Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Dust generated at an electric arc furnace during steel production industry is still not a solved problem. Electric arc furnace dust (EAF) is a hazardous solid waste. Sintering of well-prepared briquetted mixtures in a shaft furnace is one of possible methods of EAFD utilisation. Simultaneously some metal oxides from exhaust gases can be separated. In this way, various metals are obtained, particularly zinc is recovered. As a result, zinc-free briquettes are received with high iron content which can be used in the steelmaking process. The purpose of the research was selecting the appropriate chemical composition of briquettes of the required strength and coke content necessary for the reduction of zinc oxide in a shaft furnace. Based on the results of the research the composition of the briquettes was selected. The best binder hydrated lime and sugar molasses and the range of proper moisture of mixture to receive briquettes of high mechanical strength were also chosen and tested. Additionally, in order to determine the thermal stability for the selected mixtures for briquetting thermal analysis was performed. A technological line of briquetting was developed to apply in a steelworks.

Go to article

Authors and Affiliations

Aneta Magdziarz
Monika Kuźnia
Michał Bembenek
Paweł Gara
Marek Hryniewicz
Download PDF Download RIS Download Bibtex

Abstract

Zinc oxide (ZnO) has been applied for many years in the production of pigs to reduce the number of diarrhoea in weaned piglets. In June 2022, the European Union banned the use of zinc oxide (ZnO) in pig feed. According to scientific reports, the may reason was the accumulation of this microelement in the environment of pig production. It has been shown that frequent application of ZnO can lead to increased antibiotic resistance in pathogenic swine microflora. The main alternatives to ZnO are probiotics, prebiotics, organic acids, essential oils, and liquid feeding systems.
Alternatives to ZnO can be successfully used in pig production to reduce the number of diarrhoea among piglets during the postweaning period. Additional reports indicated that bacteriophage supplementation has a positive effect on the health of pigs. The article provides an overview of current ZnO substitutes that can be used in pig farming.
Go to article

Authors and Affiliations

Z. Pejsak
1
P. Kaźmierczak
2
A.F. Butkiewicz
2
J. Wojciechowski
3
G. Woźniakowski
4

  1. University Center of Veterinary Medicine JU-AU, Mickiewicza Avenue 24/28, 30-059 Krakow, Poland
  2. Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
  3. Private Veterinary Practice, Grabowa 3, 86-300 Grudziadz, Poland
  4. Department of Infectious and Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
Download PDF Download RIS Download Bibtex

Abstract

A n-type semiconductor ZnO has high transmittance features, excellent chemical stability and electrical properties. It is also commonly used in a range of fields, such as gas sensors, photocatalysts, optoelectronics, and solar photocell. Magnesium-doped zinc oxide (Mg-ZnO) nano powders were effectively produced using a basic chemical precipitation process at 45°C. Calcined Mg-ZnO nano powders have been characterized by FTIR, XRD, SEM-EDX and PL studies. XRD measurements from Mg-ZnO revealed development of a crystalline structure with an average particle size of 85 nm and SEM analysis confirmed the spherical morphology. Electrochemical property of produced Mg-ZnO nanoparticles was analyzed and the specific capacitance value of 729 F g–1 at 0.5 A g–1 current density was recorded and retained a specific capacitance ~100 percent at 2 A g–1 current density.
Go to article

