Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a short description of the model of the phenomenon of droplet spreading in presence of a liquid film, as well as the experimental facility, calculations methodology and results of experimental research concerning determination of the boundary angle at which droplet begins to slide on the horizontal or inclined surface of the plate. Values of boundary angle have been applied to estimate the microscopic dynamic advanced angle of the droplet on the flat surface in presence of a liquid film.
Go to article

Authors and Affiliations

Zbigniew Zapałowicz
Download PDF Download RIS Download Bibtex

Abstract

Determination of the physico-chemical interactions between liquid and solid substances is a key technological factor in many industrial processes in metallurgy, electronics or the aviation industry, where technological processes are based on soldering/brazing technologies. Understanding of the bonding process, reactions between materials and their dynamics enables to make research on new materials and joining technologies, as well as to optimise and compare the existing ones. The paper focuses on a wetting force measurement method and its practical implementation in a laboratory stand – an integrated platform for automatic wetting force measurement at high temperatures. As an example of using the laboratory stand, an analysis of Ag addition to Cu-based brazes, including measurement of the wetting force and the wetting angle, is presented.

Go to article

Authors and Affiliations

Marcin Bąkała
Rafał Wojciechowski
Dominik Sankowski
Adam Rylski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the experimental results on the determination of melt parameters such as the energy of the boundary, contact angle, density and kinematic viscosity of low and medium alloy steels at different temperatures, as well as the dispersion of their dendritic structure in solidified castings. The analysis of the data obtained allowed revealing using mathematical models the influence of the chemical composition and temperature of melts on their properties and the dendritic structure of castings. It was established the variation of the melt parameters depending on the particular chemical elements of steels as C, Si, Mn, O, P, V, Cr. The established analytical dependences shown that increasing density and viscosity contributes to the dispersion of the dendritic structure and viscosity is of the major effect. The derived quantitative patterns allows to evaluate structure formation of cast structural low and medium alloy steels.
Go to article

