in the Mławka Hills mesoregion, a part of the North Mazovian Lowland macro-region, have continued since 1966. The recorded data were used to determine daily flows and selected characteristic flows for multiannual periods of 1966–1990 and 1991–2020. To determine characteristic flows with indirect methods, three regional formulae and isorea methods were used. The study showed a decrease in renewable water resources over the period. In the multiannual periods, the average flow at the gauge station of Mławka River decreased by 15.6%. The outflow coefficient decreased from 0.303 to 0.265. The minimum annual flows also decreased by 29.1% and annual maximum flows showed an average increase by 19.7%. The use of indirect methods to determine the mean flow yielded results that converged with those from the second multiannual period.
Go to article

Authors and Affiliations

Karolina Kolasińska
1
ORCID: ORCID
Bartosz Kierasiński
1
ORCID: ORCID
Katarzyna Karpińska
1
ORCID: ORCID
Tomasz Szymczak
1 2
ORCID: ORCID
Kazimierz Banasik
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – State Research Institute, Department of Technology, Falenty, Poland
  2. Retired
Download PDF Download RIS Download Bibtex

Abstract

In the discussion of water quality control, the first and most effective parameter that affects other variables and water quality parameters is the temperature situation and water temperature parameters that control many ecological and chemical processes in reservoirs. Additionally, one of the most important quality parameters studied in the quality of water resources of dams and reservoirs is the study of water quality in terms of salinity. The salinity of the reservoirs is primarily due to the rivers leading into them. The control of error in the reservoirs is always considered because the outlet water of the reservoirs, depending on the type of consumption, should always be standard in terms of salinity. Therefore, in this study, using the available statistics, the Ce-Qual-W2 two-dimensional model was used to simulate the heat and salinity layering of the Latyan Dam reservoir. The results showed that with warming and shifting from spring to late summer, the slope of temperature changes at depth increases and thermal layering intensifies, and a severe temperature difference occurs at depth. The results of sensitivity analysis also showed that by decreasing the wind shear coefficient (WSC), the reservoir water temperature increases, so that by increasing or decreasing the value of this coefficient by 0.4, the average water temperature by 0.56°C changes inversely, and the results also show that by increasing or decreasing the value of the shade coefficient by 0.85, the average water temperature changes by about 7.62°C, directly.
Go to article

Bibliography

AFSHAR A., KHOSRAVI M., MOLAJOU A. 2021. Assessing adaptability of cyclic and non-cyclic approach to conjunctive use of ground-water and surface water for sustainable management plans under climate change. Water Resources Management. Vol. 35 p. 3463– 3479. DOI 10.1007/s11269-021-02887-3.

AZADI F., ASHOFTEH P.S., LOÁICIGA H.A. 2019. Reservoir water-quality projections under climate-change conditions. Water Resources Management. No. 33(1) p. 401–421. DOI 10.1007/s11269-018-2109-z.

CAISSIE D. 2006. The thermal regime of rivers: a review. Freshwater Biology. Vol. 51(8) p. 1389–1406. DOI 10.1111/j.1365-2427.2006.01597.x.

CHENG Y., VOISIN N., YEARSLEY J.R., NIJSSEN B. 2020. Reservoirs modify river thermal regime sensitivity to climate change: a case study in the southeastern United States. Water Resources Research. Vol. 56(6), e2019WR025784. DOI 10.1029/2019WR025784.

DEBELE B., SRINIVASAN R., PARLANGE J.Y. 2008. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling & Assessment. Vol. 13(1) p. 135–153. DOI 10.1007/s10666-006-9075-1.

DELIMAN P.N., GERALD J.A. 2002. Application of the two-dimensional hydrothermal and water quality model, CE-QUAL-W2, to the Chesapeake Bay–Conowingo Reservoir. Lake and Reservoir Management. Vol. 18(1) p. 10–19. DOI 10.1080/07438140209353925.

DOÑA C., SÁNCHEZ J.M., CASELLES V., DOMÍNGUEZ J.A., CAMACHO A. 2014. Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 7(5) p. 1632–1641. DOI 10.1109/JSTARS.2014.2301295.