Bibliography

[1] M . Kim, K.-J. Kim, S.-J. Lee, H.-M. Kim, S.-Y. Cho, M.-S. Kim, S.-H. Kim, K.-B. Kim, ACS Appl. Mater. Interfaces 9 (1), 701-709 (2017). DOI: https://doi.org/10.1021/acsami.6b12622
[2] S. Choi, S. I. Han, D. Kim, T. Hyeon, D.-H. Kim, Chem. Soc. Rev. 48 (6), 1566-1595 (2019). DOI: https://doi.org/10.1039/C8CS00706C
[3] L .H. Madkour, in Nanoelectron. Mater. Springer, 605-699 (2019). DOI: https://doi.org/10.1007/978-3-030-21621-4_16
[4] M . Rafique, M. B. Tahir, I. Sadaf, in Adv. Res. Nanosci. Water Technol. Springer, 95-131 (2019). DOI: https://doi.org/10.1007/978-3-030-02381-2_5
[5] T. Xiao, J. Huang, D. Wang, T. Meng, X. Yang, Talanta 206, 120210 (2020). DOI: https://doi.org/10.1016/j.talanta.2019.120210
[6] Y. Zhang, X. Xia, B. Liu, S. Deng, D. Xie, Q. Liu, Y. Wang, J. Wu, X. Wang, J. Tu, Adv. Energy Mater. 9 (8), 1803342 (2019). DOI: https://doi.org/10.1002/aenm.201803342
[7] F. Khurshid, M. Jeyavelan, M.S.L. Hudson, S. Nagarajan, R. Soc. Open Sci. 6 (2), 181764 (2019). DOI: https://doi.org/10.1098/rsos.181764
[8] M .M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, N. Amin, Z. Zhang, Z. Imran, M.I. Yousuf, Appl. Nanosci. 10 (2), 421-433 (2020). DOI: https://doi.org/10.1007/s13204-019-01199-8
[9] H . Zeng, X. Zhao, F. Zhao, Y. Park, M. Sillanpää, Chem. Eng. J. 382, 122972 (2020). DOI: https://doi.org/10.1016/j.cej.2019.122972
[10] L . Zheng, F. Teng, X. Ye, H. Zheng, X. Fang, Adv. Energy Mater. 10 (1), 1902355 (2020). DOI: https://doi.org/10.1002/aenm.201902355
[11] M . Periyasamy, A. Kar, J. Mater. Chem. C 8 (14), 4604-4635 (2020). DOI: https://doi.org/10.1039/C9TC06469A
[12] S.K. Gupta, S. Gupta, A.K. Gupta, Adv. Sci. Eng. Med. 12 (1), 11-26 (2020). DOI: https://doi.org/10.1166/asem.2020.2516
[13] Z. Li, A. Khajepour, J. Song, Energy 182, 824-839 (2019). DOI: https://doi.org/10.1016/j.energy.2019.06.077
[14] S.A. Hashmi, N. Yadav, M.K. Singh, Polym. Electrolytes Charact. Tech. Energy Appl. 231-297 (2020). DOI: https://doi.org/10.1002/9783527805457.ch9
[15] X. Kong, L. Yang, Z. Cheng, S. Zhang, Materials 13 (1), 180 (2020). DOI: https://doi.org/10.3390/ma13010180
[16] B. Zhao, F. Mattelaer, J. Kint, A. Werbrouck, L. Henderick, M. Minjauw, J. Dendooven, C. Detavernier, Electrochimica Acta 320, 134604 (2019). DOI: https://doi.org/10.1016/j.electacta.2019.134604
[17] Y. Wang, C. Ma, C. Wang, P. Cheng, L. Xu, L. Lv, H. Zhang, Sol. Energy 189, 412-420 (2019). DOI: https://doi.org/10.1016/j.solener.2019.07.082
[18] J. Jiang, S. Liu, Y. Wang, Y. Liu, J. Fan, X. Lou, X. Wang, H. Zhang, L. Yang, Chem. Eng. J. 359, 746-759 (2019). DOI: https://doi.org/10.1016/j.cej.2018.11.190
[19] H .M.A. Javed, W. Que, M.R. Ahmad, K. Ali, M.I. Ahmad, A. ul Haq, S.K. Sharma, in Sol. Cells (Springer, 2020), pp. 25-54. DOI: https://doi.org/10.1007/978-3-030-36354-3