Bibliography

[1] Volmer, M. (1939). Kinetik der Phasenbildung. Dresden, Leipzig, Steinkopf.
[2] Frank, F. (1949). Model grow crystallization. Discusion of the Faraday Society. 5, 48-54.
[3] Frenkel, Ya.I. (1975). Kinetic theory of liquid. M.: Publishing House of the Academy of Sciences of the USSR.
[4] Wilson, D.P. (1965) Structure of liquid metals and alloys. Metallurgical Reviews, 10(1), 381-590.
[5] Cao, Y.F., Chen, Y., Ma, X.P., Fu, P.X., Kang, X.H., Liu, H.W., Li, D.Z. (2016). The effect of alloy elements on the density variation of steel melt at the interdendritic region during solidification. In 4th International Conference on Advances in Solidification Processes (ICASP-4). IOP Conf. Series: Materials Science and Engineering, 8-11 July 2014 (pp. 1-7).
[6] Arsentiev, P.P., Koledov, L.A. (1976). Metallicheskie rasplavy i ih svojstva [Metal melts and their properties]. Moskva: Metallurgiya [In Russian].
[7] Ershov, G.S., Bychkov, Yu.B. (1982). Fiziko-himicheskie osnovy racionalnogo legirovaniya stalej i splavov [Physical and chemical bases of rational alloying of steels and alloys]. Moskva: Metallurgiya [In Russian].
[8] Ryzhonkov, D.I., Arsentiev, V.V., Yakovlev, V.V. (1989). Teoriya metallurgicheskih processov [Theory of metallurgical processes]. Moskva: Metallurgiya [In Russian].
[9] Kupriyanov, A.A. & Filippov, S.I. (1968). Density and structural changes of iron and alloys of iron with carbon. Izv.vuz. Ferrous metallurgy. 9, 10-15.
[10] Ershov, G.S., Bychkov, Yu.B. (1983). Svojstva metallurgicheskih rasplavov i ih vzaimodejstvie v staleplavilnyh processah [Properties of metallurgical melts and their interaction in steelmaking processes]. Moskva: Metallurgiya [In Russian].
[11] Goldstein, Ya.E., Mizin, V.G. (1986). Modificirovanie i mikrolegirovanie chuguna i stali [Modification and microalloying of cast iron and steel]. Moskva: Metallurgiya [In Russian].
[12] Grigoryan, V.A., Belyanchikov, L. N., Stomakhin, A.Ya. (1987). Teoreticheskie osnovy elektrostaleplavilnyh processov [Theoretical fundamentals of electric steelmaking processes]. Moskva: Metallurgiya [In Russian].
[13] Baum B.A. (1979). Metallicheskie zhidkosti - problemy i gipotezy [Metallic liquids - problems and hypotheses]. Moskva: Nauka [In Russian].
[14] Feng, G., Jiao, K., Zhang, J. & Gao, S. (2021). High-temperature viscosity of iron‑carbon melts based on liquid structure: The effect of carbon content and temperature. Journal of Molecular Liquids. 330, 115603, 1-10. https://doi.org/10.1016/j.molliq.2021.115603.
[15] Turnbull, D. & Fisher, J.C. (1949). Rate of Nucleation in Condensed Systems. Journal of Chemical Physics. 17, 71.
[16] Popel, S.I. (1971). Teoriya metallurgicheskih processov [Theory of metallurgical processes]. Moskva: VINITI [In Russian].
[17] Efimov, V.A., Eldarkhanov A.S. (2004). Tehnologii sovremennoj metallurgii [Technologies of modern metallurgy]. Moskva: Novye tehnologii [In Russian].
[18] Volmer, M.I., Mаnder, M. (1931). Journal of Chemical Physics. A154, 97.
[19] Flemings, M. (1974). Solidification processing. New York: Mc Graw – Hill book company.
[20] Hilling, W.B., Turnbull, D. (1956) Theory of Crystal Growth in Undercooled Pure Liquids. Journal of Chemical Physics. 24(4), 914.
[21] Turnbull, D. (1949). Thermodynamics in Metallurgy, ASM, Metals Park, Ohio.
[22] Baum, B.A. (1988). About of the relationship of liquid and solid metallic states. Rasplavy. 2(2), 18-32.
[23] Arsentiev, P.P., Yakovlev, V.V., Krashennikov, M.G. (1988). Fiziko-himicheskie metody issledovaniya metallurgicheskih processov [Physico-chemical methods for studying metallurgical processes]. Moskva: Metallurgiya [In Russian].
[24] Shvedkov, E.L. (1975). Elementarnaya matematicheskaya statistika v eksperimentalnyh zadachah materialovedeniya [Elementary mathematical statistics in experimental problems of materials science]. Kiev: Naukova dumka [In Russian].
[25] ImageJ. Image Processing and Analysis in Java. Retrieved September 11, 2023 from: https://imagej.nih.gov/ij/.
[26] Vitol, E.N. & Orlova K.B. (1984). About the energy of the boundary of liquid metals. Izv. USSR Academy of Sciences Metals. 4, 37-42.
[27] Svidunovich, N.A., Glybin, V.P., Svirko, L.K. (1989). Vzaimodejstvie komponentov v splavah [Interaction of components in alloys]. Moskva: Metallurgiya [In Russian].
[28] Chalmers, B. (1968). Teoriya zatverdevaniya [Theory of Solidification]. Moskva: Metallurgiya [In Russian].  


Go to article

Authors and Affiliations

Y. Aftandiliants
1
ORCID: ORCID
S. Gnyloskurenko
1 2
ORCID: ORCID
H. Meniailo
3
ORCID: ORCID
V. Khrychikov
3
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Ukraine
  2. Physical and Technological Institute of Metals and Alloys, National Academy of Sciences of Ukraine, Ukraine
  3. Ukrainian State University of Science and Technologies, Ukraine

This page uses 'cookies'. Learn more