Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work summarizes efficiency measurement results of a full bridge, 3 phase inverter composed of state-of-the-art Si IGBT transistors and Si or SiC diodes. Different (symmetrical and discontinuous) space vector modulation strategies were chosen in order to examine their influence (together with modulation frequency) on inverter losses. Induction machine was used as load, different load points were examined. Results clearly show, that proper modulation strategy, minimizing the switching losses of semiconductor switches, can increase the overall output efficiency at about 1% in case of both silicon and hybrid constructions. The drawback of DPWM approach is connected with the decreased quality of inverter output current. Hybrid technology can also improve the output efficiency at about 1% when compared to traditional constructions, but only in case of elevated switching frequencies. At low frequencies (below 10 kHz) modern semiconductor offer comparable results at much lower device costs.

Go to article

Authors and Affiliations

Michał Bonisławski
Marcin Hołub
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of investigations concerning the application of zinc oxide - a wideband gap semiconductor in optical planar waveguide structures. ZnO is a promising semiconducting material thanks to its attractive optical properties. The investigations were focused on the determination of the technology of depositions and the annealing of ZnO layers concerning their optical properties. Special attention was paid to the determination of characteristics of the refractive index of ZnO layers and their coefficients of spectral transmission within the UV-VIS-NIR range. Besides that, also the mode characteristics and the attenuation coefficients of light in the obtained waveguide structures have been investigated. In the case of planar waveguides, in which the ZnO layers have not been annealed after their deposition, the values of the attenuation coefficient of light modes amount to a~ 30 dB/cm. The ZnO layers deposited on the heated substrate and annealed by rapid thermal annealing in an N2 and O2 atmosphere, are characterized by much lower values of the attenuation coefficients: a~ 3 dB/cm (TE0 and TM0 modes). The ZnO optical waveguides obtained according to our technology are characterized by the lowest values of the attenuation coefficients a encountered in world literature concerning the problem of optical waveguides based on ZnO. Studies have shown that ZnO layers elaborated by us can be used in integrated optic systems, waveguides, optical modulators and light sources.

Go to article

Authors and Affiliations

Przemysław Struk
Tadeusz Pustelny
Krystyna Gołaszewska
Michał A. Borysiewicz
Eliana Kamińska
Tomasz Wojciechowski
Anna Piotrowska
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, there is a trend to employ adaptive solutions in mobile communication. The adaptive transmission systems seem to answer the need for highly reliable communication that serves high data rates. For efficient adaptive transmission, the future Channel State Information (CSI) has to be known. The various prediction methods can be applied to estimate the future CSI. However, each method has its bottlenecks. The task is even more challenging while considering the future 5G/6G communication where the employment of sub-6 GHz and millimetre waves (mmWaves) in narrow-band, wide-band and ultra-wide-band transmission is considered. Thus, author describes the differences between sub-6 GHz/mmWave and narrow-band/wide-band/ultrawide- band channel prediction, provide a comprehensive overview of available prediction methods, discuss its performance and analyse the opportunity to use them in sub-6 GHz and mmWave systems. We select Long Short-Term Memory Recurrent Neural Network (RNN) as the most promising technique for future CSI prediction and propose optimising two of its parameters - the number of input features, which was not yet considered as an opportunity to improve the performance of CSI prediction, and the number of hidden layers.
Go to article

Authors and Affiliations

Maciej Soszka
1

  1. Institute of Radioelectronics and Multimedia Technology, Warsaw University of Technology, Warsaw, Poland

This page uses 'cookies'. Learn more