Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 149
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the case of mining machines, tribocorrosion damage is often observed. This type of consumption is caused by the joint action of mining environment factors such as abrasive and water. The search for methods to counteract tribocorrosion is of great practical importance, but it must be combined with the knowledge of methods of forecasting the value of wear. This paper presents a model of prediction of tribocorrosive wear adapted to corrodible materials – ADI containing Ni and Cu, with the strength class of 800 MPa – and results of a two-stage study on the tribocorrosive wear. Presented results indicate a distinct effect of synergy between friction and corrosion in the total wear of ADI. The tribocorrosion tests confimed the adequacy of the model developed for the ADI.

Go to article

Authors and Affiliations

A.N. Wieczorek
A. Stachowiak
W. Zwierzycki
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the effect of selected machining parameter values in hard turning of tested OCHN3MFA steel in terms of SEM microstructural analysis of workpiece material, cutting forces, long-term tests, and SEM observations of flank wear VB and crater wear KT of used changeable coated cemented carbide cutting inserts in the processes of performed experiments. OCHN3MFA steel was selected as an experimental (workpiece) material. The selected experimental steel was analyzed prior to hard turning tests to check the initial microstructure of bulk material and subsurface microstructure after hard turning and chemical composition. Study of workpiece material’s microstructure and worn cemented carbide cutting inserts was performed with Tescan Vega TS 5135 scanning electron microscope (SEM) with the X-Ray microanalyzer Noran Six/300. The chemical composition of workpiece material was analyzed with Tasman Q4 surface analyzer. All hard turning experiments of the used specimens were performed under the selected machining parameters in the SU 50A machine tool with the 8th selected individual geometry of coated cementite carbide cutting inserts clamped in the appropriate DCLNR 2525M12-M type of cutting tool holder. During the hard turning technological process of the individual tested samples made of OCHN3MFA steel, cutting forces were measured with a Kistler 9257B piezoelectric dynamometer, with their subsequent evaluation using Dynoware software. After the long-term testing, other experiments and results were also realized, evaluating the influence of selected machining parameters with different cutting insert geometry on the achieved surface quality.
Go to article

Bibliography

  1.  G. Sun, R. Zhou, J. Lu, and J. Mazumder, “Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel,” Acta Mater., vol. 84, pp. 172–189, 2015, doi: 10.1016/j.actamat.2014.09.028.
  2.  A.K. Sahoo and B. Sahoo, “Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts,” Measurement, vol. 45, no. 8, pp. 2153–2165, 2012, doi: 10.1016/j.measurement.2012.05.015.
  3.  R. Lalbondre, P. Krishna, and G.C. Mohankumar, “Machinability Studies of Low Alloy Steels by Face Turning Method: An Experimental Investigation,” Procedia Eng., vol. 64, pp. 632–641, 2013, doi: 10.1016/j.proeng.2013.09.138.
  4.  Ş. Baday, H. Başak, and A. Güral, “Analysis of spheroidized AISI 1050 steel in terms of cutting forces and surface quality,” Met. Mater., vol. 54, no. 05, pp. 315–320, 2016, doi: 10.4149/km_2016_5_315.
  5.  R. Meyer, J. Köhler, and B. Denkena, “Influence of the tool corner radius on the tool wear and process forces during hard turning,” Int. J. Adv. Manuf. Technol., vol. 58, no. 9–12, pp. 933–940, 2011, doi: 10.1007/s00170-011-3451-y.
  6.  M.S.H. Bhuiyan, I.A. Choudhury, and M. Dahari, “Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning,” J. Manuf. Syst., vol. 33, no. 4, pp. 476–487, 2014, doi: 10.1016/j.jmsy.2014.04.005.
  7.  L.H. Maia, A.M. Abrao, W.L. Vasconcelos, W.F. Sales, and A.R. Machado, “A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission,” Tribol. Int., vol. 92, pp. 519–532, 2015, doi: 10.1016/j.triboint.2015.07.024.
  8.  A. Cakan, F. Evrendilek, and V. Ozkaner, “Data-driven simulations of flank wear of coated cutting tools in hard turning,” Mechanics, vol. 21, no. 6, 2016, doi: 10.5755/j01.mech.21.6.12199.
  9.  W.B. Rashid, S. Goel, J.P. Davim, and S.N. Joshi, “Parametric design optimization of hard turning of AISI 4340 steel (69 HRC),” Int. J. Adv. Manuf. Technol., vol. 82, no. 1‒4, pp. 451–462, 2015, doi: 10.1007/s00170-015-7337-2.
  10.  G. Bartarya and S.K. Choudhury, “State of the art in hard turning,” Int. J. Mach. Tools Manuf., vol. 53, no. 1, pp. 1–14, 2012, doi: 10.1016/j. ijmachtools.2011.08.019.
  11.  W. Jiang and A.P. Malshe, “A novel cBN composite coating design and machine testing: A case study in turning,” Surf. Coat. Technol., vol. 206, no. 2‒3, pp. 273–279, 2011, doi: 10.1016/j.surfcoat.2011.07.008.
  12.  B.D. Beake, J.F. Smith, A. Gray, G.S. Fox-Rabinovich, S.C. Veldhuis, and J.L. Endrino, “Investigating the correlation between nano-impact fracture resistance and hardness/modulus ratio from nanoindentation at 25–500°C and the fracture resistance and lifetime of cutting tools with Ti1−xAlxN (x  = 0.5 and 0.67) PVD coatings in milling operations,” Surf. Coat. Technol., vol. 201, no. 8, pp. 4585–4593, 2007, doi: 10.1016/j.surfcoat.2006.09.118.
  13.  A. Cakan, “Real-time monitoring of flank wear behavior of ceramic cutting tool in turning hardened steels,” Int. J. Adv. Manuf. Technol., vol. 52, no. 9‒12, pp. 897–903, 2010, doi: 10.1007/s00170-010-2793-1.
  14.  J. Jaworski and T. Trzepieciński, “Research on durability of turning tools made of low-alloy high-speed steels,” Met. Mater., vol. 54, no. 1, pp. 17–25, 2016, doi: 10.4149/km_2016_1_17.
  15.  W. Zebala, “Tool stiffness influence on the hosen physical parameters on the milling process,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 3, pp. 597–604, 2012, doi: 10.2478/v10175-012-0071-0.
  16.  P. Raja, R. Malajamuthi, and M. Sakthivel “Experimental investigation of cryogenically treated HSS tool in turning AISI1045 using fuzzy logic Taguchi approach,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 687–696, 2019, doi: 10.24425/bpasts. 2019.130178.
  17.  J. Waszko, “Laser surface remelting of powder metallurgy high speed steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no.  6, pp. 1425–1432, 2021, doi: 10.24425/bpasts.2020.135385.
  18.  I. Barényi et al., “Material and technological investigation of machined surfaces of the OCHN3MFA steel,” Met. Mater., vol. 57, no. 02, pp. 131–142, 2020, doi: 10.4149/km_2019_1_131.
Go to article