[20] S.E. Arasi, P. Devendran, R. Ranjithkumar, S. Arunpandiyan, A. Arivarasan, Mater. Sci. Semicond. Process. 106, 104785 (2020). DOI: https://doi.org/10.1016/j.mssp.2019.104785
[21] H .-C. Chen, Y.R. Lyu, A. Fang, G.J. Lee, L. Karuppasamy, J.J. Wu, C.K. Lin, S. Anandan, C.Y. Chen, Nanomaterials 10 (3), 475 (2020). DOI: https://doi.org/10.3390/nano10030475
[22] N . Sivakumar, J. Gajendiran, R. Jayavel, Chem. Phys. Lett. 745, 137262 (2020). DOI: https://doi.org/10.1016/j.cplett.2020.137262
[23] M .A.F. Mohd Shaifuddin, C.A. Che Abdullah, S.H. Ribut, N.S. Rosli, R. Mohd Zawawi, Malays. J. Sci. Health Technol. (2019). https://oarep.usim.edu.my/jspui/handle/123456789/5353
[24] G. Wu, Y. Song, J. Wan, C. Zhang, F. Yin, J. Alloys Compd. 806, 464-470 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.07.175
[25] S. Kasap, I.I. Kaya, S. Repp, E. Erdem, Nanoscale Adv. 1 (7), 2586-2597 (2019). DOI: https://doi.org/10.1039/C9NA00199A
[26] U . Bhat, S. Meti, Graphene-Based ZnO nanocomposites for Supercapacitor Applications in Graphene as Energy Storage Materials for Supercapacitors, Eds. Inamuddin, Rajender Boddula, Mohammad Faraz Ahmer and Abdullah M. Asiri, Materials Research Foundations 64, 181 (2020). DOI: https://doi.org/10.21741/9781644900550-7
[27] M . Ghosh, S. Mandal, A. Roy, S. Chakrabarty, G. Chakrabarti, S.K. Pradhan, Mater. Sci. Eng. C 106, 110160 (2020). DOI: https://doi.org/10.1016/j.msec.2019.110160
[28] R . Subbiah, S. Muthukumaran, V. Raja, Optik 164556 (2020). DOI: https://doi.org/10.1016/j.ijleo.2020.164556
[29] R . Sánchez-Tovar, E. Blasco-Tamarit, R.M. Fernández-Domene, M. Villanueva-Pascual, J. García-Antón, Surf. Coat. Technol. 125605 (2020). DOI: https://doi.org/10.1016/j.surfcoat.2020.125605
[30] N . Jayaprakash, R. Suresh, S. Rajalakshmi, S. Raja, E. Sundaravadivel, M. Gayathri, M. Sridharan, Mater. Technol. 35 (2), 112-124 (2020). DOI: https://doi.org/10.1080/10667857.2019.1659533
[31] M . Achehboune, M. Khenfouch, I. Boukhoubza, B.M. Mothudi, I. Zorkani, A. Jorio, J. Mater. Sci. Mater. Electron. 31 (6), 4595- 4604 (2020). DOI: https://doi.org/10.1007/s10854-020-03011-8
[32] C.V. Thulasi-Varma, B. Balakrishnan, H.-J. Kim, J. Ind. Eng. Chem. 81, 294-302 (2020). DOI: https://doi.org/10.1016/j.jiec.2019.09.017
[33] J. Yus, B. Ferrari, A.J. Sanchez-Herencia, Z. Gonzalez, Electrochimica Acta 335, 135629 (2020). DOI: https://doi.org/10.1016/j.electacta.2020.135629
[34] N . Liu, Z. Pan, X. Ding, J. Yang, G. Xu, L. Li, Q. Wang, M. Liu, Y. Zhang, J. Energy Chem. 41, 209-215 (2020). DOI: https://doi.org/10.1016/j.jechem.2019.05.008
[35] M . Bolsinger, M. Weller, S. Ruck, P. Kaya, H. Riegel, V. Knoblauch, Electrochimica Acta. 330, 135163 (2020). DOI: https://doi.org/10.1016/j.electacta.2019.135163
[36] H . Jia, Z. Wang, B. Tawiah, Y. Wang, C.-Y. Chan, B. Fei, F. Pan, Nano Energy 70, 104523 (2020). DOI: h ttps://doi.org/10.1016/j.nanoen.2020.104523
Go to article

