Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 47
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the article publications have been analyzed and summarized on this topic: studied the experience of implementing building information models and geographic information models for administrative and economic management of transport infrastructure facilities on the example of the regional airport activity. After the stage of collecting geospatial data from various sources and sensors, the data is imported into CAD-systems or GIS-systems. Different software products are used to work with both of these models. The processes of data organization in the process of creating building information models and geographic information models differ to some extent. The issues of integration of such models are not yet fully addressed and need to be addressed. In the process of integration of spatial data, solutions to the integration of semantics, topology, formats and standards of geospatial data are needed. An important task is to develop and study the experience of creating software modules that allow you to integrate BIM-models into geographic information systems. Based on the research, it is established that the current area of research is the development of technologies that allow the generation of information from BIM and GIS to create a more interconnected infrastructure. The integration of BIM and GIS information to create a spatial data infrastructure (SDI) is a perspective direction.
Go to article

Authors and Affiliations

Olena Boyko
1
ORCID: ORCID
Dmitry Prusov
2
ORCID: ORCID
Borys Chetverikov
3
ORCID: ORCID
Maria Malanchuk
3
ORCID: ORCID

  1. National Aviation University, Kyiv, Ukraine
  2. Kyiv National University of Construction and Architecture, Kyiv, Ukraine
  3. Lviv Polytechnic National University, Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

To reduce the sediment transport capacity, shear stress needs to be reduced as well. The article describes work that has been done to find a way to make these reductions possible. The theoretical study and the approach proposed allowed us to obtain a general equation that determines conditions and calculates the most important parameters which support the reduction of shear stress. This describes the mechanism that erodes soils by free surface water flow.
In a similar vein, we have shown that adding a short non-prismatic channel to the entrance of a prismatic channel, which has the same geometric shape, is a very powerful way to reduce shear stress. With the idea of reducing shear stress, we have shown that the water-surface profile type plays a key role and must therefore be included in future reflections on reducing the importance of shear stress.
Additionally, the notion of efficiency was introduced that allows to evaluate the expected gain after the reduction of shear stress and adding a short non-prismatic channel.
The laws of similarity applied to free surface flows allowed us to obtain an equation with several equivalence scales and compare different geometric shapes in terms of their efficiency in the reduction of shear stress.
Go to article

Bibliography

BECZEK M., RYŻAK M., SOCHAN A., MAZUR R., POLAKOWSKI C., HESS D., BIEGANOWSKI A. 2020. Methodological aspects of using high-speed cameras to quantify soil splash phenomenon. Geoderma. Vol. 378, 14592. DOI 10.1016/j.geoderma.2020.114592.
CHAUDHRY M.H. 2008. Open-channel flow. 2nd ed. Springer Science + Business Media, LLC, New York, USA. ISBN 978-0-387-30174-7 pp. 523.
CHOW V.T. 1959. Open channel hydraulics. McGraw Hill. ISBN 07-010776-9 pp. 702.
DEY S. 2014. Fluvial hydrodynamics. Ser. GeoPlanet: Earth and Planetary Sciences. Berlin, Germany. Springer-Verl. ISBN 978- 3642190612 pp. 719.
ETTEMA R. 2000. Hydraulic modeling. Concepts and practices. ASCE Manuals and Reports on Engineering Practice. No. 97. ISBN 978- 0784404157 pp. 390.
HADDAD S., BOUHADEF M. 2019. Contribution à l’étude du phénomène de transport des sédiments par érosion des sols [Contribution to the study of the phenomenon of sediment transport by soil erosion] [online]. PhD Thesis. Algiers, Algeria.
USTHB pp. 136. [Access 10.02.2021]. Available at: http://repository.usthb.dz//xmlui/handle/123456789/8210
HADDAD S., BOUHADEF M. 2018. Contribution to runoff erosion of earthen channels. Polish Journal of Soil Science. Vol. 51. No. 2 p. 313–325. DOI 10.17951/pjss.2018.51.2.313.
HENDERSON F.M. 1966. Open channel flow. New York, USA. MacMillan Company. ISBN 978-0023535109 pp. 522.
KRAATZ D.B. 1977. Irrigation channel lining. FAO. Italy. ISBN 9251001650 pp. 199.
LANE E.W. 1953. Progress report on studies on the design of stable channels. Bureau of Reclamation. Proceedings. No. 79. New York, USA. ASIN B0007I585M pp. 31.
LANE E.W. 1955. Design of stable alluvial channels. Transactions of the American Society of Civil Engineers. Vol. 120. Iss. 1 p. 1234– 1260.
MASSÉ P. 1938. Ressaut et ligne d’eau dans les cours d’eau à pente variable [Hydraulic jump and flow profile in channels of variable slope]. Revue Générale de l’Hydraulique. Vol. 4. No. 19 p. 7–11.
POINCARÉ H. 1881. Mémoires sur les courbes définies par une équation différentielle [Memoir on the curves defined by a differential equation] [online]. Journal de Mathématiques Pures et Appli-quées. Ser. 3. Vol. 7 p. 375–422. [Access 10.02.2021]. Available at: http://sites.mathdoc.fr/JMPA/PDF/JMPA_1881_3_7_A20_0.pdf
PUGH C.A. 1985. Hydraulic model studies of fuse plug embankments [online]. Denver, CO. Bureau of Reclamation, Engineering and Research Center. Report No. REC-ERC-85-7 pp. 33. [Access 20.02.2021]. Available at: https://www.usbr.gov/tsc/techrefer-ences/rec/REC-ERC-85-7.pdf
SMERDON E.T, BEASLEY R.P. 1959. The tractive force theory applied to stability of open channels in cohesive soils [online]. Columbia, MO. University of Missouri, Missouri. USA. Agricultural Experiment Station. Research Bulletin. No. 715 pp. 36. [Access 20.02.2021]. Available at: https://mospace.umsystem.edu/xmlui/ handle/10355/58141
TROUT T.J., NEIBLING W.H. 1993. Erosion and sedimentation processes on irrigated fields. Journal of Irrigation and Drainage Engineer-ing. Vol. 119. No. 6. DOI 10.1061/(ASCE)0733-9437(1993)119:6(947).
YALIN M.S. 1971. Theory of hydraulic models. London. Macmillan Civil Engineering Hydraulics. The Macmillan Press LTD, USA. ISBN 978-0408004824 pp. 266.
Go to article