Authors and Affiliations

Jozef Majerík
1
Igor Barényi
1
Zdenek Pokorný
2
Josef Sedlák
3
Vlastimil Neumann
4
David Dobrocký
2
Aleš Jaroš
3
Michal Krbaťa
1
Jaroslav Jambor
1
Roman Kusenda
1
Miroslav Sagan
1
Jiri Procházka
2

  1. Department of Engineering, Alexander Dubcek University of Trencin, Trencin, Slovak Republic
  2. Department of Mechanical Engineering, University of Defence in Brno, Brno, Czech Republic
  3. Department of Manufacturing Technology, Brno University of Technology, Brno, Czech Republic
  4. Department of Combat and Special Vehicles, University of Defence in Brno, Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

In hot forging process, tool life is an important factor which influences the economy of production. Wear mechanisms in these processes are dependent on each other, so modeling of them is a difficult problem. The present research is focused on development of a hybrid tool wear model for hot forging processes and evaluation of adding adhesive mechanism component to this model. Although adhesive wear is dominant in cases, in which sliding distances are large, there is a group of hot forging processes, in which adhesion is an important factor in specific tool parts. In the paper, a proposed hybrid tool wear model has been described and various adhesive wear models have been reviewed. The feasible model has been chosen, adapted and implemented. It has been shown that adding adhesive wear model increases predictive capabilities of the global hybrid tool wear model as far as characteristic hot forging processes is considered.

Go to article

Authors and Affiliations

M. Wilkus
Ł. Rauch
D. Szeliga
M. Pietrzyk
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with issues related to tribological processes occurring as a result of excessive wear of the surface of scraper conveyor components caused by the impact of the mined material created during drilling of development or exploitation galleries. One of the most common types of tribological wear is abrasive wear. W ear tests were carried out for hard coal – based abrasive using dry carbon abrasive and a hydrated mixture with 76 and 58% hard coal. Based on the conducted research, it was established that the effects of wear processes are associated with damage typical of wear mechanisms: micro-scratching and micro-fatigue. For the wear variant in the presence of dry coal abrasive, individual scratches caused by the abrasive grains were observed on the surface of the samples. The main reason for this type of damage was the aggregation of quartz, which is one of the basic components of the mineral substance present in the tested hard coal. When hydrated carbon mixtures were used as an abrasive, the surface of the samples also displayed scratches characteristic of the aggregate quartz. A small part of the carbon abrasive was pressed into the scratches. Under the influence of the wear caused by friction, small depressions were also formed, where coal penetrated. The effect of coal pressing into micro-scratches is related to its plastic properties. T ests of the abrasive conducted after the conclusion of wear tests have shown that under the influence of the local increase in temperature and pressure, the hard coal contained in the abrasive can undergo transformations. In the abrasive transformed under friction, small, but measurable changes in the content of the C element in relation to the initial hard coal sample were exhibited.

Go to article

Authors and Affiliations

Iwona Jonczy
ORCID: ORCID
Andrzej N. Wieczorek
Jacek Podwórny
Anna Gerle
Marcin Staszuk
ORCID: ORCID
Jacek Szweblik
Download PDF Download RIS Download Bibtex

Abstract

Tests were performed on example tools applied in hot die forging processes. After withdrawal from service due to excessive wear, these tools can be regenerated for re-use through machining and hardfacing. First, analysis of worn tools was carried out for the purpose of identifying tool working conditions and wear mechanisms occurring in the surface layer of tools during forging. Testing of worn tools included observations under a microscope, surface scanning and microhardness measurement in the surface layer. The results indicate very diverse work conditions, which suggest the application of different materials and hardfacing tool regeneration technology in individual die forging processes.
Go to article

Authors and Affiliations

P. Widomski
1
ORCID: ORCID
M. Kaszuba
1
ORCID: ORCID
J. Krawczyk
1
ORCID: ORCID
B. Nowak
2
ORCID: ORCID
A. Lange
1
ORCID: ORCID
P. Sokołowski
1
ORCID: ORCID
Z. Gronostajski
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Department of Metal Forming, Welding and Metrology, 7-9 Lukasiewicza Str., 50-371, Wroclaw, Poland
  2. CEO, Kuźnia Jawor S.A. Poland
Download PDF Download RIS Download Bibtex

Abstract

The versatile application of titanium alloy in the aerospace industry and it’s hard to machine characteristics focus towards the additive manufacturing. The Ti-6Al-4V alloy is manufactured using the electron beam source with a novel method of prepositioned titanium alloy wires. The tribology of the additive manufactured titanium alloy under dry sliding condition is experimented and analysed using Taguchi technique. The targeted objective of minimum tribological responses are attained with the identified optimal parameters as load – 9.81 N, sliding velocity – 3 m/s, sliding distance – 3000 m for minimum specific wear rate and load – 9.81 N, sliding velocity – 3 m/s, sliding distance – 1000 m for minimum coefficient of friction. Among the parameters tested, load is found to be the dominant factor on the tribology of additively manufactured titanium alloy. The morphological analysis on the worn surface and debris revealed the existence of abrasion, delamination and adhesion wear mechanisms. The increase in the load dominantly showed the appearance of delamination mechanism.
Go to article

Authors and Affiliations

A. Manjunath
1
ORCID: ORCID
V. Anandakrishnan
2
ORCID: ORCID
S. Ramachandra
1
ORCID: ORCID
K. Parthiban
1
ORCID: ORCID
S. Sathish
3
ORCID: ORCID

  1. Gas Turbine Research Establishment, Defence Research & Development Organization, Bangalore, Karnataka-560093, India
  2. Department of Production Engineering, National Institute of Technology Tiruchirapalli, Tiruchirappalli – 620015, Tamil Nadu, India
  3. Department of Mechatronics Engineering, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal – 637215, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

Results of investigations of wear resistant of two species of cast steel were introduced in the article (low-alloyed and chromium cast steel) on the background of the standard material which was low alloy wear resistant steel about the trade name CREUSABRO ®8000. The investigations were executed with two methods: abrasive wears in the stream of loose particles (the stream of quartz sand) and abrasive wears particles fixed (abrasive paper with the silicon carbide). Comparing the results of investigations in the experiments was based about the counted wear index which characterizes the wears of the studied material in the relation to the standard material.

