Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Snoring is a typical and intuitive symptom of the obstructive sleep apnea hypopnea syndrome (OSAHS), which is a kind of sleep-related respiratory disorder having adverse effects on people’s lives. Detecting snoring sounds from the whole night recorded sounds is the first but the most important step for the snoring analysis of OSAHS. An automatic snoring detection system based on the wavelet packet transform (WPT) with an eXtreme Gradient Boosting (XGBoost) classifier is proposed in the paper, which recognizes snoring sounds from the enhanced episodes by the generalization subspace noise reduction algorithm. The feature selection technology based on correlation analysis is applied to select the most discriminative WPT features. The selected features yield a high sensitivity of 97.27% and a precision of 96.48% on the test set. The recognition performance demonstrates that WPT is effective in the analysis of snoring and non-snoring sounds, and the difference is exhibited much more comprehensively by sub-bands with smaller frequency ranges. The distribution of snoring sound is mainly on the middle and low frequency parts, there is also evident difference between snoring and non-snoring sounds on the high frequency part.
Go to article

Authors and Affiliations

Li Ding
1
Jianxin Peng
1
Xiaowen Zhang
2
Lijuan Song
2

  1. School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
  2. State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery Laboratory of ENT-HNS Disease, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
Download PDF Download RIS Download Bibtex

Abstract

Despite various speech enhancement techniques have been developed for different applications, existing methods are limited in noisy environments with high ambient noise levels. Speech presence probability (SPP) estimation is a speech enhancement technique to reduce speech distortions, especially in low signalto-noise ratios (SNRs) scenario. In this paper, we propose a new two-dimensional (2D) Teager-energyoperators (TEOs) improved SPP estimator for speech enhancement in time-frequency (T-F) domain. Wavelet packet transform (WPT) as a multiband decomposition technique is used to concentrate the energy distribution of speech components. A minimum mean-square error (MMSE) estimator is obtained based on the generalized gamma distribution speech model in WPT domain. In addition, the speech samples corrupted by environment and occupational noises (i.e., machine shop, factory and station) at different input SNRs are used to validate the proposed algorithm. Results suggest that the proposed method achieves a significant enhancement on perceptual quality, compared with four conventional speech enhancement algorithms (i.e., MMSE-84, MMSE-04, Wiener-96, and BTW).

Go to article

Authors and Affiliations

Pengfei Sun
Jun Qin
Download PDF Download RIS Download Bibtex

Abstract

Nonnegative matrix factorization (NMF) is one of the most popular machine learning tools for speech enhancement (SE). However, there are two problems reducing the performance of the traditional NMFbased SE algorithms. One is related to the overlap-and-add operation used in the short time Fourier transform (STFT) based signal reconstruction, and the other is the Euclidean distance used commonly as an objective function; these methods can cause distortion in the SE process. In order to get over these shortcomings, we propose a novel SE joint framework which combines the discrete wavelet packet transform (DWPT) and the Itakura-Saito nonnegative matrix factorisation (ISNMF). In this approach, the speech signal was first split into a series of subband signals using the DWPT. Then, the ISNMF was used to enhance the speech for each subband signal. Finally, the inverse DWPT (IDWT) was utilised to reconstruct these enhanced speech subband signals. The experimental results show that the proposed joint framework effectively enhances the performance of speech enhancement and performs better in the unseen noise case compared to the traditional NMF methods.

Go to article

Authors and Affiliations

Houguang Liu
Wenbo Wang
Lin Xue
Jianhua Yang
Zhihua Wang
Chunli Hua
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a modified sound quality evaluation (SQE) model is developed based on combination of an optimized artificial neural network (ANN) and the wavelet packet transform (WPT). The presented SQE model is a signal processing technique, which can be implemented in current microphones for predicting the sound quality. The proposed method extracts objective psychoacoustic metrics including loudness, sharpness, roughness, and tonality from sound samples, by using a special selection of multi-level nodes of the WPT combined with a trained ANN. The model is optimized using the particle swarm optimization (PSO) and the back propagation (BP) algorithms. The obtained results reveal that the proposed model shows the lowest mean square error and the highest correlation with human perception while it has the lowest computational cost compared to those of the other models and software.

Go to article

Authors and Affiliations

Mehdi Pourseiedrezaei
Ali Loghmani
Mehdi Keshmiri

This page uses 'cookies'. Learn more