Authors and Affiliations

Samir Haddad
1 2
ORCID: ORCID

  1. Houari Boumediène University of Sciences and Technology, Faculty of Civil Engineering. LEGHYD Laboratory, BP 32 Bab Ezzouar, 16111 Algiers, Algeria
  2. Akli Mohand Oulhadj University of Bouira, Rue Frères Boussendalah, 10000 Bouira, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on the kinetics of the binding process of self-hardening moulding sands with an organic binder under conditions of forced air flow at various pressure values. Three moulding sands made using urea-furfuryl resin Furanol FR75A technology were studied. The moulding sands were prepared on a base of quartz sand with an average grain size of dL = 0.25, 0.29 and and 0.37 mm , with permeability values of 306 , 391 and and 476 m 2/10 8Pa ∙ s (for ρ0 = 1.60 , 1.60 and and 1.61 g/cm 3, respectively). The research was conducted for a resin content of 1% with a constant proportion of hardener to resin, which was equal to 50%. Samples of the tested moulding sands were blown with air at pressures of 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 bar. The kinetics of the hardening process was monitored using ultrasound technology, according to a previously developed methodology [1]. The research was carried out on an ultrasound testing station equipped with a temperature chamber and an airflow reducer. The tests were conducted at a temperature of 20°C, and of the air flow pressure on the changes in ultrasonic wave velocity in the hardening mouldins sand as a function of time, the kinetics of the hardening process, and the degree of moulding sand hardening were determined. Additionally, the influence of the moulding sand permeability on the course of the hardening process at a constant air flow pressure was determined.
Go to article