Go to article

Authors and Affiliations

A. Studnicki
J. Szajnar
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.
Go to article

Authors and Affiliations

G. Gumienny
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of research on the admixture of other rock fragments in the granodiorite aggregate (two types of hornfels) produced in Łażany II quarry. It discusses the impact of these components on the selected chemical and mechanical properties important for the use of the aggregate in road construction. Analysed granodiorite grit is a high-class construction material suitable for bituminous mixtures. Its quality is verified in accordance with the PN-EN 13043 standard. The admixture of hornfels in aggregate composition is a consequence of the natural occuring this rock in the Łażany II granodiorite deposit in the Strzegom-Sobótka massif. As there is not selective exploitation of the deposit an extracted raw material is not separated during processing As a result, the aggregate, composed predominantly of granodiorite, comprises variable admixture of hornfels. Tests of properties, such as water absorption, resistance to freezing, resistance to fragmentation, crushing strength, carried out on grain populations of various petrographic types separated from the general samples, exhibit that the presence of hornfels in the aggregate has a beneficial effect, particularly on the mechanical parameters of the produced aggregate. Moreover, two varieties of hornfels differ in terms of some chemical properties (affinity with bitumen, presence of sulphides). These features may affect the durability of the aggregate in the wearing course which is directly influenced by the exterior conditions typical for road pavements.
Go to article

Authors and Affiliations

Bartłomiej Grzesik
1
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

AISI 316L steel was subjected to nitrocarburizing under glow discharge conditions, which was followed by DLC (diamond-like carbon) coatings deposition using the same device. The coatings were applied under conditions of direct current and pulsed glow discharge. In order to determine the influence of the produced nitrocarbon austenite layer and the type of discharge on the microstructure and mechanical properties of the coatings, the following features were analysed: surface roughness, coating thickness, structure, chemical composition, adhesion and resistance to frictional wear. For comparison purposes, DLC coatings were also deposited on steel without a nitrocarburised layer. The obtained results indicate a significant influence of the type of glow discharge on the roughness, hardness, nitrogen content and of the nitrocarburised layer on the resistance to wear by friction and adhesion of the produced coatings.
Go to article

Authors and Affiliations

T. Borowski
1
ORCID: ORCID
K. Kulikowski
1
ORCID: ORCID
M. Spychalski
1
ORCID: ORCID
K. Rożniatowski
1
ORCID: ORCID
B. Rajchel
2
B. Adamczyk-Cieślak
1
ORCID: ORCID
T. Wierzchoń
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Materials Science and Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
  2. Polish Academy of Sciences, Institute of Nuclear Physics, Poland
Download PDF Download RIS Download Bibtex

Abstract

Work was done as a part of the project " New generation haulage system of highly productive longwall systems" aiming to develop and implement a new longwall shearer system called KOMTRACK. The widely used EICOTRACK feed system developed forty years ago is not adapted to modern longwall shearers' power. Within the project, an innovative, flexible feed system with a modular structure was created with the possibility of continuous adjustment to the carbon wall's unevenness. Newly-developed three cast steels variants have been initially selected to fabricate this system's elements. The material's final selection was realized based on the tensile tests, Charpy impact tests, Brinell hardness surveys, and wear resistance measurements. Results analysis allowed to select cast steel marked as "2", which fulfilled all requirements and was used in further casting trials.
Go to article

