Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Three different types of Fe(II)-modified natural zeolites were tested as supports in continuous-flow columns for the treatment of Cr(VI) contaminated water. The natural zeolites chosen as support were commercially available Zeosand (80% clinoptilolite), ATZ (79% phillipsite/chabazite), and ZS-55RW (90% Chabazite). All the examined modified zeolites turned out active for hexavalent chromium abatement, lowering its concentration below the European regulation level, even at relatively high flow rates (40 mL/h, linear velocity 15 cm/h). Zeosand, having a broader pH range of stability, was found to be the best one in terms of both Fe(II) uptake (0.54 wt%) and Cr removal (90 mg Cr/Kg zeolite).

Go to article

Authors and Affiliations

Antonio Lofù
Piero Mastrorilli
Maria Michela Dell’Anna
Matilda Mali
Raffaello Sisto
Rodolfo Vignola
Download PDF Download RIS Download Bibtex

Abstract

The reduction of mercury emissions in currently existing coal-based power plant solutions by each method i.e. preliminary, primary and secondary (consisting of introducing coal into the combustion chamber and then removing mercury from the combustion gases arising from the combustion process) does not solve the problem of achieving the required limits by power plants. Therefore, the need has arisen to look for new, effective solutions.

The results presented in the work concern the analysis of environmental benefits for the use of zeolites obtained from by-products of coal combustion such as fly ash (from hard coal and lignite) in technologies for removing gaseous forms of mercury. The tested zeolites were silver-modified X-type structures. The reference material in the considerations was active carbon impregnated with bromine – a commercially available sorbent on the market.

The article considers environmental benefits resulting from the use of tested zeolites taking the product life cycle, sorbent efficiency and the possibility of its regeneration compared to activated carbon (AC/Br) into account. The LCA analysis was performed taking the estimated material and energy balances of the manufacturing processes into account. When comparing the production process of type X zeolite materials on the processing line and activated carbons in the amount necessary to capture 375 g Hg from exhaust gases, the LCA analysis showed that zeolites contribute to a lower potential impact on the environment. The advantage is that 5 times less zeolite sorbent than activated carbons is needed to capture the same amount of mercury. In addition, zeolite materials can be regenerated, which extends their life time

Go to article

Authors and Affiliations

Łukasz Lelek
Magdalena Wdowin
ORCID: ORCID
Rafał Panek
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study was to evaluate the effects of dietary zeolite clinoptilolite on re- productive performance, serum progesterone and insulin-like growth factor 1 (IGF-1) concentra- tions in 78 Holstein Friesian (HF) cows during pregnancy and lactation. The cows were divided into two groups comprising 40 (control group; CON) and 38 (CPL group) cows. To assess repro- ductive performance of HF cows the following variables were registered: the interval from calv- ing to first insemination (days open to first service, DFS), the interval from calving to pregnancy (days open to pregnancy, DOP), and the number of services per pregnancy (NSP). The average values of progesterone (5.64±0.59 ng/mL vs. 5.16±0.64 ng/mL) were not statistically different (p<0.05) and IGF-1 levels (400.17±17.72 ng/mL vs. 348.36±20.39 ng/mL) were higher in the CON than in the CPL group which received 50 g of clinoptilolite twice a day. However, in the CPL group ovarian cyclity resumed on days 40 and 60 postpartum. In addition, DFS (p<0.05) and DOP (p>0.05) were shorter in the CPL than in the CON group (115.1±19.9 and 137.5±36.3 days vs. 124.2±17.3 and 143.8±33.5 days, respectively). During 305 days of lactation, milk production was higher in the CPL vs. CON (8325.5±628.8 kg vs. 8050±586.8 kg). The NSP was lower in the CPL than in CON group (1.91 vs. 2.14). The dietary clinoptilolite supplement had a positive in- fluence on milk yield, exhibited modulating effects on endocrine status of dairy cows, and im- proved reproductive performance, with the decreased NSP, and fewer DFS and DOP.

Go to article

Authors and Affiliations

D. Đuričić
S. Vince
M. Lojkić
S. Jelušić
R. Turk
H. Valpotić
D. Gračner
N. Maćešić
I. Folnožić
Z. Šostar
M. Samardžija
Download PDF Download RIS Download Bibtex

Abstract

Calf diarrhea continues to be the major problem of calves in the neonatal period. The effect of zeolites has been increasingly studied in ruminant health in recent years. In the present study, the efficacy of cristobalite, a zeolite, in neonatal calf diarrhea was studied first time. For this purpose, twenty-five neonatal calves with diarrheas were divided into two groups, and Group 1 (n=12) received conventional treatment and Group 2 (n=13) received cristobalite (Zoosorb 10 mg/kg) orally 3 times a day in addition to conventional treatment. Escherichia coli k99 and CS31a, bovine rotavirus and bovine coronavirus were isolated from fecal samples at the beginning of the treatment, on the third day and before discharge. It was determined that the recovery period in Group 2 was 0.95 (20.6%) days shorter than in Group 1 (p<0.05) while no viral agents were found on the fifth day in Group 2, viral shedding continued in 4 of 5 calves in Group 1. In conclusion, the study revealed that cristobalite speeds the recovery time and possibly decreases viral shedding in neonatal calf diarrhea, demonstrating a remarkable efficiency in the treatment.
Go to article

Authors and Affiliations

U. Ozcan
1
M.G. Sezener
2
B.U. Sayilkan
1
E. Kulluk
1
A. Akman
3
H. Cetiner
1
V.E. Erguden
2
S. Yaman
2
S. Gumusova
4
A. Ciftci
2
Y. Meral
1
D. Dalgın
1