Bibliography

[1] Zych, J. (2007). Synthesis of the applications of ultrasonic technology in the analysis of the kinetics of selected processes occurring in molding materials. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne. Seria: Rozprawy i Monografie nr 163, Kraków. (in Polish).
[2] Holtzer, M., Kmita, A. & Roczniak, A. (2014). New furfuryl resins more environmentally friendly. Archives of Foundry Engineering. 14(spec.4), 51-54. (in Polish).
[3] Lewandowski, J.L. (1997). Materials for casting molds. Kraków: Wydawnictwo Akapit. (in Polish).
[4] Lewandowski, J.L (1971). Molding materials. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
[5] Dobosz, St.M. (2006). Water in molding and core sands. Kraków: Wydawnictwo Akapit. (in Polish).
[6] Drożyński, D. (1999). Post-surface phenomena in the process of binding masses in the classic cold-box technology. Unpublished doctoral dissertation, AGH Univesity of Science and Technology, Kraków. (in Polish).
[7] Lewandowski, J.L. (1991). Molding and core sands. Warszawa: Wydawnictwo Naukowe PWN. (in Polish).
[8] Jamrozowicz, Ł., Kolczyk, J. & Kaźnicva, N. (2016). Study of the hardening kinetics of self-hardening masses at low temperature. Prace Instytutu Odlewnictwa. LVI, 4/2016, 379-390. (in Polish).
[9] Matonis, N. & Zych, J. (2022). Plasticity changes of moulding sands with chemical binders caused by increasing the hardenin degree. Archives od Foundry Engineering. 22(2), 71-76. DOI: 10.24425/afe.2022.140227.
[10] Zych, J. (1999). Patent Nr PL 192202 B1. Kraków
Go to article

Authors and Affiliations

Natalia Matonis
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

This work aims at investigating the influence of the initial concentrations of carbon (glucose) and organic nitrogen (yeast extract) sources on Streptomyces rimosus ATCC10970 secondary metabolism in the stirred tank bioreactors. Additionally, glucose utilisation, biomass formation, pH, redox potential and dissolved oxygen levels, and the morphological development of S. rimosus pseudomycelium were studied. Eighteen secondary metabolites were detected by mass spectrometry and identified with the use of the authentic standard, or putatively with the use of literature and database of secondary metabolites. Varied initial yeast extract concentration acted much stronger on the formation of secondary metabolites than glucose did. For example, oxytetracycline was not biosynthesised at high yeast extract concentration while the formation of three other metabolites was enhanced under these conditions. In the case of glucose its increasing initial concentration led to higher secondary metabolite levels with the exception of an unnamed angucycline. High initial yeast extract concentration also drastically changed S. rimosus pseudomycelial morphology from the pelleted to the dispersed one. Ultimately, the cultivation media with the varied initial levels of carbon and nitrogen sources were proved to have the marked effect on S. rimosus secondary metabolism and to be the simplest way to either induce or block the formation of the selected secondary metabolites.
Go to article

Authors and Affiliations

Marcin Bizukojć
1
ORCID: ORCID
Anna Ścigaczewska
1
ORCID: ORCID
Tomasz Boruta
1
ORCID: ORCID
Agnieszka Ruda
1
Aleksandra Kawka
1

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering,Department of Bioprocess Engineering, Wólczańska 213, 93-005 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

The demand of energy and the search for alternative energy sources are the reason why scientists are interested in starch hydrolysis. The aim of the work was to experimental study of the hydrolysis of starch by α–amylase from porcine pancreas with α–amylase deactivation. Based on the experiments data, the parameters of starch hydrolysis by α– amylase with deactivation of enzyme was estimated. A mathematical model of temperature impact on the activity of α–amylase from porcine pancreas was used. It has been estimated that the activation energy Ea and the deactivation energy Ed were equal to 66 ± 4 kJ/mol and 161 ± 12 kJ/mol, respectively. Additionally, specific constant of starch hydrolysis k 0 and specific constant of α–amylase deactivation k d0 were calculated. The optimum temperature Topt equal to 318 ± 0.5 K was obtained from mathematical model. The obtained values of Ea, Ed, k 0 and k d0 parameters were used to the model starch hydrolysis by α–amylase from porcine pancreas at 310 K and 333 K.
Go to article

Authors and Affiliations

Justyna Miłek
1
ORCID: ORCID
Ireneusz Grubecki
2
ORCID: ORCID
Wirginia Tomczak
1
ORCID: ORCID