Bibliography

[1] Pirowski Z. (2020). A new generation feed system for high-performance longwall shearers. Stage 4; Kraków: Report 2019 – Łukasiewicz Research Network – Foundry Research Institute, 64-69.
[2] Pieczora, E., Zachura, A., Pirowski, Z., Pysz, S., Kurdziel, P., Żyła, P., Kotulski, W. (2015). Flextrack - innovative longwall shearer feed system. Part 1, Modern methods of coal and hard rock mining. Kraków: AGH University of Science and Technology. 185-194. ISBN 978-83-930353-5-9.
[3] Zachura, A., Pieczora, E., Pysz, S., Żuczek, R., Pirowski, Z., Kurdziel, P., Żyła, P., Kotulski, W. (2015). Flextrack - innovative longwall shearer feed system. Part 1, Modern methods of coal and hard rock mining. Kraków: AGH University of Science and Technology, 195-203. ISBN 978-83-930353-5-9.
[4] Pirowski, Z., Uhl, W., Jaśkowiec, K., Pysz, S., Gazda, A., Kotulski, W., Kurdziel, P., Zachura, A. (2015). Innovative FLEXTRACK feed system - selection of materials (casting al-loys), in: A. Klich, A. Kozieł: Innovative techniques and technologies for mining. Safety - Efficiency - Reliability - KOMTECH 2015, KOMAG Institute of Mining Technology, 223-236. ISBN 978-83-60708-90-3.
[5] Pysz, P., Żuczek, R., Pirowski, Z., Uhl, W., Kotulski, W., Żyła, P., Kurdziel, P., Zachura, A. (2015). Innovative FLEXTRACK feed system - development of the technology of making cast segments of the toothed elements and the guider, in: A. Klich, A. Kozieł: Innovative techniques and technologies for mining. Safety - Efficiency - Reliability - KOMTECH 2015, KOMAG Institute of Mining Technology, 237-249. ISBN 978-83-60708-90-3.
[6] Pirowski, Z., Uhl, W., Jaśkowiec, K., Krzak, I., Wójcicki, M., Gil, A., Kotulski, W., Kurdziel, P., Pieczora, E., Zachura, A. (2015). Innovative FLEXTRACK feed system - quality assessment of the manufactured prototype castings, in: A. Klich, A. Kozieł: Innovative techniques and technologies for mining. Safety - Efficiency - Reliability - KOM-TECH 2015, KOMAG Institute of Mining Technology, 250. ISBN 978-83-60708-90-3.
[7] Kalita, M. (2019). Designing process of a toothed segment of the KOMTRACK haulage system. New Trends in Production Engineering. 2(1), 121-129. https://doi.org/10.2478/ntpe-2019-0013.
[8] Nieśpiałowski, K., Kalita, M., Rawicki, N, (2019). System for tensioning the toothed path of the longwall shearer's feed system, Scientific and Technical Conference: KOMTECH Innovative Mining Technologies – IMTech. [9] Pirowski, Z. (2015). Thermal Analysis in the Technological “Step” Test of H282 Nickel Alloy. Archives of Foundry Engineering. 15(1), 87-92. DOI: 10.1515/afe-2015-0016.
[10] Pirowski, Z., Warmuzek, M., Radzikowska, J. (2012). Test casting Inconel 740 alloy, 70th World Foundry Congress, 560-565.
[11] Rakoczy, Ł., Grudzień, M., Cygan, R. & Zielińska-Lipiec, A. (2018). Effect of cobalt aluminate content and pouring temperature on macrostructure, tensile strengh and creep rupture of Inconel 713C castings. Archives of Metallurgy and Meterials. 63(3), 1537-1545. https://doi.org/10.24425/123845.
[12] Pirowski, Z., Jaśkowiec, K., Tchórz, A., Krzak, I., Sobczak, J., Purgert, R. (2016). Technological conversion applicable for manufacturing elements from Nickel superalloy H282, 72nd World Foundry Congress, 223-224.
[13] Grudzień-Rakoczy, M., Rakoczy, Ł., Cygan, R., Kromka, F., Pirowski, Z. & Milkovic, O. (2020). Fabrication and characterization of the newly developed superalloys based on Inconel 740. Materials. 13, 2362. https://dx.doi.org/10.3390%2Fma13102362.
[14] Rakoczy, Ł., Grudzień-Rakoczy, M. & Cygan, R. (2019). The influence of shell mold composition on the as-cast macro-and micro-structure of thin-walled IN713C superalloy castings. Journal of Materials Engineering and Performance. 28(7), 3974-3985. https://doi.org/10.1007/s11665-019-04098-9.
[15] Grudzień, M., Cygan, R., Pirowski, Z. & Rakoczy, Ł. (2018). Transactions of the Foundry Research Institute. 58, 39-45. https://dx.doi.org/10.7356/iod.2018.04.
[16] Pirowski, Z. & Gościański, (2013). Casting Alloys for Agricultural Tools Operating under the Harsh Conditions of Abrasive Wear. TEKA Commission of Motorization and Energetics in Agriculture. 13(1), 119-126 ISSN 1641-773.
[17] Pirowski, Z., Gwiżdż, A. & Kranc, M. (2012). Cast Agricultural Tools Operating in Soil. Tekhnika ta energetika APK. 170(1), 378-385. ISSN 2222-8618.
[18] Gościański, M. & Pirowski, Z. (2009). Construction and Technology of Production of Casted Shares for Rotating and Field Ploughs, TEKA Commission of Motorization and Energetics in Agriculture. - O.L. PAN, 9(9), 231-239. ISSN 1641-7739.
[19] Pirowski, Z., Olszyński, J., Turzyński, J. & Gościański, M. (2006). Elements of agricultural ma-chinery working in soil made of modern casting materials. Motrol. 8, 169-180. (in Polish).
[20] Pirowski, Z. (2014). Evaluation of High-temperature Physico-chemical Interactions Between the H282Alloy Melt and Ceramic Material of the Crucible. Archive of Foundry Engineering. 14(4), 83-90. https://doi.org/10.2478/afe-2014-0091.
[21] Wang, Z., Huang, B., Chen, H., Wang, CH. & Zhao, X. (2020). The Effect of Quenching and Partitioning Heat Treatmenton the Wear Resistance of Ductile Cast Iron Journal of Materials Engineering and Performance. 29, 4370-4378. https://doi.org/10.1007/s11665-020-04871-1.
[22] Srinivasu, R., Sambasiva Rao A., Madhusudhan Reddy G., K. Srinivasa Rao, K. (2015). Friction stir surfacing of cast A356 aluminiumesilicon alloy with boron carbide and molybdenum disulphide powders. Defence Technology. 11(2), 140-146.
[23] Heldin, M., Heinrichs, J., Jacobson, S. (2021). On the critical roles of initial plastic deformation and material transfer on the sliding friction between metals. Wear. 477(Spec.203853). DOI: 10.1016/j.wear.2021.203853, Published JUL 18.
[24] Grzesik, W., Zalisz, Z., Krol, S. & Nieslony, P. (2006). Investigations on friction and wear mechanisms of the PVD-TiAlN coated carbide in dry sliding against steels and cast iron. Wear. 261(11-12), 1191-1200.
[25] Holmberg, K., Matthews, A., Dowson, D. (Ed.) (1998). Coating Tribology. Properties, Techniques and Applications in Surface Engineering. Tribology Series. 28, Elsevier, Amsterdam.
[26] PN-88/H-83160; Wear-resistant cast steel - Grades. (in Polish). [27] NF A 32-058/1984: Produits de founderie aciers et fontes blanches moules resistant a l'usure par abrasion.

Go to article

Authors and Affiliations

D. Wilk-Kołodziejczyk
1 2
ORCID: ORCID
Z. Pirowski
2
ORCID: ORCID
M. Grudzień-Rakoczy
2
ORCID: ORCID
A. Bitka
2
ORCID: ORCID
K. Chrzan
2
ORCID: ORCID

  1. AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
  2. Łukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The subject of the work are modern composite materials with increased wear resistance intended for elements of machines operating in difficult conditions in the construction and mining industries. The study determined the effect of zone reinforcement of GX120Mn13 cast steel with macroparticles (Al 2O 3+ZrO 2) on the corrosion resistance and abrasion wear of the composite thus obtained. SEM studies have shown that at interface between two phases, and more precisely on the surface of particles (Al 2O 3+ZrO 2) a durable diffusion layers are formed. During the corrosion tests, no significant differences were found between the obtained parameters defining the corrosion processes of GX120Mn13 cast steel and GX120Mn13 with particles (Al 2O 3+ZrO 2) composite. No intergranular corrosion was observed in the matrix of the composite material, nor traces of pitting corrosion at both phases interface. This is very important in terms of tested material’s service life. Reinforcement of cast steel with particles (Al 2O 3+ZrO 2) resulted in a very significant improvement in the abrasion resistance of the composite – by about 70%. After corrosion tests, both materials were subjected to further operational investigations. These examinations consisted in determining the impact of corrosion processes on the durability of the composite in terms of abrasion. The obtained results indicate that corrosion processes did not significantly deteriorate the wear resistance of both the cast steel and the composite.
Go to article