  1. Department of Internal Medicine, Faculty of Veterinary Medicine, Ondokuz Mayis University, TR-55200, Samsun, Turkey
  2. Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, TR-55200, Samsun, Turkey
  3. Samsun Veterinary Control Institute, TR-55200, Samsun, Turkey
  4. Department of Virology, Faculty of Veterinary Medicine,Ondokuz Mayis University, TR-55200, Samsun, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The paper concerns the utilization of hydrated lime and zeolites as additives in warm mix asphalt produced with foamed bitumen. The mentioned additives were added to the mixtures in exchange for specific quantities of mineral filler, which amounted to 0.4% and 1.2% of hydrated lime or 0.4% of water-modified and 1.0% of air-dry zeolites in mineral mix. The study investigated warm-produced mixtures with 4.5% and 4.8% binder content and production and compaction temperatures set at 120⁰C and 100⁰C respectively. Additionally, reference hot and warm mixtures were evaluated. The testing included: air void content, indirect tensile strength in dry state and after one freeze-thaw cycle as well as the resulting resistance to moisture and frost damage index. The mixtures incorporating hydrated lime and lower bitumen content of 4.5% exhibited increased air voids and mostly unchanged mechanical performance when compared to the reference warm mix. Increased bitumen content has resulted in significantly improved performance in moisture resistance and compactability which could be compared to that of the reference hot-produced mixture. On the other hand, the incorporation of zeolites in the foamed bitumen mixtures resulted in all cases in increased air void content in the samples. This has apparently led to decreased indirect tensile strength, in both the dry state and after the freeze-thaw cycle. Based on the results it was concluded that the production temperature of the zeolite-bearing mixtures was too low for the zeolite water to significantly improve the mix’ workability and therefore positively affect its mechanical parameters.
Go to article