  1. Bydgoszcz University of Science and Technology, Department of Chemical and Biochemical Engineering, Faculty of Chemical Technology and Engineering, Semianryjna 3, 85-326 Bydgoszcz, Poland
  2. Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents a novel solution based on dairy wastewater sorption on a biochar substrate obtained through thermal decomposition of Chlorella sp. algae biomass. The algal biomass obtained in the culture medium containing wastewater from dairy production was separated from the culture medium through sedimentation and centrifugation and then freeze-dried. After freeze-drying, the dry biomass was pyrolysed at 600 °C in a CO 2 atmosphere.The EDS analysis showed that the oxygen-tocarbon (O/C) and nitrogen-to-carbon (N/C) ratios in the obtained material averaged 0.24 and 0.54 respectively. The arrangement and structure of the obtained biochar was evaluated using Raman spectroscopy. The observed spectra revealed the presence of D bands located at 1346–1354 cm -1 and corresponding to disordered carbon structures, as well as G bands located at 1585–1594 cm -1 and corresponding to tensile vibrations. The D/G intensity ratio was determined at 0.28. The next phase of the research involved sorption of dairy wastewater from cleaning processes containing 1 g of the obtained biochar using solid phase extraction. The study results confirmed high sorption efficiency of the obtained algal biochar. Turbidity was reduced by 93%, suspension by 88%, sulphates by 61%, chlorides by 80%, and organic carbon by 17%. The research confirmed the possibility of using wastewater from dairy production as a natural culture medium for Chlorella sp. algae cultivation to manufacture valuable biochar, which could be used as a sorption bed in the treatment of dairy wastewater from cleaning processes.
Go to article

Authors and Affiliations

Karolina Dziosa
1
Monika Makowska
1

  1. Łukasiewicz Research Network – Institute of Sustainable Technologies, Bioeconomy andEcoinnovation Centre, Pułaskiego 6/10, 26-660 Radom, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper focused on the co-production of high-value-added product thermostable C-phycocyanin (C-PC) and biomass, further utilized in pyrolysis. The photobiosynthesis of CPC was carried out by the thermophilic cyanobacteria Synechococcus PCC6715 cultivated in the helical and flat panel photobioreactors (PBR). Despite the application of different inorganic carbon sources, both PBRs were characterized by the same growth efficiency and similar C-PC concentration in biomass. To release the intracellular C-PC the biomass was concentrated and disintegrated by the freeze-thaw method. The crude C-PC was then further purified by foam fractionation (FF), aqueous two-phase extraction (ATPE), membrane techniques (UF) and fast protein liquid chromatography (FPLC). Each of the tested methods can be used separately; however, from a practical and economic point of view, a three-stage purification system (FF, FPLC and UF) was proposed. The purity ratio of the final C-PC was about 3.9, which allows it to be classified as a reactive grade. To improve the profitability of 3G biorefinery, the solid biomass residue was used as a substrate to pyrolysis process, which leads to production of additional chemicals in the form of oils, gas (containing e.g. H 2) and biochar.
Go to article

Authors and Affiliations

Stanisław Ledakowicz
1
ORCID: ORCID
Anna Antecka
1
ORCID: ORCID
Pawel Gluszcz
1
ORCID: ORCID
Anna Klepacz-Smolka
1
ORCID: ORCID
Damian Pietrzyk
1
Rafal Szelag
1
Radoslaw Slezak
1
ORCID: ORCID
Maurycy Daroch
2
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
  2. School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
Download PDF Download RIS Download Bibtex

Abstract

Plastics have become indispensable in everyday life due to their properties. For this reason, the accumulation of polymer waste in the natural environment is becoming a serious global problem. The aim of the research was to isolate microorganisms capable of biodegrading plastics. The studies focused on the biodegradation of low-density polyethylene as the most common polymer. Seven and five bacterial strains were isolated from the landfill and compost, respectively. The morphological and biochemical characteristics of the isolates were determined. These isolates were able to survive in an environment where the only carbon source was LDPE, but no increase in biomass was obtained. However, analysis of the spectra obtained by the ATR-FTIR method showed the formation of chemical changes on the polymer surface. Bacterial biofilm formation was visualized by scanning electron microscopy. The toxicity of plastic biodegradation products in a liquid environment was tested and their safety for plants was confirmed. However, these biodegradation products have acute lethal toxicity for the Daphnia magna.
LDPE films were pre-treated with H 2O 2, HNO 3, or heat. The biodegradation of HNO 3-treated LDPE by isolated bacteria was the most significant. The weight loss was approximately 8%, and 6%, for landfill and compost-isolated bacterial strains, respectively.
Go to article

Authors and Affiliations

Elżbieta Szczyrba
1
ORCID: ORCID
Tetiana Pokynbroda
2
ORCID: ORCID
Nataliia Koretska
2
ORCID: ORCID
Agnieszka Gąszczak
1
ORCID: ORCID