Bibliography

[1] Uetz, H. (1986). Abrasion and Erosion. Munich–Vienna: Carl Hanser Verlag Publ.
[2] Hebda, M., Wachal, A. (1980). Trybology. Warsaw: Scientific and Technical Publ (in Polish).
[3] Kalandyk, B., Zapała, R., Kasińska, J. & Madej, M. (2021). Evaluation of microstructure and tribological propertiesof GX120Mn13 and GX120MnCr18-2 cast steels. Archives of Foundry Engineering. 21(4), 67-76. DOI: 10.24425/afe.2021.138681.
[4] Marcus, P. (2017). Corrosion mechanisms in theory and practice. London–New York: CRC Press.
[5] Podrzucki, C. (1991). Cast iron. Structure, properties, application. vol. 2. Krakow: ZG STOP Publ (in Polish).
[6] Kaczmar, J., Janus, A., Samsonowicz, Z. (1998). Influence of technological parameters on the production of selected parts of machines reinforced with ceramic fibers. Report of Institute of Machine and Automation Technology, Wroclaw University of Science and Technology, Series SPR, 35 (in Polish). [7] Kurzawa, A., Kaczmar, J.W. & Janus, A. (2008). Selected mechanical properties of aluminum composite materials reinforced with SiC particles. Archives of Foundry Engineering. 8(2), 99-102.
[8] Kaczmar, J.W. & Kurzawa, A. (2012). The effect of α-alumina particles on the properties of EN AC-44200 Al alloy based composite materials. Journal of Achievements in Materials and Manufacturing Engineering. 55(1), 39-44.
[9] Jach, K., Pietrzak K., Wajler, A., Sidorowicz, A. & Brykała, U. (2013). Application of ceramic preforms to the manufacturing of ceramic – metal composites. Archives of Metallurgy and Materials, 58(4), 1425-1428. DOI: 10.2478/amm-2013-0188.
[10] Gawroński, J., Szajnar, J. & Wróbel, P. (2004). Study on theoretical bases of receiving composite alloy layers on surface of cast steel castings. Journal of Materials Processing Technology. 157, 679-682. DOI: 10.1016/j.jmatprotec.2004.07.153.
[11] Szajnar, J., Walasek, A., & Baron, C. (2013). Tribological and corrosive properties of the parts of machines with surface alloy layer. Archives of Metallurgy and Materials. 58(3), 931-936. DOI: 10.2478/amm-2013-0104.
[12] Hryniewicz, T., Rokosz, K. (2010). Theoretical basis and practical aspects of corrosion. Koszalin: Publ. House of Koszalin University of Technology (in Polish).
[13] Medyński, D. & Chęcmanowski, J. (2022). Corrosion resistance of L120G13 steel castings zone-Reinforced with Al2O3. Materials. 15(12), 4090, 1-14. https://doi.org/10.3390/ma15124090.
[14] Song, Y., Jiang, G., Chen, Y., Zhao, P. & Tian, Y. (2017). Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific Reports. 7, 6865, 1-13. https://doi.org/10.1038/s41598-017-07245-1.

Go to article

Authors and Affiliations

Daniel Medyński
1
ORCID: ORCID

  1. Witelon Collegium State University, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this investigation, Copper Matrix Surface Composites (CMSCs) were reinforced with various ceramic particles like Aluminum Nitrate (AlN), Titanium diboride (TiB2), and Rice Husk Ash (RHA) are used to increase the metallurgical and mechanical properties by Friction Stir Processing (FSP). The Design of the Experiment (DOE) Taguchi L9 orthogonal array method was used. The process parameters considered were groove width and various types of reinforcement particles. The fabrication of CMSCs was achieved by using optimized process parameters, such as the tool transverse speed of 40 mm/min, rotational tool speed of 1000 rpm, and an axial load of 10 kN with one pass. The influence of FSP process parameters on CMSCs in the stir zone is observed through Optical Microscope (OM), Field Emission Scanning Electron Microscope (FESEM), and Transmission Electron Microscope (TEM). Mechanical properties such as microhardness and wear rate are studied and compared. It reveals that good interfacial bonding was produced between ceramic particles in CMSCs. TiB2 reinforced with copper matrix surface composites enhance microhardness and had a lesser wear rate.
Go to article

Authors and Affiliations

S. Saravanakumar
1
ORCID: ORCID
S. Gopalakrishnan
2
ORCID: ORCID
K. Kalaiselvan
3
ORCID: ORCID

  1. Department of Mechanical Engineering, M. Kumarasamy College of Engineering, Karur, Tamilnadu, India
  2. Department of Mechanical Engineering, KS Rangasamy College of Technology, Tiruchengode, Tamilnadu, India
  3. Department of Mechanical Engineering, Dr. NGP Institute of Technology, Coimbatore, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

The mechanical and tribological properties of the Al/CNT composites could be controlled and improved by the method of its fabrication process. This research article deals with the optimization of mechanical and tribological properties of Al/CNT composites, which are fabricated using the mechanical alloying process with the different weight percentage of multi-walled CNT reinforcement. The phase change and the presence of CNT are identified using the X-Ray Diffraction (XRD) analysis. The influence of mechanical alloying process and the multi-walled CNT reinforcement on the mechanical, and tribological behaviours of the Al/CNT composites are studied. The optimal mechanical alloying process parameters and the weight percentage of multi-walled CNT reinforcement for the Al/CNT composite are identified using the Response Surface Methodology (RSM), which exhibits the better hardness, compressive strength, wear rate and Coefficient of Friction (CoF). The Al/CNT composite with 1.1 wt.% of CNT has achieved the optimal responses at the milling speed 301 rpm and milling time 492 minutes with the ball to powder weight ratio 9.7:1, which is 98% equal to the experimental result. This research also reveals that the adhesive wear is the dominant wear mechanism for the Al/CNT composite against EN31 stainless steel but the optimal Al/CNT composite with 1.1 wt.% of multi-walled CNT has experienced a mild abrasive wear.
Go to article