Bibliography

  1.  A. Chomicz-Kowalska, W. Gardziejczyk, and M.M. Iwański, “Moisture resistance and compactibility of asphalt concrete produced in half- warm mix asphalt technology with foamed bitumen”, Constr. Build. Mater. 126, 108–118 (2016), doi: 10.1016/j.conbuildmat.2016.09.004.
  2.  A. Chomicz-Kowalska, W. Gardziejczyk, and M.M. Iwański, “Analysis of IT-CY Stiffness Modulus of Foamed Bitumen Asphalt Concrete Compacted at 95°C”, Procedia Eng. 172, 550–559 (2017), doi: 10.1016/j.proeng.2017.02.065.
  3.  M.R. Mohd Hasan, Z. You, and X. Yang, “A comprehensive review of theory, development, and implementation of warm mix asphalt using foaming techniques”, Constr. Build. Mater. 152, 115–133 (2017), doi: 10.1016/j.conbuildmat.2017.06.135.
  4.  E. Remišová and M. Holý, “Changes of Properties of Bitumen Binders by Additives Application”, in IOP Conf. Ser.: Mater. Sci. Eng. 245(3), 032003 (2017), doi: 10.1088/1757-899X/245/3/032003.
  5.  M. M. Iwański, A. Chomicz-Kowalska, and K. Maciejewski, “Effect of Surface Active Agent (SAA) on 50/70 Bitumen Foaming Characteristics”, Materials (Basel). 12(21), 3514, (2019), doi: 10.3390/ma12213514.
  6.  O. Larsen, Ø. Moen, C. Robertus, and B.G. Koenders, “WAM Foam asphalt production at lower operating temperatures as an environmental friendly alternative to HMA”, 3rd Eurasphalt Eurobitume Congr., 2004, pp. 641–650. [Online]. Available: http://www.shell.com/content/ dam/shell/static/bitumen/downloads/wam-field-test-resultseurasphaltcongress.pdf.
  7.  A. Chomicz-Kowalska and K. Maciejewski, “Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements”, J. Clean. Prod. 258, 120517 (2020), doi: 10.1016/j.jclepro.2020.120517.
  8.  F. Yin, E. Arambula, and D. E. Newcomb, “Effect of water content on binder foaming characteristics and foamed mixture properties”, Transp. Res. Rec. 2506, 1–7 (2015), doi: 10.3141/2506-01.
  9.  K. Maciejewski, “Wpływ rodzaju dodatku i starzenia krótkoterminowego na właściwości wysokotemperaturowe asfaltów drogowych przeznaczonych do mieszanek mineralno-asfaltowych wytwarzanych w technologii „na ciepło” z asfaltem spienionym wodą”, Ph.D Thesis, Kielce University of Technology, Kielce, 2019, [in Polish].
  10.  M. Iwański, G. Mazurek, and P. Buczyński, “Bitumen foaming optimisation process on the basis of rheological properties”, Materials (Basel). 11(10), 1854 (2018), doi: 10.3390/ma11101854.
  11.  A. Chomicz-Kowalska, K. Maciejewski, and M.M. Iwański, “Study of the Simultaneous Utilization of Mechanical Water Foaming and Zeolites and Their Effects on the Properties of Warm Mix Asphalt Concrete”, Materials (Basel). 13(2), 357 (2020), doi: 10.3390/ ma13020357.
  12.  E. Lippmaa, M. Mági, A. Samoson, M. Tarmak, and G. Engelhardt, “Investigation of the Structure of Zeolites by Solid-State High- Resolution 29Si NMR Spectroscopy”, J. Am. Chem. Soc. 103(17), 4992–4996 (1981), doi: 10.1021/ja00407a002.
  13.  A. Sassani, “A Multi-Scale Approach to Characterization of Volcanic Natural Pozzolans”, Middle East Technical University, Ankara, 2014.
  14.  A. Sassani, L. Turanlı, A.-H. Emwas, and Ç. Meral, “Mechanical performance, durability and aluminosilicate chain structure of high volume zeolitic natural pozzolan – portland cement based systems”, in Zeolite 2014 – 9th International Conference on the Occurrence, Properties and Utilization of Natural Zeolites, 2014, pp. 209–201.
  15.  N.Q. Feng and G.F. Peng, “Applications of natural zeolite to construction and building materials in China”, Constr. Build. Mater. 19(8), 579–584 (2005), doi: 10.1016/j.conbuildmat.2005.01.013.
  16.  B. Lai, C. Barros, and H. Yin, “Investigation of rheological behavior of asphalt binder modified by the Advera® additive”, in Poromechanics IV – 4th Biot Conference on Poromechanics, 2009, pp. 487–492.
  17.  A. Woszuk, R. Panek, J. Madej, A. Zofka, and W. Franus, “Mesoporous silica material MCM-41: Novel additive for warm mix asphalts”, Constr. Build. Mater. 183, 270–274 (2018), doi: 10.1016/j.conbuildmat.2018.06.177.
  18.  A. Woszuk and W. Franus, “Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives”, Constr. Build. Mater. 114, 556–563 (2016), doi: 10.1016/j.conbuildmat.2016.03.188.
  19.  A. Woszuk and W. Franus, “A review of the application of zeolite materials in warm mix asphalt technologies”, Appl. Sci. 7(3), 293 (2017), doi: 10.3390/APP7030293.
  20.  A. Woszuk, A. Zofka, L. Bandura, and W. Franus, “Effect of zeolite properties on asphalt foaming”, Constr. Build. Mater. 139, 247–255 (2017), doi: 10.1016/j.conbuildmat.2017.02.054.
  21.  D.E. Newcomb et al., “Properties of foamed asphalt for warm mix asphalt applications. NCHRP Report 807”, Washington DC, 2015.
  22.  H. Gong, Y. Sun, W. Hu, P.A. Polaczyk, and B. Huang, “Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests”, Constr. Build. Mater. 204, 203–212 (2019), doi: 10.1016/j.conbuildmat.2019.01.198.
  23.  R. Ghabchi, D. Singh, and M. Zaman, “Laboratory evaluation of stiffness, low-temperature cracking, rutting, moisture damage, and fatigue performance of WMA mixes”, Road Mater. Pavement Des. 16(2), 334–357 (2015), doi: 10.1080/14680629.2014.1000943.
  24.  A. Chomicz-Kowalska, J. Mrugała, and K. Maciejewski, “Evaluation of Foaming Performance of Bitumen Modified with the Addition of Surface Active Agent”, in IOP Conf. Ser.: Mater. Sci. Eng. 245(3), 032086 (2017), doi: 10.1088/1757-899X/245/3/032086.
  25.  J. Komačka and E. Remišová, “Investigation of the Relation between Adhesion and Water Sensitivity Test Results”, Slovak J. Civ. Eng. 27(4), 1–6 (2019), doi: 10.2478/sjce-2019-0024.
  26.  L. Gungat, N. I. M. Yusoff, and M.O. Hamzah, “Effects of RH-WMA additive on rheological properties of high amount reclaimed asphalt binders”, Constr. Build. Mater. 114, 665–672 (2016), doi: 10.1016/j.conbuildmat.2016.03.182.
  27.  M. Stienss and C. Szydlowski, “Influence of Selected Warm Mix Asphalt Additives on Cracking Susceptibility of Asphalt Mixtures”, Materials (Basel). 13(1), 202 (2020), doi: 10.3390/ma13010202.
  28.  K. Kowalski, J. Król, W. Bańkowski, P. Radziszewski, and M. Sarnowski, “Thermal and Fatigue Evaluation of Asphalt Mixtures Containing RAP Treated with a Bio-Agent”, Appl. Sci. 7(3), 216 (2017), doi: 10.3390/app7030216.
  29.  M.M. Iwanski, A. Chomicz-Kowalska, and K. Maciejewski, “Resistance to moisture-induced damage of half-warm-mix asphalt concrete with foamed bitumen”, Materials (Basel). 13(3), 654 (2020), doi: 10.3390/ma13030654.
  30.  A. Chomicz-Kowalska, “Laboratory testing of low temperature asphalt concrete produced in foamed bitumen technology with fiber reinforcement”, Bull. Polish Acad. Sci. Tech. Sci. 65(6), 779‒790 (2017), doi: 10.1515/bpasts-2017-0086.
  31.  C.V. Chachas, W.J. Liddle, D.E. Peterson, and M.L. Wiley, “Use of hydrated lime in bituminous mixtures to decrease hardening of the asphalt cement (Report No. PB 213 170)”, 1971.
  32.  E. Seebaly, P.D.N. Little, and J. A. Epps, The Benefis of Hydrated Lime in Hot Mix Asphalt, The National Lime Association, Arlington, 2006.
  33.  J.C. Petersen, H. Plancher, and P.M. Harnsberger, “Lime Treatment of Asphalt to Reduce Age Hardening and Improve Flow Properties”, Assoc. Asph. Paving Technol. 56–87, 632–653 (1987).
  34.  M. Stroup-Gardiner and J.A. Epps, “Effect of lime on asphalt concrete pavement performance”, in Proceedings of the American Society Civil Engineers Materials Congress, 1990, pp. 921–930.
  35.  F. Luxemburg, “Lime Hydrate as an Additive to Improve the Adhesion of Bitumen to the Aggregates”, in Proc of the II International Conference Durable and Save Road Pavements, 1996, pp. 296–302.
  36.  D. Lesueur, J. Petit, and H. J. Ritter, “The mechanisms of hydrated lime modification of asphalt mixtures: A state-of-the-art review”, Road Mater. Pavement Des. 14(1), 1–16 (2013), doi: 10.1080/14680629.2012.743669.
  37.  M. Iwański, Wapno hydratyzowane wielofunkcyjnym dodatkiem zwiększającym trwałość nawierzchni SMA. Monograph M59. Kielce: Kielce University of Technology, 2014, [in Polish]
  38.  H. Plancher, E.L. Green, and J.C. Petersen, “Reduction of Oxidative Hardening of Asphalts By Treatment With Hydrated Lime – a Mechanistic Study”, in Proc Assoc Asphalt Paving Technol, 1976, vol. 45, pp. 1–24.
  39.  C. Gorkem and B. Sengoz, “Predicting stripping and moisture induced damage of asphalt concrete prepared with polymer modified bitumen and hydrated lime”, Constr. Build. Mater. 23(6), 2227–2236 (2009), doi: 10.1016/j.conbuildmat.2008.12.001.
  40.  M.M. Iwański, “Synergia wapna hydratyzowanego i asfaltu spienionego w zapewnieniu trwałości eksploatacyjnej betonu asfaltowego w technologii na półciepło”, Ph.D Thesis, Politechnika Świętokrzyska, 2019.
  41.  M. Kadela, “Model of multiple-layer pavement structure-subsoil system”, Bull. Polish Acad. Sci. Tech. Sci. 64(4), 751–762 (2016), doi: 10.1515/bpasts-2016-0084.
  42.  EN 13108-1:2008. Bituminous mixtures. Material specifications. Asphalt Concrete.
  43.  WT-2 2014. Asphalt mixes. Technical Requirements. Appendix to ordinance No. 54 of the General Director of National Roads and Highways, 8.11.2014, 2014.
  44.  EN 12591:2009. Bitumen and bituminous binders. Specifications for paving grade bitumens.
  45.  WT-1 2014. Aggregates for Asphalt Mixes and Surface Dressings on National Highways. Technical Requirements. Appendix to ordinance No. 46 of the General Director of National Roads and Highways, 25.09.2014, [Online]. Available: www.gddkia.gov.pl.
  46.  E. Szewczak, A. Winkler-Skalna, and L. Czarnecki, “Sustainable Test Methods for Construction Materials and Elements”, Materials (Basel). 13(3), 606 (2020), doi: 10.3390/ma13030606.
  47.  A. Chomicz-Kowalska and K. Maciejewski, “Multivariate optimization of recycled road base cold mixtures with foamed bitumen”, Procedia Eng. 108, 436–444 (2015), doi: 10.1016/j.proeng.2015.06.168.
Go to article