  1. Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice, Poland
  2. Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L.M. Lytvynenko of the National Academy of Sciences of Ukraine, Naukova str, 79060, Lviv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

Fresh water is essential for life. More and more countries around the world are facing scarcity of drinking water, which affects over 50% of the global population. Due to human activity such as industrial development and the increasing greenhouse effect, the amount of drinking water is drastically decreasing. To address this issue, various methods of sea and brackish water desalination are used. In this study, an energy analysis (specific energy consumption, SEC) of two laboratory membrane processes, reverse osmosis (RO) and pervaporation (PV), was conducted. A model feed system saline water at 0.8, and 3.5% wt. NaCl was used. The efficiency and selectivity of membranes used in PV and RO were examined, and power of the devices was measured. The desalination processes were found to have a high retention factor (over 99%) for both PV and RO. For PV, the permeate fluxes were small but they increased with increasing feed flow rate, process temperature and salt content in the feed. The calculated SEC values for both laboratory processes ranged from 2 to 70 MWh/m 3. Lowering the process temperature, which consumes 30 to 60% of the total energy used in the PV process, can be an important factor in reducing energy consumption.
Go to article

Authors and Affiliations

Izabela Gortat
1
ORCID: ORCID
Joanna Marszałek
1
ORCID: ORCID
Paweł Wawrzyniak
1

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 93-005 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Biobased hydrogels are three-dimensional polymeric matrices with a unique high water-holding capacity, which are mainly obtained from polysaccharides and proteins. Such a variety of natural polymer structures offers a range of hydrogel products with interesting physicochemical and biological properties. Nowadays, these matrices are already used in many industrial and environmental fields, which is considered extremely important. Moreover, the literature on the subject is constantly expanding, especially in areas of scientific research. The main purpose of this article is to briefly review the current development of matrices composition and properties of hydrogels of natural origin, considered as functional platforms in three application areas, primarily in biocatalysis, nutrition and medicine. The description of individual issues in the present article is supported by examples of case studies described in our previously published research papers, as well as considered in current projects of our research group.
Go to article

Authors and Affiliations

Karolina Labus
1
ORCID: ORCID
Halina Maniak
1
ORCID: ORCID
Katarzyna Kołodzińska
1
Łukasz Radosiński
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Chemistry, Department of Micro, Nano and Bioprocess Engineering, Norwida 4/6 50-373 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The large diversity of chemical substances present in air, water, or soil makes it necessary tostudy their mutual impact on the effectiveness of microbiological decomposition ofcontaminants. This publication presents the results of the studies aimed at evaluating the effect of two biogenic heavy metals - zinc and copper - on the phenol biodegradation by the Stenotrophomonas maltophilia KB2 strain. The tests were carried out for concentrations ofmetals significantly exceeding the legally permitted wastewater values: for zinc up to13.3 g·m -3, and copper up to 3.33 g·m -3. In the tested metal concentration range, phenol biodegradation by the S. maltophilia KB2 strain was not significantly influenced by theintroduced dose of zinc. While the presence of copper inhibited both biomass growth andsubstrate degradation. Kinetic data of metal and phenol mixtures were analyzed and very goodcorrelations were obtained for the proposed equations. An equation consistents with the Hanand Levenspiel model was proposed for the system S. maltophilia KB2-phenol-copper, whilean equation consistents with the Kai model for the system St. maltophilia KB2-phenol-zinc. The simultaneous presence of Zn and Cu ions in the culture resulted in a stronger inhibition ofphenol biodegradation.
Go to article

Authors and Affiliations

Agnieszka Gąszczak
1
ORCID: ORCID
Elżbieta Szczyrba
1
ORCID: ORCID
Anna Szczotka
1
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Chemical Engineering, Baltycka 5, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Various types of events and emergency situations have a significant impact on the safety of people and the environment. This especially refers to the incidents involving the emission of pollutants, such as ammonia, into the atmosphere. The article presents the concept of combining unmanned aerial vehicles with contamination plume modelling. Such a solution allows for mapping negative effects of ammonia release caused by the damage to a tank (with set parameters) during its transport as well as by the point leakage (such as unsealing in the installation). Simulation based on the ALOHA model makes it possible to indicate the direction of pollution spread and constitutes the basis for taking action. And, the use of a drone allows to control contamination in real time and verify the probability of a threat occurring in a given area.
Go to article