Authors and Affiliations

S. Arul
1
ORCID: ORCID
T. Senthilnathan
2
ORCID: ORCID
V. Jeevanantham
3
ORCID: ORCID
K.V. Satheesh Kumar
4
ORCID: ORCID

  1. Jai Shriram Engineering College, Department of Physics, Tirupur-638660, Tamilnadu, India
  2. Sri Venkateshwara College of Engineering, Department of Applied Physics, Sriperumbudur-602117, Tamilnadu, India
  3. Vivekanandha College of Arts & Sciences for Women, Department of Chemistry, Tiruchengode 637205, Tamilnadu, India
  4. Kongu Engineering College, Department of Mechanical Engineering, Erode-638060, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

In this work, zinc oxide (ZnO) thin films are deposited on glass substrate using the sol-gel spin coating technique. The effect of annealing temperature on structural properties was investigated. The ZnO sol-gel was produced from zinc acetate dehydrate as the starting material with iso-propanol alcohol as the stabilizer. The ratio was controlled, distilled water and diethanolamine as the solvent mixing on a magnetic stirrer for an hour under constant heat of 60°C. The ZnO thin film was deposited using the spin coating technique with the speed of 3000 rpm for 30 minutes before the sample undergoes pre-heat in the oven at the temperature of 100°C for 10 minutes. The sample was annealing in the furnace for an hour at 200°C, 350°C, and 500°C. The X-ray diffraction (XRD) analysis confirms that hexagonal wurtzite structure with zincite and zinc acetate hydroxide hydrate composition. The thin films surface roughness was analyzed using an atomic force microscope (AFM) and scanning electron microscope (SEM) for surface morphology observation.
Go to article

Authors and Affiliations

R. Hussin
1 2 3
ORCID: ORCID
F. Hanafi
2
R.A. Rashid
1
Z. Harun
2 4
Z. Kamdi
2
S.A. Ibrahim
1 4
A.R. Ainuddin
2
W. Rahman
5 3
A.M. Leman
1 3

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Department of Mechanical Engineering Technology, Jalan Edu Hub Gunasama1, Pagoh Edu Hub, KM1, Jln Panchor, 84600 Pagoh Johor, Malaysia
  2. Universiti Tun Hussein Onn Malaysia, Faculty of Mechanical and Manufacturing Engineering, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
  3. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  4. Universiti Tun Hussein Onn Malaysia, Faculty of Mechanical and Manufacturing Engineering, Integrated Material and Process, Advanced Manufacturing & Materials Centre, Parit Raja, 86400 Batu Pahat, Johor, Malaysia
  5. Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the idea to improve the performance of thin film photovoltaic cells by a light capture enhancement through the introduction of down shifting energy converters. Luminescent down shifting layers convert high-energy photons (UV light) into low-energy ones (visible light), which are more efficient in a photovoltaic conversion. For this purpose, the application of a thin layer composed of zinc oxide (ZnO) nanoparticles deposited onto a thin film solar cell is proposed. The paper presents both experimental and theoretical results of this approach. Conducted investigations include an analysis of ZnO nanoparticle layers, deposited in two independent technology methods. The results showed that ZnO nanoparticles have a great potential of application as down converting layers and can be implemented to improve the efficiency of photovoltaic cells, especially in the field of thin film PV structures. The proposed new deposition method can potentially be used in some industrial photovoltaic applications.