Authors and Affiliations

Anna Chomicz-Kowalska
1
ORCID: ORCID
Krzysztof Maciejewski
1
ORCID: ORCID
Mateusz Marek Iwański
1
ORCID: ORCID
Karolina Janus
1
ORCID: ORCID

  1. Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of hydrothermal zeolitization of fly ash from hard coal combustion in one of the Polish power plants. The synthesis was carried out using various NaOH fly ash mass ratio (3.0, 4.0 and 6.0) and the effect of NaOH concentration in the activating solution on composition of synthesized sample was tested. The process was carried out under the following permanent conditions temperature: 90°C, time – 16 hours, water solution of NaOH (L)/fly ash (g) ratio – 0.025. In the studied fly ash the dominant chemical components were SiO2 and Al2O3, while the main phase components were mullite, quartz and hematite, and a significant share of amorphous substance (glass and unburnt organic substance). After hydrothermal synthesis, the presence of unreacted fly ash phases was found in the products, as well as new phases, the quality and quantity of which depend on the NaOH to fly ash mass ratio used for synthesis:

 for ratio 3.0 – Na-LSX type zeolite and hielscherite,

 for ratio 4.0 – Na-LSX type zeolite, hielscherite and hydrosodalite,

 for ratio 6.0 – hydrosodalite and hielscherite.

The grains in all products of synthesis are poly-mineral. However, it was found that the new phases, overgrowing the unreacted phase components of fly ash, crystallize in a certain order. Hielscherite is the first crystallizing phase, on which the Na-LSX type zeolite crystallizes then, and the whole is covered by hydrosodalite. In the products of synthesis, the share of sodium-containing phases (the Na-LSX type zeolite and hydrosodalite) increases with the increasing concentration of NaOH in the solution used for the process.

Go to article

Authors and Affiliations

Zdzisław Adamczyk
ORCID: ORCID
Magdalena Cempa
ORCID: ORCID
Barbara Białecka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Zeolite has been successfully synthesized from clay and rice husk ash in the form of powder by using the hydrothermal method with variations in chemical compositions of alkaline solution and the amount of rice husk ash. The clay raw material was obtained from the Sidrap area of South Sulawesi and rice husk ash is obtained from the burning pile of rice husks. Sidrap clay and rice husk ash were activated using an alkaline solution of NaOH and varied rice husk ash and the addition of AlCl3. The addition of AlCl3, an alkaline solution of NaOH and H2O was used in the amount of 25.5 grams and variations of rice husk ash were 2.5 grams and 6.5 grams. Meanwhile, without the addition of AlCl3, an alkaline solution of NaOH and H2O was used for 20.5 grams and variations of rice husk ash from 2.5 grams and 6.5 grams. Then the mixture was then put into an autoclave with a temperature of 100°C for 3 hours. The basic material used in the manufacture of zeolite is carried out by X-ray Fluorescence (XRF) characterization to determine the constituent elements of basic material, which showed the content of SiO2 was 45.80 wt% in the clay and 93.40% in the rice husk ash. The crystalline structure of the zeolite formed was characterized by X-Ray Diffraction (XRD). It was found the resulting zeolite were identified as Zeolite-Y, Hydrosodalite, and ZSM-5. The microstructure properties of the resulting zeolite were determined by using Scanning Electron Microscopy (SEM).
Go to article

Authors and Affiliations

M. Armayani
1
ORCID: ORCID
Musdalifa Mansur
1
ORCID: ORCID
Reza Asra
1
ORCID: ORCID
Muh Irwan
1
ORCID: ORCID
Dhian Ramadhanty
1
ORCID: ORCID
Subaer Subaer
2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
ORCID: ORCID
Ikmal Hakem A. Aziz
3
ORCID: ORCID
B. Jeż
4
ORCID: ORCID
M. Nabiałek
4
ORCID: ORCID

  1. Universitas Muhammadiyah Sidenreng Rappang, Faculty of Sciences and Technology, Jl. Angkatan 45 lt. Salo No. 1A Macarowalie Rappang 91651, Indonesia
  2. Universitas Negeri Makassar, Faculty of Mathematics and Natural Sciences, Jl. Mallengkeri Raya Parang Tambung Kec Tamalate Kota Makassar 90224, Indonesia
  3. Universiti Malaysia Perlish (UniMAP), Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  4. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The issue of mercury emission and the need to take action in this direction was noticed in 2013 via the Minamata Convention. Therefore, more and more often, work and new law regulations are commencing to reduce this chemical compound from the environment. The paper presents the problem of removing mercury from waste gases due to new BREF/BAT restrictions, in which the problem of the need to look for new, more efficient solutions to remove this pollution was also indicated. Attention is paid to the problem of the occurrence of mercury in the exhaust gases in the elemental form and the need to carry out laboratory tests. A prototype installation for the sorption of elemental mercury in a pure gas stream on solid sorbents is presented. The installation was built as part of the LIDER project, financed by the National Center for Research and Development in a project entitled: “The Application of Waste Materials From the Energy Sector to Capture Mercury Gaseous Forms from Flue Gas”. The installation is used for tests in laboratory conditions in which the carrier gas of elemental mercury is argon. The first tests on the zeolite sorbent were made on the described apparatus. The tested material was synthetic zeolite X obtained as a result of a two-stage reaction of synthesis of fly ash type C with sodium hydroxide. Due to an increase, the chemical affinity of the tested material in relation to mercury, the obtained zeolite material was activated with silver ions (Ag+) by an ion exchange using silver nitrate (AgNO3). The first test was specified for a period of time of about 240 minutes. During this time, the breakthrough of the tested zeolite material was not recorded, and therefore it can be concluded that the tested material may be promising in the development of new solutions for capturing mercury in the energy sector. The results presented in this paper may be of interest to the energy sector due to the solution of several environmental aspects. The first of them is mercury sorption tests for the development of new exhaust gases treatment technologies. On the other hand, the second aspect raises the possibility of presenting a new direction for the management and utilization of combustion by-products such as fly ash.