Authors and Affiliations

Anna Rabajczyk
1
Jacek Zboina
1
Maria Zielecka
1
Radosław Fellner
2
Piotr Kaczmarzyk
1
Dariusz Pietrzela
1
Grzegorz Zawistowski
1

  1. Scientific and Research Centre for Fire Protection, National Research Institute, Nadwiślańska 213, 05-420 Józefów, Poland
  2. Fire University of Warsaw, Słowackiego 52/54, 01-629 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The production of biohydrogen from food waste (FW) by dark fermentation (DF) is a promising technology for commercialisation, as it is both a clean fuel and a suitable means of sustainable waste management. The described experiments compared the biohydrogen production yields obtained after the use of inoculum from two different sources: digested sludge from the wastewater treatment plant (WWTP) in Lodz and sludge from the anaerobic treatment of dairy industry wastewater (DIW) (unconcentrated and double-concentrated). In addition, the effect of different temperatures (70, 90 and 121°C) of inoculum pretreatment on the biohydrogen production in DF was tested. The process was carried out batchwise at 37°C. The highest yield of hydrogen production was obtained after the inoculum pretreatment at 70°C. In addition, a higher amount of hydrogen could be obtained by using sludge from the WWTP as the inoculum (96 cm3 H2/gTVSFW) than unthickened sludge from the DIW (85 cm 3 H 2/g TVSFW). However, after thickening the sludge from the dairy industry, and at the same time balancing the dry matter of both sludges, the hydrogen production potential was comparable for bothsludges (for the WWTP sludge – 96 and for the DIW sludge – 93 cm 3 H 2/g TVSFW). The kinetics of hydrogen production was described by modified Gompertz equation, which showed a good fit (determination coefficient R2 between 0.909 and 0.999) to the experimental data.
Go to article

Authors and Affiliations

Marlena Domińska
1
ORCID: ORCID
Katarzyna Paździor
1
ORCID: ORCID
Radosław Ślęzak
1
ORCID: ORCID
Stanisław Ledakowicz
1
ORCID: ORCID

  1. Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, 213 Wolczanska Street, 90-924 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The use of foam fractionation followed by aqueous two-phase extraction has emerged as a potential alternative to traditional liquid chromatography, hitherto irreplaceable in the purification of phycobiliproteins. The crude extracts of C-phycocyanin and allophycocyanin were obtained after Thermosynechococcus PCC 6715 biomass disintegration. The FF process with air flow of 2.4 L·h -1 resulted in purification factors up to 1.47 and partitioning coefficients of about 39, and did not require the addition of surfactants. A temperature of 35˚C allowed for the highest partitioning coefficient of 67.6 and yield of 76%; however, the purity of C-PC in condensate at this temperature was lower than at 25˚C. ATPE was tested in 20 different systems consisting of polyethylene glycol and phosphate or citrate salts, of which PEG1500-citrate gave the highest purification factor value of 2.31. Conversely, a partitioning coefficient of 2416 and 1094 were obtained for the PEG1500-phosphate and PEG3000-phosphate systems, respectively. Interestingly, the use of FF condensate in subsequent ATPE step resulted, for the first time, in the separation of the polymer phase into two fractions, one contained C-phycocyanin and the other allophycocyanin. It can be concluded that the use of a two-step system of FF and ATPE is a viable way to separate phycobiliproteins.
Go to article

Authors and Affiliations

Anna Antecka
1
ORCID: ORCID
Rafał Szeląg
1
Stanisław Ledakowicz
1
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Wolczanska 213, 93-005 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The results of studies on the disintegration kinetics of the yeast Saccharomyces cerevisiae are presented. The process was carried out in a 500 W ultrasonic homogenizer equipped with a spherical working chamber with a volume of 100 cm 3. The concentration of the suspension of microorganisms was 0.05 g d.m./cm 3. The continuous phase was water solution containing 0.15 M NaCl and 4 mM K 2HPO 4. The kinetics of cell disruption were studied by the direct method. The theory of random transformation of dispersed matter was used to analyze the process. There was significant variation in the size of yeast cells. The range of changes in the values of parameters describing the size of microorganisms was divided into size classes. The kinetics of cell disruption in individual classes was described by a first-order linear differential equation. During the implosion of cavitation bubbles, the transformation volume of individual microorganisms is generated. It has been shown that as the volume of cells in subsequent size classes increases, their transformation volumes do not increase significantly. The safe volume for cells remains unchanged. As the size of the microorganisms increased, there was no increase in the constant rate of cell disruption.
Go to article