HAMILTON D.P., SCHLADOW S.G. 1997. Prediction of water quality in lakes and reservoirs. Part I – Model description. Ecological Modelling. Vol. 96(1–3) p. 91–110. DOI 10.1016/S0304-3800(96)00062-2.

HENRY R. 1993. Thermal regime and stability of Jurumirim reservoir (Paranapanema River, Sao Paulo, Brazil). Internationale Revue der gesamten Hydrobiologie und Hydrographie. Vol. 78(4) p. 501–511. DOI 10.1002/IROH.19930780407.

HUA R., ZHANG Y. 2017. Assessment of water quality improvements using the hydrodynamic simulation approach in regulated cascade reservoirs: A case study of drinking water sources of Shenzhen, China. Water. Vol. 9(11) p. 825–839. DOI 10.3390/w9110825.

KHODABANDEH F., DARMIAN M.D., MOGHADDAM M.A., MONFARED S.A.H. 2021. Reservoir quality management with CE-QUAL-W2/ANN surrogate model and PSO algorithm (case study: Pishin Dam, Iran). Arabian Journal of Geosciences. Vol. 14(5) p. 1–18. DOI 10.1007/s12517-021-06735-x.

LITVINOV A.S., ZAKONNOVA A.V. 2012. Thermal regime in the Rybinsk Reservoir under global warming. Russian Meteorology and Hydrology. Vol. 37(9) p. 640–644. DOI 10.3103/S1068373912090087.

MELO D.S., GONTIJO E. S., FRASCARELI D., SIMONETTI V.C., MACHADO L.S., BARTH J.A., ... FRIESE K. 2019. Self-organizing maps for evaluation of biogeochemical processes and temporal variations in water quality of subtropical reservoirs. Water Resources Research. Vol. 55(12) p. 10268–10281. DOI 10.1029/2019WR025991.

MOHSENI-BANDPEI A., MOTESADDI S., ESLAMIZADEH M., RAFIEE M., NASSERI M., NAMIN M.M., ... RIAHI S.M. 2018. Water quality assessment of the most important dam (Latyan dam) in Tehran, Iran. Environmental Science and Pollution Research. Vol. 25(29) p. 29227–29239. DOI 10.1007/s11356-018-2865-6.

MOLAJOU A., AFSHAR A., KHOSRAVI M., SOLEIMANIAN E., VAHABZADEH M., VARIANI H.A. 2021. A new paradigm of water, food, and energy nexus. Environmental Science and Pollution Research. DOI 10.1007/s11356-021-13034-1.

NOURANI V., ROUZEGARI N., MOLAJOU A., BAGHANAM A.H. 2020. An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. Journal of Hydrology. Vol. 587, 125018. DOI 10.1016/j.jhydrol.2020.125018.

OSTFELD A., SALOMONS S. 2005. A hybrid genetic – instance based learning algorithm for CE-QUAL-W2 calibration. Journal of Hydrology. Vol. 310(1–4) p. 122–142. DOI 10.1016/j.jhy-drol.2004.12.004.

SCHLADOW S.G., HAMILTON D.P. 1997. Prediction of water quality in lakes and reservoirs: Part II – Model calibration, sensitivity analysis and application. Ecological Modelling. Vol. 96(1–3) p. 111–123. DOI 10.1016/S0304-3800(96)00063-4.

SKOWRON R., PIASECKI A. 2016. Dynamics of the daily course of water temperature in Polish lakes. Journal of Water and Land Development. No. 31 p. 149–156. DOI 10.1515/jwld-2016-0046.

WANG S., QIAN X., HAN B.P., LUO L.C., HAMILTON D.P. 2012. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China. Water Research. Vol. 46(8) p. 2591–2604. DOI 10.1016/j.watres.2012.02.014.

WANG X., ZHOU Y., ZHAO Z., WANG L., XU J., YU J. 2019. A novel water quality mechanism modeling and eutrophication risk assessment method of lakes and reservoirs. Nonlinear Dynamics. Vol. 96(2) p. 1037–1053. DOI 10.1007/s11071-019-04837-6.

WU Z., WANG X., CHEN Y., CAI Y., DENG J. 2018. Assessing river water quality using water quality index in Lake Taihu Basin, China. Science of the Total Environment. Vol. 612 p. 914–922. DOI 10.1016/j.scitotenv.2017.08.293.