Go to article

Authors and Affiliations

Piotr Kunecki
Dorota Czarna-Juszkiewicz
Rafał Panek
Magdalena Wdowin
Download PDF Download RIS Download Bibtex

Abstract

The insecticidal efficiency of Ag-loaded 4A-zeolite (ZAg) and its formulations with Rosmarinus officinalis essential oil (RO) was evaluated against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). For comparison, different rates of ZAg (0.25, 0.5, 0.75, and 1 g ⋅ kg–1 wheat) were used solely and in a combination with LC50 concentrations of RO. Mortality was assessed after 7, 14, and 21 days of insect exposure to treated wheat. The progeny production was also evaluated. The use of ZAg accomplished a complete mortality (100%) on S. oryzae and 96.67% on R. dominica as well as 100% mortality of progeny against the two insect species after the longest exposing duration (21 days), at the highest rate (1 g ⋅ kg–1). On the other hand, the complete mortalities of ZAg formulations on S. oryzae were obtained after 14 d of treatment with F1 formulation (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and after 7 days with the other tested formulations. In addition, the complete mortality on R. dominica was obtained only by F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulation after 14 days of treatment. Concerning the efficiency of the examined formulations on the progeny of S. oryzae, F1 (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and F2 (0.605 g ⋅ kg–1 RO + 0.5 g ⋅ kg–1 ZAg) formulations recorded 100% mortality. In addition, F3 (0.605 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F4 (0.605 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations suppressed the progeny production. Furthermore, the complete mortality of R. dominica progeny was obtained with F7 (0.059 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations. ZAg, especially its formulations with R. officinalis oil, had potential effects against two stored-product insects. F1 and F8 formulations could be treated efficiently on S. oryzae and R. dominica, respectively.

Go to article

Authors and Affiliations

Ahmed M. El-Bakry
Hanan F. Youssef
Nahed F. Abdel-Aziz
Elham A. Sammour
Download PDF Download RIS Download Bibtex

Abstract

This study examined the process of filtering of infiltrated water containing excessive amounts or iron, manganese, and fulvic acids through two filtration beds-sand and zeolite-exhibiting catalytic properties. The fulvic acids that were added to the filtered water were extracted from mud in Kołobrzeg. The zeolite bed was modified with manganese oxide using our own technology and required periodic regeneration using 0.3% KMnO, solution. Our study showed the fulvic acids' negative effect on the process of water purification. The zeolite bed reduces this effect and is more effective than the quartz sand bed.
Go to article

Authors and Affiliations

Anna M. Anielak
Mariusz Wojnicz
Download PDF Download RIS Download Bibtex

Abstract

Greenhouse gases such as carbon dioxide and water vapour can be captured from gas streams on a zeolite 13X adsorbent. Experimental water vapour adsorption isotherms and kinetic curves were measured in the temperature range of 293–393 K and pressure up to 2100 Pa. The equilibrium data were developed with Toth and Sips multi-temperature isotherm models. The results of the process rate studies were described using pseudo-first and pseudo-second order kinetic models. Findings were compared with our own results of CO2 adsorption studies on the same zeolite.

Go to article

Authors and Affiliations

Kamila Zabielska
Tomasz Aleksandrzak
Elżbieta Gabruś
Download PDF Download RIS Download Bibtex

Abstract

Zeolites, minerals with the formula Mx/n[AlO2]x(SiO2)y] zH2O, are environmentally friendly materials used as water treatment adsorbents, gas adsorbents, and petrochemical catalysts. This study used a mixture of aluminum black dross and waste glass to synthesize zeolites via a hydrothermal synthesis and analyzed the effects of varying reaction time on phase changes under different synthesis conditions. With increased reaction times, a phase change from zeolite Na-P1 to analcime was observed; on employing hydrothermal synthesis at 150°C for 96 h, the majority of the crystalline structures changed into analcime. Heavy metal cation adsorption was tested to assess the applicability of the synthesized analcime to water treatment. Zeolite adsorption of at least 95% was observed for both Pd and Cd ions. Although a higher level of adsorption was observed for Pb ion than Cd ion, Cd ion was demonstrated to undergo relatively faster adsorption when tested under optimal pulp density at the same level of adsorption (95%).
Go to article

Authors and Affiliations

Yubin Kang
1
ORCID: ORCID
Byoungyong Im
1
ORCID: ORCID
Jin-Ju Choi
1
ORCID: ORCID
Jin-Ho Yoon
1
ORCID: ORCID
Dae-Guen Kim
1
ORCID: ORCID

  1. Institute For Advanced Engineering, 17180, Goan-ro, 51 Beon-gil, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of the casting method for the production of porous composites, called syntactic foams, of the casting alloy - solid particles type. This method was used to produce composites based on Al alloys reinforced with particles of clinoptilolite, a natural mineral from the zeolite group. Before the casting process, tests were carried out on the morphology, physicochemical properties and chemical composition of the zeolite, which was obtained from a rock called zeolite tuff, mined in a quarry in Kucin, (VSK PRO-ZEO s.r.o., Slovakia). Observations of the microstructure of the produced composites were also carried out using a scanning electron microscope. Diffractometric tests of zeolite rock as delivered for research and of the produced samples reinforced with zeolite particles were also carried out. Initial studies of the density and porosity of the produced composites were performed. The usefulness of the presented method of composite production was assessed on the basis of the conducted structural tests, with particular emphasis on the particle distribution in the alloy matrix.
Go to article

