Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Predicting the permeability of different regions of foundry cores and molds with complex geometries will help control the regional outgassing, enabling better defect prediction in castings. In this work, foundry cores prepared with different bulk properties were characterized using X-ray microtomography, and the obtained images were analyzed to study all relevant grain and pore parameters, including but not limited to the specific surface area, specific internal volume, and tortuosity. The obtained microstructural parameters were incorporated into prevalent models used to predict the fluid flow through porous media, and their accuracy is compared with respect to experimentally measured permeability. The original Kozeny model was identified as the most suitable model to predict the permeability of sand molds. Although the model predicts permeability well, the input parameters are laborious to measure. Hence, a methodology for replacing the pore diameter and tortuosity with simple process parameters is proposed. This modified version of the original Kozeny model helps predict permeability of foundry molds and cores at different regions resulting in better defect prediction and eventual scrap reduction.
Go to article

Bibliography

[1] Jorstad, J., Krusiak, M.B., Serra, J.O., La Fay, V. (2018). Aggregates and binders for expendable molds. Casting. 528-548. https://doi.org/10.31399/asm.hb.v15.a0005242.
[2] Campbell, J., Svidró, J.T. & Svidró, J. (2017). Molding and Casting Processes. In Doru M. Stefanescu (Eds.), Cast Iron Science and Technology (pp. 189-206). ASM International. https://doi.org/10.31399/asm.hb.v01a.a0006297.
[3] Ramakrishnan, R., Griebel, B., Volk, W., Günther, D. & Günther, J. (2014). 3D printing of inorganic sand moulds for casting applications. Advanced Materials Research. 1018, 441-449. https://doi.org/10.4028/www.scientific.net/AMR.1018.441.
[4] Dańko, R. & Jamrozowicz, Ł. (2017). Density distribution and resin migration investigations in samples of sand core made by blowing method. Journal of Casting & Materials Engineering. 1(3), 70-73. https://doi.org/10.7494/ jcme.2017.1.3.70.
[5] Lannutti, J.J., Mobley, C.E. (2003). Improvements in Sand Mold/Core Technology: Effects on Casting Finish. Final Technical Report, The Ohio State University, Columbus, OH.
[6] Korotchenko, A.Y., Khilkov, D.E., Khilkova, A.A. & Tverskoy, M.V. (2020). Improving the quality of production of sand core on core shooting machines. Materials Science Forum. 989, 589-594. https://doi.org/10.4028/www.scientific.net/MSF.989.589.
[7] Winartomo, B., Vroomen, U., Bührig-Polaczek, A. & Pelzer, M. (2005). Multiphase modelling of core shooting process. International Journal of Cast Meterials Research. 18(1), 13-20. https://doi.org/10.1179/136404605225022811.
[8] Thorborg, J., Wendling, J., Klinkhammer, J., Heitzer, M. (2023). Modelling hot distortion of inorganic bonded sand cores and application on complex 3D printed automotive cores, IOP Conference Series: Materials Science and Engineering. 1281(1), 012069. https://doi.org/10.1088/1757-899x/1281/1/012069.
[9] Muskat, M. (1937). The flow of fluids through porous media, Journal of Applied Physics. 8(4), 274-282. https://doi.org/10.1063/1.1710292.
[10] Campbell, J. (2011). Molds and cores. Complete Casting Handbook. 1, 155-186. https://doi.org/10.1016/b978-1-85617-809-9.10004-0.
[11] Marks, B., Sandnes, B., Dumazer, G., Eriksen, J.A. Måløy, K.J. (2015). Compaction of granular material inside confined geometries, Frontiers in Physics. 3, 1-9. https://doi.org/10.3389/fphy.2015.00041.
[12] Bargaoui, B., Azzouz, F., Thibault, D. & Cailletaud, G. (2017). Thermomechanical behavior of resin bonded foundry sand cores during casting. Journal of Materials Processing Technology. 246, 30-41. https://doi.org/10.1016/j.jmatprotec. 2017.03.002.
[13] Mitra, S., EL Mansori, M., Rodríguez de Castro, A. & Costin, M. (2020). Study of the evolution of transport properties induced by additive processing sand mold using X-ray computed tomography. Journal of Materials Processing Technology. 277 116495. https://doi.org/10.1016/ j.jmatprotec.2019.116495.
[14] Ettemeyer, F., Lechner, P., Hofmann, T., Andrä, H., Schneider, M., Grund, D., Volk, W. & Günther, D. (2020). Digital sand core physics: Predicting physical properties of sand cores by simulations on digital microstructures. Internatiol Journal of Solids Structures. 188-189, 155-168. https://doi.org/10.1016/j.ijsolstr.2019.09.014.
[15] Neithalath, N., Sumanasooriya, M.S. & Deo, O. (2010). Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Materials Characterization 61(8), 802-813. https://doi.org/10.1016/j.matchar.2010.05.004.
[16] Das, S., Stone, D., Convey, D. & Neithalath, N. (2014). Pore- and micro-structural characterization of a novel structural binder based on iron carbonation, Materials Characterization. 98, 168-179. https://doi.org/10.1016/j.matchar.2014.10.025.
[17] Landis, E.N. & Keane, D.T. (2010). X-ray microtomography. Materials Characterization. 61(12), 1305-1316. https://doi.org/10.1016/j.matchar.2010.09.012. [18] Scheidegger, A.E.. (1957). The physics of flow through porous media. University of Toronto press.
[19] H. Darcy. (1856). Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau. Paris.
[20] da Silva, M.T.Q.S., do Rocio Cardoso, M., Veronese, C.M.P. & Mazer, W. (2022). Tortuosity: A brief review. Materials Today: Proceedings. 58(4), 1344-1349. https://doi.org/10.1016/j.matpr.2022.02.228.
[21] Kadhim, F.S., Samsuri, A. & Kamal, A. (2013). A review in correlations between cementation factor and carbonate rocks properties. Life Science Journal. 10(4), 2451-2458.
[22] Nield, D.A., Bejan, A. (2012). Convection in porous media: Springer Fourth edition. https://doi.org/10.1007/978-1-4614-5541-7.
[23] Costa, A. (2006). Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters. 33(2), 1-5. https://doi.org/10.1029/2005GL025134.
[24] Slichter, C.S. (1899). Theoretical investigation of the motion of ground waters. Geological Survey (U.S.). Ground Water Branch.
[25] Leibenzon, L.S. (1947). Dvizhenie prirodnykh zhidkostei i gazov v poristoi srede. In The Motion of Natural Liquids and Gases in a Porous Medium. Gostekhizdat, Moscow.
[26] Sundaram, D., Svidró, J.T., Svidró, J. & Diószegi, A. (2021). On the relation between the gas-permeability and the pore characteristics of furan sand. Materials. 14(14), 3803, 1-14. https://doi.org/10.3390/ma14143803.
[27] Sundaram, D., Svidró, J.T., Svidró, J. & Diószegi, A. (2022). A novel approach to quantifying the effect of the density of sand cores on their gas permeability. Joranl of Casting & Materials Engineering. 6(2), 33-38. https://doi.org/10.7494/jcme.2022.6.2.33.
[28] Costanza-Robinson, M.S. Estabrook, B.D. & Fouhey, D.F. (2011). Representative elementary volume estimation for porosity, moisture saturation, and air-water interfacial areas in unsaturated porous media: Data quality implications. Water Resources Reserch. 47(7), 1-12. https://doi.org/10.1029/2010WR009655.
[29] Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods. 9, 676-682. https://doi.org/10.1038/nmeth.2019.
[30] Grace, J.R., Ebneyamini, A. (2021). Connecting particle sphericity and circularity. Particuology. 54, 1-4. https://doi.org/10.1016/j.partic.2020.09.006.
[31] Vincent, L., Soille, P. (1991). Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis & Machine Intelligence. 13(06), 583-598. https://doi.org/10.1109/34.87344.
[32] Domander, R. Felder, A.A., Doube, M., Schmidt, D. (2021). BoneJ2 - refactoring established research software. Wellcome Open Research. 6, 1–21.
[33] Dougherty, R., Kunzelmann, K.-H. (2007). Computing Local Thickness of 3D Structures with ImageJ. Microscopy Microanalysis. 13(S02), 1678-1679. https://doi.org/10.1017/ s1431927607074430.
[34] Schmid, B., Schindelin, J., Cardona, A., Longair, M. & Heisenberg, M. (2010). Open Access SOFTWARE A high-level 3D visualization API for Java and ImageJ. BMC Bioinformatics. 11, 274, 1-7. http://www.biomedcentral.com /1471-2105/11/274.
[35] Nimmo, J.R. (2004). Porosity and Pore Size Distribution. In Hillel, D.(Eds.), Encyclopedia of Soils in the Environment. London, Elsevier,.
[36] Glover, P.W.J., Walker, E. (2009). Grain-size to effective pore-size transformation derived from electrokinetic theory. Geophysics. 74(1), E17-E29. https://doi.org/10.1190/ 1.3033217.
[37] Graton, L.C. & Fraser, H.J. (1935). Systematic Packing of spheres: with particular relation to porosity and permeability. The Journal of Geology. 43(8), 1, 785-909. http://www.jstor.org/stable/30058420.
[38] Holzer, L., Marmet, P., Fingerle, M., Wiegmann, A., Neumann, M., Schmidt, V. (2023). Tortuosity and microstructure effects in porous media. Springer Cham. https://doi.org/10.1007/978-3-031-30477-4.
Go to article