YANG Y., DENG Y., TUO Y., LI J., HE T., CHEN M. 2020. Study of the thermal regime of a reservoir on the Qinghai-Tibetan Plateau, China. PloS ONE. Vol. 15(12), e0243198. DOI 10.1371/journal.pone.0243198.

ZEINIVAND H., DE SMEDT F. 2009. Hydrological modeling of snow accumulation and melting on river basin scale. Water Resources Management. Vol. 23(11) p. 2271–2287. DOI 10.1007/s11269-008-9381-2.

ZHI W., FENG D., TSAI W.P., STERLE G., HARPOLD A., SHEN C., LI L. 2021. From hydrometeorology to river water quality: Can a deep learning model predict dissolved oxygen at the continental scale? Environmental Science & Technology. Vol. 55(4) p. 2357–2368. DOI 10.1021/acs.est.0c06783.
Go to article

Authors and Affiliations

Tzu-Chia Chen
1
ORCID: ORCID
Shu-Yan Yu
1
Chang-Ming Wang
1
Sen Xie
1
Hanif Barazandeh
2

  1. International College, Krirk University, Bangkok, 3 Ram Inthra Rd, Khwaeng Anusawari, Khet Bang Khen, Krung Thep Maha Nakhon 10220, Thailand
  2. Ferdowsi University of Mashhad, Iran
Download PDF Download RIS Download Bibtex

Abstract

The work focused on forecasting changes in lake water level. The study employed the Triple Diagram Method (TDM) using geostatistical tools. TDM estimates the value by information from an earlier two periods of observation, refers as lags. The best results were obtained for data with an average a 1-week lag. At the significance level of 1σ, a the forecast error of ±2 cm was obtained. Using separate data for warm and cold months did not improve the efficiency of TDM. At the same time, analysis of observations from warm and cold months explained trends visible in the distribution of year-round data. The methodology, built on case study and proposed evaluation criteria, may function as a universal solution. The proposed methodology can be used to effectively manage water-level fluctuations both in postglacial lakes and in any case of water-level fluctuation.
Go to article

Bibliography

ABRAHART R.J., MOUNT N.J., SHAMSELDIN A.Y. 2012. Neuroemulation: definition and key benefits for water resources research. Hydrological Sciences Journal. Vol. 57(3) p. 407–423. DOI 10.1080/02626667.2012.658401.

ALTUNKAYNAK A., ÖZGER M., SEN Z. 2003. Triple diagram model of level fluctuations in Lake Van, Turkey. Hydrology and Earth System Sciences. Vol. 7(2) p. 235-244. DOI 10.5194/hess-7-235-2003.

ALTUNKAYNAK A. 2007. Forecasting surface water level fluctuations of Lake Van by artificial neural networks. Water Resources Management. Vol. 21(2) p. 399–408. DOI 10.1007/s11269-006-9022-6.

BAJKIEWICZ-GRABOWSKA E. 2005. Jeziora. Zmiany stanów wody. W: Geografia fizyczna Polski [Lakes. Changes in water levels. In: Physical Geography of Poland]. Ed. A. Richling, K. Ostaszewska. Warszawa. Wydaw. Nauk. PWN p. 173–183.

BARAŃCZUK J., BOROWIAK D. 2010. Jezioro Charzykowskie. W: Atlas jezior Zaborskiego Parku Krajobrazowego [Lake Charzykowskie. In: Atlas of the Zaborski Landscape Park Lakes]. Ed. J. Barańczuk, D. Borowiak. Gdańsk, Charzykowy. Katedra Limnologii Uniwersytetu Gdańskiego; Pomorski Zespół Parków Krajobrazowych p. 32–41.

BUYUKYILDIZ M., TEZEL G., YILMAZ V. 2014. Estimation of the change in lake water level by artificial intelligence methods. Water Resources Management. Vol. 28(13) p. 4747–4763. DOI 10.1007/s11269-014-0773-1.

CHOIŃSKI A. 2006. Katalog jezior Polski [The catalogue of Polish lakes]. Poznań. Wydaw. Nauk. UAM. ISBN 8323217327 pp. 599.

COULIBALY P. 2010. Reservoir computing approach to Great Lakes water level forecasting. Journal of Hydrology. Vol. 381(1) p. 76–88. DOI 10.1016/j.jhydrol.2009.11.027.