Bibliography

[1] Dyga, R. (2017). Metal foams as structural packing in the construction of process equipment. Technical Transactions Mechanics. 4, 165-178. DOI: 10.4467/2353737XCT.17.057.6368.
[2] Gupta, N. (2007). A functionally graded syntactic foam material for high energy absorption under compression. Materials Letters. 61(4-5), 979-982. https://doi.org/10.1016/j.matlet.2006.06.033.
[3] Taherishargh, M., Sulong, M.A., Belova, I.V. & Murch, G.E. (2015). On the particle size effect in expanded perlite aluminum syntactic foam. Materials and Design. 66(A), 294-303. https://doi.org/10.1016/j.matdes.2014.10.073.
[4] Borowiecka- Jamrozek, J., Depczyński, W. (2017). The effect of the addition of zeolite on the properties of a sintered copper-matrix composite. Metal 2017: 26rd international conference on metallurgy and materials (pp. 1652-1657).
[5] Gottardi, G. & Galli, E. (1985). Natural zeolites, mineral and rocks. Minerals. 18, 256-284. ISBN 3 540 13939 7.
[6] Nanbin, H., Dianyue, G., Bekkum, H. (2001). Introduction to zeolite science and practice. 2nd Completely revised and expanded edition, 137, (pp. 54-59).
[7] Gil, A. (1998). Analysis of the micropore structure of various microporous materials from nitrogen adsorption at 77 K. Adsorption, 4, 197-206.
[8] Jaroniec, M. & Choma, J. (1987). Characterization of activated carbons by distribution function of adsorption potential and micropore dimension. Materials Chemistry and Physics. 18(1-20, 103-117. https://doi.org/10.1016/0254-0584(87)90115-5.
[9] Brunauer, S., Emmett, P.H. & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society. 60(2), 309-319. https://doi.org/10.1021/ ja01269a023.
[10] Gregg, S.J., Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity. 2 Auglage. London: Academic Press.
[11] Kruk, M., Jaroniec, M. & Gadkaree, K.P. (1997). Nitrogen adsorption studies of novel synthetic active carbons. Journal of Colloid and Interface Science. 192(1), 250-256. DOI: 10.1006/jcis.1997.5009.
[12] Kruk, M., Jaroniec, M. & Sayari, A. (1997). Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir. 13(23), 6267-6273. https://doi.org/10.1021/la970776m.
[13] Barrett, E.P., Joyner, L.G. & Halenda, P.P. (1951) The determination of pore volume and area distribution in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society. 73(1), 373-380. https://doi.org/10.1021/ja01145a126
Go to article

Authors and Affiliations

J.M. Borowiecka-Jamrozek
1
ORCID: ORCID
M. Kargul
1
ORCID: ORCID

  1. The Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Filtering Respiratory Protective Devices (FRPD) is not typically evaluated for exposure to volatile compounds, even though they significantly affect their protective performance. Such compounds are released into the atmosphere by industrial processes and pose serious health risks in people inhaling them. The adsorbent materials currently used to prevent those risks include activated carbon (AC). Zeolites and mesoporous silica materials (MCM) are very popular among the sorption materials. Due to their physical and chemical properties, they are able to adsorb significant amounts of volatile compounds from air. The melt-blown technology was used to produce filtering nonwovens with modifiers. As a result, polymer nonwoven structures with modifiers in the form of AC, zeolite (NaP1 type), molecular sieves (SM, SM 4Å) and mesoporous silica materials (MCM-41) were produced. The use of ACs (AC1 from Zgoda and AC2 from Pleisch) and their mixtures with others modifiers allowed to obtain satisfactory sorption, protective and utility properties. The longest breakthrough time against cyclohexane (approx. 53 min) was afforded by a variant containing AC, against ammonia (approx. 12 min) for the variant with AC2 and a mixture of AC2 and MCM-41. In the case of acetone vapor satisfactory breakthrough times were found for the variants with AC2 and AC1+SM (~20–25 min.). The present work deals with scientific research to improve workers’ and society’s health and safety by pursuing a better working life, and creating a safe social environment.
Go to article