Authors and Affiliations

D. Sundaram
1
ORCID: ORCID
T. Matsushita
1
ORCID: ORCID
I. Belov
1
A. Diószegi
1
ORCID: ORCID

  1. School of Engineering, Jönköping University, Sweden
Download PDF Download RIS Download Bibtex

Abstract

A rich collection of exceptionally preserved Lower Triassic fossil fish remains obtained during the Polish Spitsbergen Expedition of 2005 includes many isolated teeth believed to belong to a saurichthyid actinopterygian. Stable isotope analysis ( d 13 C and d 18 O) of putative Saurichthys teeth from the Hornsund area (South Spitsbergen) acting as a paleoenvironmental proxy has permitted trophic−level reconstruction and comparison with other Lower Triassic fish teeth from the same location. The broader range of d 13 C values obtained for durophagous teeth of the hybodont selachian, Lissodus , probably reflects its migratory behaviour and perhaps a greater feeding diversity. X−ray microcomputed tomography (XMT), a non−destructive technique, is used for the first time in order to elucidate de − tails of tooth histology, the results of which suggest that the method has considerable potential as a future analytical tool.
Go to article

Authors and Affiliations

Błażej Błażejowski
Christopher J. Duffin
Piotr Gieszcz
Krzysztof Małkowski
Marcin Binkowski
Michał Walczak
Samuel A. McDonald
Philip J. Withers

This page uses 'cookies'. Learn more