Authors and Affiliations

Anna Kacprowicz
1
ORCID: ORCID
Marek Solecki
1
ORCID: ORCID

  1. Lodz University of Technology, Faculty of Process and Environmental Engineering, Wolczanska 213, 93-005 Lodz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The notion of free will, which supports moral responsibility in various accounts of Catholic moral theology, is in a particular way situated at the intersection of theological and non-theological disciplines. Early studies on volition in cognitive neuroscience, inspired by Libet’s experiment (1983), suggested that free will is an illusion because our conscious intentions do not cause corresponding actions: these are initiated beforehand by unconscious brain processes. Although this seems to contradict basic anthropological and ethical assumptions, a closer look at this thesis renders it immature. At the same time, new developments in the multidisciplinary science of human volition draw attention to several aspects of freedom and agency that may be central to the way people take action and control their lives. The implications of this research may provoke some reformulations on the side of theological ethics. They may also point to certain schools and traditions, such as Christian virtue ethics, as theologically preferable.
Go to article

Authors and Affiliations

Mateusz Jarmużewski
1
ORCID: ORCID

  1. Windesheim University of Applied Sciences, Zwolle (The Netherlands)
Download PDF Download RIS Download Bibtex

Abstract

Water resources are the main component of natural systems affected by climate change in the Middle East. Due to a lack of water, steam power plants that use wet cooling towers have inevitably reduced their output power. This article investigates the replacement of wet cooling towers in Isfahan Thermal Power Plant (ITPP) with Heller natural dry draft cooling towers. The thermodynamic cycle of ITPP is simulated and the effect of condenser temperature on efficiency and output power of ITPP is evaluated. For various reasons, the possibility of installing the Heller tower without increasing in condenser temperature and without changing the existing components of the power plant was rejected. The results show an increase in the condenser temperature by removing the last row blades of the low-pressure turbine. However, by replacing the cooling tower without removing the blades of the last row of the turbine, the output power and efficiency of the power plant have decreased about 12.4 MW and 1.68 percent, respectively.
Go to article