Bibliography

  1. M.S. Prabhu, A.E. Perumal, S. Arulvel, and R.F. Issac, “Friction and wear measurements of friction stir processed aluminium alloy 6082/CaCO3 composite”, Measurement 142, 10–20 (2019).
  2. Martinez, I. Guillot, and D. Massinon, “New heat treatment to improve the mechanical properties of low copper aluminum primary foundry alloy”, Mater. Sci. Eng. A 755, 158–165 (2019).
  3. Afkham, R.A. Khosroshahi, S. Rahimpour, C. Aavani, Brabazon, and R.T. Mousavian, “Enhanced mechanical properties of in situ aluminium matrix composites reinforced by alumina nanoparticles”, Arch. Civ. Mech. Eng. 18(1), 215–226 (2018).
  4. Li, J. Zhou, Y. Sun, A. Feng, X. Meng, S. Huang, and Y. Sun, “Study on mechanical properties and microstructure of 2024T351 aluminum alloy treated by cryogenic laser peening”, Optics Laser Tech. 120, 105670 (2019).
  5. Baradeswaran, A. Elayaperumal, and R.F. Issac, “A statistical analysis of optimization of wear behaviour of Al-Al2O3 composites using Taguchi technique”, Procedia Eng. 64, 973–982 (2013).
  6. Sochacka, A. Miklaszewski, and M. Jurczyk, “Development of β-type Ti-x at.% Mo alloys by mechanical alloying and powder metallurgy: Phase evolution and mechanical properties (10 ≤ x ≤ 35)”, J. Alloy. Compd. 776, 370–378 (2019).
  7. Sankaranarayanan, A.N. Balaji, K. Velmanirajan, and K. Gangatharan, “Mechanical and wear behaviour of the Al-Mg-nano ZrC composite obtained by means of the powder metallurgy method”, Bull. Pol. Acad. Sci. Tech. Sci. 66(5), 729–735 (2018).
  8. Canakci, F. Erdemir, T. Varol, and A. Patir, “Determining the effect of process parameters on particle size in mechanical milling using the Taguchi method: measurement and analysis”, Measurement 46(9), 3532–3540 (2013).
  9. B.L. Tomiczek, A. Dobrzan´ski, and M. Macek, “Effect of milling time on microstructure and properties of AA6061/ MWCNTS composite powders”, Arch. Metal. Mater. 60, 1 (2015).
  10. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders”, Mater. Sci. Eng. A 342(1-2), 131–143 (2003).
  11. M.A. Awotunde, A.O. Adegbenjo, B.A. Obadele, M. Okoro, B.M. Shongwe, and P.A. Olubambi, “Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review”, J. Mater. Res. Tech. 8(2), 2432–2449 (2019).
  12. B.P. Kumar and A.K. Birru, “Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method”, Trans. Nonferrous Met. Soc. China 27(12), 2555–2572 (2017).
  13. Sikder, S. Sarkar, K.G. Biswas, S. Das, S. Basu, and P.K. Das, “Improved densification and mechanical properties of spark plasma sintered carbon nanotube reinforced alumina ceramics”, Mater. Chem. Phys. 170, 99–107 (2016).
  14. Ferreira, P. Egizabal, V. Popov, M.G. de Cortázar, Irazustabarrena, A.M. López-Sabirón, and G. Ferreira, “Lightweight automotive components based on nanodiamondreinforced aluminium alloy: A technical and environmental evaluation”, Diam. Relat. Mat. 92, 174–186 (2019).
  15. Manikandan, R. Sieh, A. Elayaperumal, H.R. Le, and S. Basu, “Micro/nanostructure and tribological characteristics of pressureless sintered carbon nanotubes reinforced aluminium matrix composites”, J. Nanomater. 2016, 9843019 (2016).
  16. Varo, and A. Canakci, “Effect of the CNT content on microstructure, physical and mechanical properties of Cu-based electrical contact materials produced by flake powder metallurgy”, Arab. J. Sci. Eng. 40(9), 2711–2720 (2015).
  17. N.A. Bunakov, D.V. Kozlov, V.N. Golovanov, E.S. Klimov, E.E. Grebchuk, M.S. Efimov, and B.B. Kostishko, “Fabrication of multi-walled carbon nanotubes–aluminum matrix composite by powder metallurgy technique”, Results Phys. 6, 231–232 (2016).
  18. V.A. Popov, E.V. Shelekhov, A.S. Prosviryakov, M.Y. Presniakov, B.R. Senatulin, A.D. Kotov, and I.I. Khodos, “Application of nanodiamonds for in situ synthesis of TiC reinforcing nanoparticles inside aluminium matrix during mechanical alloying”, Diam. Relat. Mat., 75, 6–11 (2017).
  19. Khajelakzay, and S.R. Bakhshi, “Optimization of spark plasma sintering parameters of Si3N4-SiC composite using response surface methodology (RSM)”, Ceram. Int., 43(9), 6815 (2017).
  20. K.K. Ekka, and S.R. Chauhan, “Dry sliding wear characteristics of SiC and Al2O3 nanoparticulate aluminium matrix composite using Taguchi technique”, Arab. J. Sci. Eng. 40(2), 571 (2015).
  21. Saravanan, A.E. Perumal, R.F. Issac, S.C. Vettivel, and A. Devaraju, “Optimization of wear parameters and their relative effects on TiN coated surface against Ti6Al4V alloy”, Mater. Des. 92, 23–35 (2016).
  22. M.M. Bastwros, A.M. Esawi, and A. Wifi, “Friction and wear behavior of Al–CNT composites”, Wear 307(1-2), 164–173 (2013).
  23. Abdullahi, M.A. Maleque, and U. Nirmal, “Wear mechanisms map of CNT-Al nano-composite”, Proc. Eng. 68, 736–742 (2013).
  24. A.M.K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT- reinforced aluminium composites”, Compos. Sci. Technol., 70(16), 2237–2241 (2010).
  25. F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, “Processing and properties of carbon nanotubes reinforced aluminum composites”, Mater. Sci. Eng. A 444(1-2), 138 (2007).
  26. P.R. Soni, Mechanical alloying: fundamentals and applications, Cambridge Int. Science Publishing, 2000.
  27. Shi, Z. Ni, Y. Lu, L. Zhao, J. Zou, and Q. Guo, “Interfacial properties and their impact on the tensile behavior of nanolaminated single-walled carbon nanotube-aluminum composite”, Materialia 12, 100797 (2020).
  28. Nie, H. Wang, and J. He, “Evaluation of the effect of adding carbon nanotubes on the effective mechanical properties of ceramic particulate aluminum matrix composites”, Mech. Mater. 142, 103276 (2020).
  29. Z.Y. Liu, K. Zhao, B.L. Xiao, W.G. Wang, and Z.Y. Ma, “Fabrication of CNT/Al composites with low damage to CNTs by a novel solution- assisted wet mixing combined with powder metallurgy processing”, Mater. Des. 97, 424–430 (2016).
  30. Hu, F. Chen, J. Xu, Q. Nian, D. Lin, C. Chen, and M. Zhang, “3D printing graphene-aluminum nanocomposites”, J. Alloy. Compd. 746, 269–276 (2018).
  31. E.A. Belenkov, and F.K. Shabiev, “Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis”, Lett. Mater. 5(4), 459–462 (2015).
  32. Baradeswaran, S.C. Vettivel, A.E. Perumal, N. Selvakumar, and R.F. Issac, “Experimental investigation on mechanical behaviour, modelling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites”, Mater. Des. 63, 620–632 (2014).
  33. Kim, K. Park, K. Kim, T. Miyazaki, S. Joo, S. Hong, and H. Kwon, “Carbon nanotubes-reinforced aluminum alloy functionally graded materials fabricated by powder extrusion process”, Mater. Sci. Eng. A 745, 379–389 (2019).
  34. C.R. Bradbury, J.K. Gomon, L. Kollo, H. Kwon, and M. Leparoux, “Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites”, J. Alloy. Compd. 585, 362–367 (2014).
  35. Shi, L. Zhao, Z. Li, Z. Li, D.B. Xiong, Y. Su, and Q. Guo, “Strengthening and deformation mechanisms in nanolaminated single-walled carbon nanotube-aluminum composites”, Mater. Sci. Eng. A 764, 138273 (2019).
  36. H.J. Choi, S.M. Lee, and D. Bae, “Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes”, Wear 270(1- 2), 12–18 (2010).
  37. M.A. Xavior, H.P. Kumar, and K.A. Kumar, “Tribological studies on AA 2024–Graphene/CNT Nanocomposites processed through Powder Metallurgy”, Mater. Today Proc. 5(2), 6588– 6596 (2018).
  38. M.R. Akbarpour, S. Alipour, and M. Najafi, “Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method”, Diam. Relat. Mat., 90, 93–100 (2018).
  39. Q.M. Gong, Z. Li, Z. Zhang, B. Wu, X. Zhou, Q.Z. Huang, and J. Liang, “Tribological properties of carbon nanotubedoped carbon/carbon composites”, Tribol. Int. 39(9), 937–944 (2006).
  40. W.S. Im, Y.S. Cho, G.S. Choi, F.C. Yu, and D.J. Kim, “Stepped carbon nanotubes synthesized in anodic aluminum oxide templates”, Diam. Relat. Mat., 13(4-8), 1214–1217 (2004).
Go to article