Bibliography

  1. Anand, S.S., Philip, B.K. & Mehendale, H.M. (2014). Volatile Organic Compounds, [In] Wexler, P. (ed.) Encyclopedia of Toxicology (Third Edition), Academic Press, pp. 967-970, ISBN: 9780123864550, DOI: 10.1016/B978-0-12-386454-3.00358-4
  2. Amid, H., Maze, B., Flickinger, M.C. & Pourdeyhimi, B. (2016). Hybrid adsorbent nonwoven structures: a review of current technologies. Journal of Material Science, 51, pp. 4173-4200, DOI: 10.1007/s10853-016-9741-x
  3. Balanay, J.A.G., Bartolucci, A.A. & Lungu, C.T. (2014). Adsorption Characteristics of Activated Carbon Fibers (ACFs) for Toluene: Application in Respiratory Protection. Journal of Occupacional Environmental and Hygiene, 11, pp. 133-143, DOI: 10.1080/15459624.2013.816433
  4. Balanay, J.A.G. & Lungu, C.T. (2016). Determination of pressure drop across activated carbon fiber respirator cartridges. Journal of Occupational Environmental and Hygiene, 13, pp. 141-147, DOI: 10.1080/15459624.2015.1091960
  5. Baysal, G. (2019). Cleaning of pesticides from aqueous solution by a newly synthesized organoclay. Archives of Environmental Protection, 45(3), pp. 21–30, DOI: 10.24425/aep.2019.128637
  6. Brochocka, A., Nowak A., Panek, R. & Franus, W. (2019). The Effects of Textural Parameters of Zeolite and Silica Materials on the Protective and Functional Properties of Polymeric Nonwoven Composites. Applied Science, 9. pp. 515, DOI: 10.3390/app9030515
  7. Brochocka, A., Zagawa, A., Panek, R., Madej, J. & Franus, W. (2018). Method for introducing zeolites and MCM-41 into polypropylene melt-blown nonwovens. AUTEX Research Journal, DOI: 10.1515/aut-2018-0043
  8. Buonanno, G., Marks, G.B. & Morawska, L. (2013). Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects. Environmental Pollution, 180, pp. 246-250, DOI: 10.1016/j.envpol.2013.05.039
  9. Buteau, S. & Goldberg, MS. (2016). A structured review of panel studies used to investigate associations between ambient air pollution and heart rate variability. Environmental Research, 148, pp. 207-247, DOI: 10.1016/j.envres.2016.03.013
  10. Cerrillo, J.R., Palomares, A.E. & Rey, F. (2020). Silver exchanged zeolites as bactericidal additives in polymeric materials. Microporous and Mesoporous Material, 305, pp. 110367, DOI: 10.1016/j.micromeso.2020.110367
  11. Cheng, T., Jiang, Y., Zhang, Y. & Shuanqiang, L. (2004). Prediction of breakthrough curves for adsorption on activated carbon fibres in a fixed bed. Carbon, 42, pp. 3081-3085, DOI: 10.1016/j.carbon.2004.07.021
  12. Chiang, Y.C. & Juang, R.S. (2017). Surface modifications of carbonaceous materials for carbon dioxide adsorption: A review. Journal of the Taiwan Institute of Chemical Engineers, 71, pp. 214-234, DOI:10.1016/j.jtice.2016.12.014
  13. Commission Directive 2000/39/EC of 8 June 2000 establishing a first list of indicative occupational exposure limit values in implementation of Council Directive 98/24/EC on the protection of the health and safety of workers from the risks related to chemical agents at work, http://data.europa.eu/eli/dir/2000/39/2018-08-21
  14. Czuma, N., Zarębska, K. & Baran, P. (2016). Analysis of the influence of fusion synthesis parameters on the SO2 sorption properties of zeolites produced out of fly ash. SEED Science Research, 10, DOI: 10.1051/e3sconf/20161000010
  15. Das, D., Vivekand, G. & Nishith, V. (2004). Removal of volatile organic compound by activated carbon fiber. Carbon, 42, pp. 2949-2962, DOI: 10.1016/j.carbon.2004.07.008
  16. Deng, L., Yuan, P., Liu, D., Annabi-Bergaya, F. & Zhou, J. (2017). Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviours. Applied Clay Science, 143, pp. 184-191, DOI:10.1016/j.clay.2017.03.035
  17. Duad, W.M.A.W. & Haushamnd, A.H. (2010) Textural characteristics, surface chemistry and oxidation of activated carbon. Journal of Natural Gas Chemistry, 19(3), pp. 267-79, DOI: 10.1016/S1003-9953(09)60066-9
  18. EN 13274-3:2008. Respiratory Protective Devices. Methods of Tests. Determination of Breathing Resistance; The European Committee for Standardization (CEN): Brussels, Belgium, 2008.
  19. EN 13274-7:2008. Respiratory Protective Devices. Methods of tests. Determination of Particle Filter Penetration. The European Committee for Standardization (CEN): Brussels, Belgium, 2008.
  20. EN 14387:2004+A1:2008. Respiratory Protective Devices. Gas Filters And Combined Filters. Requirements, Testing, Marking. The European Committee For Standardization (CEN): Brussels, Belgium, 2004.
  21. EN 149:2001+A1:2009. Respiratory Protective Devices—Particle filtering half Masks—Requirements, Testing, Marking. The European Committee for Standardization (CEN): Brussels, Belgium, 2001.
  22. Haobo, T., Yan, Z., Yue, L., Ying, W. & Xuemei, W. (2017). Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste. Waste Manage, 68, pp. 677-687, DOI: 10.1016/j.wasman.2017.07.015
  23. Hassounah, I.A., Rowland, W.C., Sparks, S.A., Orler, E.B., Joseph, E.G., Camelio, J.A. & Mahajan, R.L. (2014). Processing of Multilayerd Filament Composites by Melt Blown Spinning. Journal of Applied Polymer Science, 131, DOI: 10.1002/APP.40786
  24. Huang, Z.H., Kang, F., Zheng, Y.P., Yang, J.B. & Liang, K.M. (2002). Adsorption of trace polar methy-ethyl-ketone and non-polar benzene vapors on viscose rayon-based activated carbon fibers. Carbon, 40, pp. 1363-1367, DOI: 10.1016/S0008-6223(01)00292-5
  25. Ki-Joong, K. & Ho-Geun, A.H.N. (2012). The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. Microporous and Mesoporous Material, 152, pp. 78-83, DOI: 10.1016/j.micromeso.2011.11.051
  26. Krajewska, B. & Kośmider, J. (2005). Standards of Odour Quality Air. Air protection and Waste Issues, 6, pp. 81-191, (in Polish).
  27. Kraus, M., Trommler, U., Holzer, F., Kopinke, F.D. & Roland, U. (2018). Competing adsorption of toluene and water on various zeolites. Chemical Engineering Journal, 351, pp. 356-363, DOI: 10.1016/j.cej.2018.06.128
  28. Kumar, V., Kumar, S., Kim, K.H., Tsang, D.C.W. & Lee, S.S. (2019). Metal organic frameworks as potent treatment media for odorants and volatiles in air. Environmental Research, 168, pp. 336-356, DOI: 10.1016/j.envres.2018.10.002
  29. Makles, Z. & Galwas-Zakrzewska, M. (2005). Malignant gases in the work environment. Work Safety, 9, pp. 12-16, (in Polish).
  30. Michalak, A., Krzeszowiak, J. & Pawlas, K. (2014). Whether exposure to unpleasant odors (odors) harms health?. Environmental Medicine, 17, pp. 76-81, (in Polish).
  31. Namieśnik, J., Gębicki, J. & Wysocka, I. (2019). Technologies for deodorization of malodorous gases. Environmental Science and Pollution Research, 26, pp. 9409–9434, DOI: 10.1007/s11356-019-04195-1
  32. Okrasa, M., Hitz, J., Nowak, A., Brochocka, A., Thelen, C. & Walczak, Z. (2019). Adsorption Performance of Activated-Carbon-Loaded Nonwoven Filters Used in Filtering Facepiece Respirators. International Journal of Environmental Research and Public Health, 16 (11), pp. 1973, DOI: 10.3390/ijerph16111973
  33. Oya A. & Iu WG. (2002). Deodorization performance of charcoal particles loaded with orthophosphoric acid against ammonia and trimethylamine. Carbon, 40(9), pp. 1391-1399, DOI: 10.1016/S0008-6223(01)00273-1
  34. Panek, R., Wdowin, M., Franus, W., Czarna, D., Stevens, L.A., Deng, H., Liu, J., Sun, C., Liu, H. & Snape, C.E. (2017). Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. Journal of CO2 Utilization, 22, pp. 81-90, DOI:10.1016/j.jcou.2017.09.015
  35. Pope III, CA. & Dockery, DW. (2016). Health Effects of Fine Particulate Air Pollution: Line that Connect. J Air Waste Manage, 56, pp. 709-742, DOI: 10.1080/10473289.2006.10464485
  36. Regulation (EU) 2016/425 of the European Parliament and the Council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC.
  37. Regulation of the Minister for Family, Labor and Social Policy on the Highest Permissible Concentrations and Intensities of Factors Harmful to Health in the Work Environment; Journal of Laws from 2018, item 1286; International Labour Organization: Geneva, Switzerland, 12 June 2018.
  38. Rubahamya, B., Suresh Kumar Reddy, K., Prabhu, A., Al Shoaibi, A. & Srinivasakannan, C. (2019). Porous Carbon Screening for Benzene Sorption. Environmental Progress & Sustainable Energy, 38(1), pp. 93-99, DOI: 10.1002/ep.12925
  39. Rybarczyk, P., Szulczyński, B., Gębicki, J. & Hupka, J. (2019). Treatment of malodorous air in biotrickling filters: A review. Biochemical Engineering Journal, 141, pp. 146-162, DOI: 10.1016/j.bej.2018.10.014
  40. Schlegelmilch, M., Streese, J. & Stegmann, R. (2005). Odour management and treatment technologies: An overview. Waste Management, 25 (9), pp. 928–939, DOI: 10.1016/j.wasman.2005.07.006
  41. Schmid, O., Möller, W., Semmler-Behnke, M.A., Ferron, G.A., Karg, E.W., Lipka, J., Schulz, H., Kreyling, W.G. & Stöeger, T. (2009). Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers, 14, pp. 67-73, DOI: 10.1080/13547500902965617
  42. Stelmach, S., Wasilewski, R. & Figa, J. (2006). An attempt to produce granular adsorbents based on carbonates from used car tires. Archives of Waste Management and Environmental Protection, 4, pp. 107-114.
  43. Szynkowska, MI., Wojciechowska, E., Węglińska, A.& Paryjczak, T. (2009). Odorous emission. An environmental protection issue. Przemysł Chemiczny, 88(6) pp. 712-720. (in Polish)
  44. Tsai, J.H., Chiang, H.M., Huang, G.Y. & Chiang, H.L. (2008). Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers. Journal of Hazardous Materials, 154, pp. 1183-1191, DOI: 10.1016/j.jhazmat.2007.11.065
  45. Wang, G., Dou, B., Zhang, Z., Wang, J., Liu, H. & Hao, Z. (2015). Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon, Journal of Environmental Science, 30, pp. 65-73, DOI: 10.1016/j.jes.2014.10.015
  46. Xin, Z., Honglei, C., Fangong, K., Yujie, Z., Shoujuan, W., Shouxin, L., Lucian, A.L., Pedram, F. & Huan, P. (2019). Fabrication characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: A review. The Chemical Engineering Journal, 364, pp. 226-243, DOI: 10.1016/j.cej.2019.01.159
  47. Xueyang, Z., Bin, G., Creamer, A.E., Chengcheng, C. & Yuncong, L. (2017). Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 338, pp. 102-127, DOI: 10.1016/j.jhazmat.2017.05.013
  48. Yin, T., Meng, X., Jin, L., Yang, C., Liu, N. & Shi, L. (2020). Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment. Microporous and Mesoporous Materials, 305, pp. 110327, DOI:10.1016/j.micromeso.2020.110327
  49. Yue, Z. & Vakili, A. (2017). Activated carbon–carbon composites made of pitch-based carbon fibers and phenolic resin for use of adsorbents. Journal of Material Science, 52, pp. 12913-12921, DOI:10.1007/s10853-017-1389-7
  50. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87–96, DOI:10.24425/118185
  51. Zhang, H., Liu, J., Zhang, X. & Jin, X. (2018). Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture. RSC Advences, 8, pp. 7932-7941, DOI: 10.1039/c7ra10916d
  52. Zhang, X., Gao, B., Zheng, Y., Hu, X., Creamer, A.E., Annable, M.D. & Li, Y. (2017). Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. Bioresource Technology, 245, pp. 606-614, DOI: 10.1016/j.biortech.2017.09.025
Go to article