KISI O., SHIRI J., NIKOOFAR B. 2012. Forecasting daily lake levels using artificial intelligence approaches. Computers & Geosciences. Vol. 41 p. 169–180. DOI 10.1016/j.cageo.2011.08.027.

NOURY M., SEDGHI H., BABAZEDEH H., FAHMI H. 2014. Urmia lake water level fluctuation hydro informatics modeling using support vector machine and conjunction of wavelet and neural network. Water Resources. Vol. 41(3) p. 261–269. DOI 10.1134/S0097807814030129.

ÖZGER M., ŞEN Z. 2007. Triple diagram method for the prediction of wave height and period. Ocean Engineering. Vol. 34(7) p. 1060– 1068.

PASIERBSKI M. 1975. Uwagi o genezie niecki jeziora Charzykowskiego [Remarks on the genesis of the Charzykowskie lake basin]. Acta Universitatis Nicolai Copernici. Geografia. Vol. 11 p. 101–103.

PIASECKI A., JURASZ J., ADAMOWSKI J.F. 2018. Forecasting surface water- level fluctuations of a small glacial lake in Poland using a wavelet- based artificial intelligence method. Acta Geophysica. Vol. 66(5) p. 1093–1107. DOI 10.1007/s11600-018-0183-5.

PIASECKI A., JURASZ J., WITKOWSKI W. 2019. Application of triple diagram method in medium-term water consumption forecasting. In: Infrastructure and Environment. Ed. A. Krakowiak-Bal, M. Vaverkova. Springer p. 59–66.

PLEWA K., WRZESIŃSKI D., BACZYŃSKA A. 2017. Przestrzenne i czasowe zróżnicowanie amplitud stanów wody jezior w Polsce w latach 1981–2015 [Spatial and temporal differentiation of the ampli-tudes of lake water levels in Poland in the years 1981–2015]. Badania Fizjograficzne. Ser. A Geografia Fizyczna. Vol. 68 p. 115–126. DOI 10.14746/bfg.2017.8.8.

SANIKHANI H., KISI O., KIAFAR H., GHAVIDEL S. 2015. Comparison of different data-driven approaches for modeling lake level fluctua-tions: The case of Manyas and Tuz Lakes (Turkey). Water Resources Management. Vol. 29(5) p. 1557–1574. DOI 10.1007/s11269-014-0894-6.
Go to article

Authors and Affiliations

Adam Piasecki
1
ORCID: ORCID
Wojciech T. Witkowski
2
ORCID: ORCID

  1. Nicolaus Copernicus University, Faculty of Earth Sciences and Spatial Management, ul. Lwowska 1, 87-100, Toruń, Poland
  2. AGH University of Science and Technology, Faculty of Mine Surveying and Environmental Engineering, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study was carried out in the area of three dam reservoirs: Blizne and Maziarnia (Voivodeship of Podkarpackie) and Nielisz (Voivodeship of Lublin). The main parameter differentiating the reservoirs was the water retention time and the manner of water discharge from the reservoirs. Three test sites were designated in the area of each reservoir: in the river zone of the reservoir, in the central part of the reservoir, and near the reservoir dam. At these sites, the concentrations of suspended sediment in the water and the content of organic matter in it, the concentrations of total phosphorus and total nitrogen, as well as chlorophyll a were monitored. In addition, two control sites were established: on the river upstream of the reservoir and on the river downstream of the dam, respectively. At these points, the concentrations of suspended sediments in the water and their organic matter content were recorded. The obtained results of the study and multivariate analysis of the data showed that morphometric parameters (including water retention time) of reservoirs and the method of water discharge influence water quality in downstream rivers. It was found that by using lower discharge and ensuring a sufficiently long retention time of water in the reservoir, it is possible to effectively limit the negative aspects of hydrotechnical structures’ impact on the natural environment.
In practice, the observed relationships may constitute an important and missing link in the aspect of minimising undesirable side effects of this type of hydrotechnical objects.
Go to article

Authors and Affiliations

Maksymilian Cieśla
1
ORCID: ORCID
Renata Gruca-Rokosz
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Department of Environmental and Chemistry Engineering, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more