Authors and Affiliations

P. Manikandan
1
A. Elayaperumal
1
R. Franklin Issac
1
ORCID: ORCID

  1. Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai – 600025, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

The application of hardfacing is one of the ways to restore the functional properties of worn elements. The possibility of using filler materials rich in chrome allows for better wear resistance than base materials used so far. The paper presents the results of research on the use of 3 different grades of covered electrodes for the regeneration of worn track staves. The content of the carbon in the covered electrodes was from 0,5% to 7% and the chromium from 5% to 33%. The microscopic and hardness tests revealed large differences in the structure and properties of the welds. The differences in the hardness of the welds between the materials used were up to 150 HV units. The difference in wear resistance, in the ASTM G65 test, between the best and worst materials was almost 12 times big.

Go to article

Authors and Affiliations

M. Gucwa
J. Winczek
P. Wieczorek
M. Mičian
ORCID: ORCID
R. Koňár
Download PDF Download RIS Download Bibtex

Abstract

Owing to the excellent properties, graphene nanoplatelets (GNPs) show great reinforcing ability to improve the mechanical and tribological properties of Al nanocomposites for many automotive applications. In this work, the GNPs dispersion and reinforcing effect in Al nanocomposite was tested. Solvent dispersion via tip sonication and facile low energy ball milling (tumbling milling) using two milling speeds 200 and 300 rpm were employed to develop GNPs/Al powders. Sintering response of the GNPs/Al sintered samples was gauged at two temperatures (550oC and 620oC). The effects of GNPs content, milling rotation speed and sintering temperature on the density, hardness and wear properties of the nanocomposite were examined. The results indicate that relative density % decreases with increasing GNPs content due to possible reagglomeration. The highest hardness of 35.6% and wear rate of 76.68% is achieved in 0.3 wt.% GNPs/Al nanocomposite processed at 300 rpm and 620oC as compared to pure Al due to uniform dispersion, higher diffusion rate at a higher temperature and effective lubrication effect.

Go to article

Authors and Affiliations

Zeeshan Baig
Othman Mamat
Mazli Mustapha
Sadaqat Ali
Download PDF Download RIS Download Bibtex

Abstract

A group of old apartment houses with the age over 100 years (that is those carried out before the First World War) takes an important place in polish building resources. Technical maintenance of apartment houses, traditional methods erected, is nowadays and will be a valid problem in the nearest future. The results of the work refer to the general population, estimated for 600 objects, that is about 20% of municipal downtown apartment houses in Wrocław.

The purpose of the research was to identify an influence of widely considered maintenance of apartment houses on a degree and intensity of their elements’ deterioration. The goal of the work has been fulfilled by symptoms’ analysis of declining of inspected elements’ exploitation values, that is identification of mechanics of their defects arising.

The range of the work has required creation of original qualitative model of pinpointed defects and its transfer into quantitative one. It has made possible to analyse the reason - effect phenomena „defect - technical wear” relevant to the most important elements of Wroclaw downtown district’s apartment houses. The research procedure has been conducted in accordance of fuzzy sets theory which made possible to describe qualitative model of pinpointed defects and its transfer into a quantitative one.