Authors and Affiliations

Agnieszka Brochocka
1
Aleksandra Nowak
1
Rafał Panek
2
Paweł Kozikowski
1
Wojciech Franus
2

  1. Central Institute for Labour Protection-National Research Institute, Lodz, Poland
  2. Lublin University of Technology, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work, nickel adsorption onto low Jordanian zeolite dose is being investigated. Natural zeolite doses were stirred continuously with nickel solutions in batch reactors at 180 RPM for 24 hours, where the temperature was set to 20°C. The pH was initially 4.5 and reached 5.2 at equilibrium. The removal efficiency of nickel reaches maximum value when the initial nickel concentration is around 1 ppm and then tends to decrease when the initial nickel concentration increases above 1 ppm. The optimal nickel removal reaches 65% when the initial nickel concentration is 1 ppm and the zeolite dose is 26 mg·dm–3. This study investigates the behaviour of nickel removal and modelling isotherms below and above this critical peak point. At this level of zeolite dose, the adsorption does not follow either Freundlich or Langmuir isotherms, but rather, it follows Freundlich for the data plot just below the peak point with the highest coefficient of determination (R2) equals (0.98) when the zeolite dose is (26 mg·dm–3), whereas it follows Langmuir for the data plot just above the peak point with the highest coefficient of determination (R2) equals (0.99) when the zeolite dose is (10 mg·dm–3). These findings clarify the theory behind each isotherm and can be used to find new information for efficient treatment techniques.
Go to article

Authors and Affiliations

Ziad Al-Ghazawi
1
Ahmad Qasaimeh
1
Bilal Al-Bataina
2

  1. Department of Civil Engineering, Faculty of Engineering, Jordan University of Science and Technology, Irbid, 22110, 00962-2-7201000 22139; Jordan
  2. Department of Chemical and Biochemical Engineering, University of Western Ontario, Canada
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a cost-effectiveness analysis and a cost-benefit analysis for the production of X-type zeolites from fly ash.
Positive results of the laboratory tests on the quality of zeolites derived from fly ash initiated a cost analysis on the production of this materials on an industrial scale. The cost-effectiveness analysis was conducted using the dynamic generation cost indicator (DGC). The calculated DGC expresses the technical manufacturing cost of 1 Mg of synthetic zeolites. Whereas the cost-benefit analysis (CBA) was completed using the economic net present value (ENP V) and the economic internal rate of return (EIRR ) indicators.
The calculated unit technical cost of producing 1 Mg of zeolites using an installation consisting of five reactors with a capacity of 25 m3 each is 211 EUR and is lower than the current market price of this product, including transportation costs. This proves the financial viability of the investment. The calculations of the economic efficiency of the installation (CBA method) show that it is fully economically viable to operate and use the products from a social point of view.
Go to article

Authors and Affiliations

Barbara Białecka
1
ORCID: ORCID
Magdalena Cempa
1
ORCID: ORCID
Zdzisław Adamczyk
2
ORCID: ORCID
Henryk Świnder
1
ORCID: ORCID
Piotr Krawczyk
1
ORCID: ORCID

  1. GIG Research Institute, Katowice, Poland
  2. Silesian University of Technology, Gliwice, Poland

This page uses 'cookies'. Learn more