Go to article

Authors and Affiliations

K. Znajdek
Maciej Sibiński
ORCID: ORCID
Z. Lisik
A. Apostoluk
Y. Zhu
B. Masenelli
P. Sędzicki
Download PDF Download RIS Download Bibtex

Abstract

The present study was conducted to evaluate the insecticidal efficiency and safety of zinc oxide nanoparticles (ZnO NPs) and hydrophilic silica nanoparticles (SiO2 NPs) against: adults of rice weevil (Sitophilus oryzae L.); red flour beetle (Tribolium castaneum Herbst.) and cowpea beetle (Callosobruchus maculatus F.) results showed that, both ZnO NPs and hydrophilic SiO2 NPs exhibited a significant toxic effect (df, F and p < 0.5) against S. oryzae and C. maculatus at the highest concentration while T. castaneum showed high resistance against the two tested materials. At the end of the experiment, recorded mortality was: 81.6, 98.3 and 58.3% at the highest concentration used for each insect (0.3, 2 and 8 gm ⋅ kg–1 of SNPs with C. maculatus, S. oryzae and T. castaneum, respectively), while mortality was 88.3, 100 and 38.3% at the highest concentration used for each insect (0.6, 2.5 and 8 gm ⋅ kg–1 of ZnO NPs with C. maculatus, S. oryzae and T. castaneum, respectively). Both tested materials caused high reductions in F1-progeny (%) with C. maculatus and S. oryzae. Histopathological examination of male mice livers showed hepatic architecture with congested blood sinusoids, binucleated hepatocytes nuclei, dilated central vein and margainated chromatin in some nuclei. Histopathological assessment of the lungs showed normal histoarchitecture. There were no differences in alveolar septa, bronchiolar and epithelium of the treated and untreated animals. Silica and zinc oxide nanoparticles have a good potential to be used as stored seed protectant alternatives if applied with proper safety precautions.

Go to article

Authors and Affiliations

Samia Ali Haroun
Mahmoud Elsaid Elnaggar
Doaa Mohamed Zein
Rehab Ibrahim Gad
Download PDF Download RIS Download Bibtex

Abstract

In the current study the antifungal activity of inorganic reagents was tested against Cryphonectria parasitica in vitro in a mycelial growth inhibition test. Three reagents, each consisting of chloride silver (AgCl) in combination with (1) aluminum oxide − Al2O3, (2) zinc oxide − ZnO, and (3) Al2O3 and titanium dioxide – TiO2, were tested. Significant differences of the tested reagents on the growth of C. parasitica were recorded. The study demonstrated that silver in mixture with ZnO had an antifungal effect and significantly reduced the mycelial growth of C. parasitica in vitro. The mixture of AgCl with the other two combinations of inorganic metal oxides had no inhibition effect on the growth of the pathogen. It was confirmed that ZnO (applied in a single compound test) is responsible for inhibition of C. parasitica mycelium growth. A preliminary in planta assay was performed but statistically significant differences were not recorded in the average increment of canker length.

Go to article

Authors and Affiliations

Katarína Adamčíková
Zuzana Jánošíková
Jozef Pažitný
Download PDF Download RIS Download Bibtex

Abstract

Zinc oxide (ZnO) is a prominent n-type semiconductor material used in optoelectronic devices owing to the wide bandgap and transparency. The low-temperature growth of ZnO thin films expands diverse applications, such as growth on glass and organic materials, and it is also cost effective. However, the optical and electrical properties of ZnO films grown at low temperatures may be inferior owing to their low crystallinity and impurities. In this study, ZnO thin films were prepared by atomic layer deposition on SiO2 and glass substrates in the temperature range of 46-141℃. All films had a hexagonal würtzite structure. The carrier concentration and electrical conductivity were also investigated. The low-temperature grown films showed similar carrier concentration (a few 1019 cm−3 at 141°C), but possessed lower electrical conductivity compared to high-temperature (>200°C) grown films. The optical transmittance of 20 nm thin ZnO film reached approximately 90% under visible light irradiation. Additionally, bandgap energies in the range of 3.23-3.28 eV were determined from the Tauc plot. Overall, the optical properties were comparable to those of ZnO films grown at high temperature.
Go to article

Authors and Affiliations

Ji Young Park
1
ORCID: ORCID
Ye Bin Weon
1
ORCID: ORCID
Myeong Jun Jung
1
ORCID: ORCID
Byung Joon Choi
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Material Science and Engineering, Seoul, Korea

This page uses 'cookies'. Learn more