Go to article

Authors and Affiliations

J. Konior
Download PDF Download RIS Download Bibtex

Abstract

To determine the relationships between operating conditions and tribological properties of Zn-30Al-3Cu alloy, its wear characteristics were investigated at wide ranges of oil flow rate, pressure and sliding velocity using a block-on-disk type test apparatus. The results are compared to those of SAE 660 leaded bearing bronze. Wear loss of these materials increased with sliding distance, pressure and sliding velocity, but decreased slightly with oil flow rate. The relationships between operating conditions and lubricated wear properties of Zn-30Al-3Cu alloy were determined by nonlinear regression analysis of the experimental data. Lubricated wear behavior of the zinc-based alloy was discussed in terms its microstructure and mechanical properties, and test conditions.
Go to article

Authors and Affiliations

Temel Savaşkan
1
ORCID: ORCID
Hasan Onur Tan
2
ORCID: ORCID

  1. Haliç University, Department of Mechanical Engineering, 34060 Eyüpsultan, Istanbul, Turkey
  2. Giresun University, Department of Mechanical Engineering, 28200, Giresun, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The paper studied the tribological behaviour of electro discharge deposited ZE41A magnesium alloy using wear map. The wear experiments are conducted using pin on disc technique for different parameters such as applied load (1.5 kg-3.5 kg), sliding speed (100 rpm-200 rpm) and sliding time (3 min-7 min). Wear mechanism map is constructed by taking the applied load on y-axis and sliding speed on x-axis. The wear mechanism map is utilized to study the dominance of particular wear mechanism that dominates particular wear regimes such as mild wear, severe wear and ultra severe wear. It is observed that the wear rate increased with increased the applied load and sliding speed. Various mechanisms such as abrasion, oxidation, delamination and melting are identified through scanning electron microscope (SEM).
Go to article

Authors and Affiliations

U. Elaiyarasan
1
ORCID: ORCID
V. Satheeshkumar
2
ORCID: ORCID
C. Senthilkumar
3
ORCID: ORCID

  1. Department of Automobile Engineering, Easwari Engineering College, Chennai, India-600089
  2. Department of Mechanical Engineering, Government College of Engineering, Salem, India-636011
  3. Department of Mechanical Engineering, University College of Engineering, Panruti-607106, India
Download PDF Download RIS Download Bibtex

Abstract

The main reason of a cavitational destruction is the mechanical action of cavitation pulses onto the material’s surface. The course

of cavitation destruction process is very complex and depends on the physicochemical and structural features of a material. A resistance

to cavitation destruction of the material increases with the increase of its mechanical strength, fatigue resistance as well as hardness.

Nevertheless, the effect of structural features on the material’s cavitational resistance has been not fully clarified. In the present paper,

the cavitation destruction of ZnAl4 as cast alloy was investigated on three laboratory stands: vibration, jet-impact and flow stands.

The destruction mechanism of ZnAl4 as cast alloy subjected to cavitational erosion using various laboratory stands is shown in the present

paper.

Go to article

Authors and Affiliations

R. Jasionowski
D. Zasada
W. Polkowski
Download PDF Download RIS Download Bibtex

Abstract

The welding technologies are widely used for design of protection layer against wear and corrosion. Hardfacing, which is destined for

obtaining coatings with high hardness, takes special place in these technologies. One of the most effective way of hardfacing is using self

shielded flux cored arc welding (FCAW-S). Chemical composition obtained in flux cored wire is much more rich in comparison to this

obtained in solid wire. The filling in flux cored wires can be enriched for example with the mixture of hard particles or phases with

specified ratio, which is not possible for solid wires. This is the reason why flux cored wires give various possibilities of application of this

kind of filler material for improving surface in mining industry, processing of minerals, energetic etc. In the present paper the high

chromium and niobium flux cored wire was used for hardfacing process with similar heat input. The work presents studies of

microstructures of obtained coatings and hardness and geometric properties of them. The structural studies were made with using optical

microscopy and X- ray diffraction that allowed for identification of carbides and other phases obtained in the structures of deposited

materials. Investigated samples exhibit differences in coating structures made with the same heat input 4,08 kJ/mm. There are differences

in size, shape and distribution of primary and eutectic carbides in structure. These differences cause significant changes in hardness of

investigated coatings.

Go to article

Authors and Affiliations

M. Gucwa
J. Winczek
M. Dośpiał
R. Bęczkowski
Download PDF Download RIS Download Bibtex

Abstract

This study manufactured a SiC coating layer using the vacuum kinetic spray process and investigated its microstructure and wear properties. SiC powder feedstock with a angular shape and average particle size of 37.4 μm was used to manufacture an SiC coating layer at room temperature in two different process conditions (with different degrees of vacuum). The thickness of the manufactured coating layers were approximately 82.4 μm and 129.4 μm, forming a very thick coating layers. The SiC coating layers consisted of α-SiC and β-SiC phases, which are identical to the feedstock. Cross-sectional observation confirmed that the SiC coating layer formed a dense structure. In order to investigate the wear properties, ball crater tests were performed. The wear test results confirmed that the SiC coating layer with the best wear resistance achieved approximately 4.16 times greater wear resistance compared to the Zr alloy. This study observed the wear surface of the vacuum kinetic sprayed SiC coating layer and identified its wear mechanism. In addition, the potential applications of the SiC coating layer manufactured using the new process were also discussed.

Go to article

Authors and Affiliations

Gi-Su Ham
Kyu-Sik Kim
Kee-Ahn Lee
Download PDF Download RIS Download Bibtex

Abstract

In spite of the fact that in most applications, magnesium alloys are intended for operation in environments with room temperature, these

alloys are subject to elevated temperature and oxidizing atmosphere in various stages of preparation (casting, welding, thermal treatment).

At present, the studies focus on development of alloys with magnesium matrix, intended for plastic forming. The paper presents results of

studies on oxidation rate of WE43 and ZRE1 magnesium foundry alloys in dry and humidified atmosphere of N2+1%O2. Measurements of

the oxidation rate were carried out using a Setaram thermobalance in the temperature range of 350-480°C. Corrosion products were

analyzed by SEM-SEI, BSE and EDS. It was found that the oxide layer on the WE43 alloy has a very good resistance to oxidation. The

high protective properties of the layer should be attributed to the presence of yttrium in this alloy. On the other hand, a porous, two-layer

scale with a low adhesion to the substrate forms on the ZRE1 alloy. The increase in the sample mass in dry gas is lower than that in

humidified gas.

Go to article

Authors and Affiliations

R. Przeliorz
J. Piątkowski

This page uses 'cookies'. Learn more