Bibliography

[1] B. Dziegielewski and D. Baumann. Tapping alternatives: The benefits of managing urban water demands. Environment: Science and Policy for Sustainable Development, 34(9):6–41, 2010. doi: 10.1080/00139157.1992.9930929.
[2] D. Marmer. Water conservation equals energy conservation. Energy Engineering, 115(5):48–63, 2018. doi: 10.1080/01998595.2018.12027708.
[3] J.M. Burns, D.C. Burns, and J.S. Burns. Retrofitting cooling towers: estimates required to achieve the next level of CWA 316(b) compliance. In Proceedings of the ASME Power Conference, pages 25–33, 2004. doi: 10.1115/POWER2004-52051.
[4] A. Loew, P. Jaramillo, and H. Zhai. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants. Environmental Research Letters, 11(10):104004, 2016. doi: 10.1088/1748-9326/11/10/104004.
[5] A.E. Conradie and D.G. Kröger. Performance evaluation of dry-cooling systems for power plant applications. Applied Thermal Engineering, 16(3):219–232, 1996. doi: 10.1016/1359-4311(95)00068-2.
[6] A.E. Conradie, J.D. Buys, and D.G. Kröger. Performance optimization of dry-cooling systems for power plants through SQP methods. Applied Thermal Engineering, 18(1-2):25–45, 1998. doi: 10.1016/S1359-4311(97)00020-3.
[7] J.D. Buys and D.G. Kröger. Dimensioning heat exchangers for existing dry cooling towers. Energy Conversion and Management, 29(1):63–71, 1989. doi: 10.1016/0196-8904(89)90014-9.
[8] Z. Zou, Z. Guan, H. Gurgenci, and Y. Lu. Solar enhanced natural draft dry cooling tower for geothermal power applications. Solar Energy, 86(9):2686–2694, 2012. doi: 10.1016/j.solener.2012.06.003.
[9] S. Bagheri and M. Nikkhoo. Investigation of the optimum location for adding two extra Heller-type cooling towers in Shazand power plant. Proceedings of the 17th IAHR International Conference on Cooling Tower and Heat, pages. 74–83, Australia, 2015.
[10] W. Peng and O.K. Sadaghiani. Presentation of an integrated cooling system for enhancement of cooling capability in Heller cooling tower with thermodynamic analyses and optimization. International Journal of Refrigeration, 131:786–802, 2021. doi: 10.1016/j.ijrefrig.2021.07.016.
[11] M.A. Ardekani, F. Farhani, and M. Mazidi. Effects of cross wind conditions on efficiency of Heller dry cooling tower. Experimental Heat Transfer, 28(4):344–353, 2015. doi: 10.1080/08916152.2014.883449.
[12] A. Jahangiri, A. Borzooee, and E. Armoudli. Thermal performance improvement of the three aligned natural draft dry cooling towers by wind breaking walls and flue gas injection under different crosswind conditions. International Journal of Thermal Sciences, 137:288–298, 2019. doi: 10.1016/j.ijthermalsci.2018.11.028.
[13] A.R. Seifi, O.A. Akbari, A.A. Alrashed, F. Afshari, G.A.S. Shabani, R. Seifi, M. Goodarzi, and F. Pourfattah. Effects of external wind breakers of Heller dry cooling system in power plants. Applied Thermal Engineering, 129: 1124–1134, 2018. doi: 10.1016/j.applthermaleng.2017.10.118.
[14] R.A. Kheneslu, A. Jahangiri, and M. Ameri. Interaction effects of natural draft dry cooling tower (NDDCT) performance and 4E (energy, exergy, economic and environmental) analysis of steam power plant under different climatic conditions. Sustainable Energy Technologies and Assessments, 37:100599, 2020. doi: 10.1016/j.seta.2019.100599.
[15] A. Jahangiri and F. Rahmani. Power production limitations due to the environmental effects on the thermal effectiveness of NDDCT in an operating powerplant. Applied Thermal Engineering, 141:444–455, 2018. doi: 10.1016/j.applthermaleng.2018.05.108.
[16] A.D. Samani. Combined cycle power plant with indirect dry cooling tower forecasting using artificial neural network. Decision Science Letters, 7:131–142, 2018. doi: 10.5267/j.dsl.2017.6.004.
[17] T.L. Bergman, F.P. Incropera, D.P. DeWitt, and A.S. Lavine. Fundamentals of Heat and Mass Transfer. John Wiley & Sons, 2011.
[18] Archive of Isfahan Mohammad Montazeri Power Station. Isfahan, Iran, 1984.
[19] H. Ahmadikia and G. Iravani. Numerical and analytical study of natural dry cooling tower in a steam power plant. Journal of Advanced Materials in Engineering (Esteghlal), 26(1):183–195, 2007. (in Persian).
[20] H.G. Zavaragh, M.A. Ceviz, and M.T.S. Tabar. Analysis of windbreaker combinations on steam power plant natural draft dry cooling towers. Applied Thermal Engineering, 99:550–559, 2016. doi: 10.1016/j.applthermaleng.2016.01.103.
[21] K.F. Reinschmidt and R. Narayanan. The optimum shape of cooling towers. Computers & Structures, 5(5-6):321–325, 1975. doi: 10.1016/0045-7949(75)90039-5.
[22] Isfahan Thermal Power Plant documents, No. C.583 and C.749, Islam Abad Power Plant, Isfahan, Iran, 1988.
[23] I.H. Shames. Mechanics of Fluids. 4th ed. McGraw-Hill, New York, 2003.
[24] C.R.F. Azevedo and A. Sinátora. Erosion-fatigue of steam turbine blades. Engineering Failure Analysis, 16(2):2290–2303, 2009. doi: 10.1016/j.engfailanal.2009.03.007.
[25] H. Kim. Crack evaluation of the fourth stage blade in a low-pressure steam turbine. Engineering Failure Analysis, 18(3):907–913, 2011. doi: 10.1016/j.engfailanal.2010.11.004.
[26] L.K. Bhagi, P. Gupta, and V. Rastogi. Fractographic investigations of the failure of L-1 pressure steam turbine blade. Case Studies in Engineering Failure Analysis, 1(2):72–78, 2013. doi: 10.1016/j.csefa.2013.04.007.
Go to article

Authors and Affiliations

Mohamad Hasan Malekmohamadi
1 2
Hossein Ahmadikia
1
ORCID: ORCID
Siavash Golmohamadi
2
Hamed Khodadadi
3

  1. University of Isfahan, Isfahan, Iran
  2. Isfahan Thermal Power Plant, Isfahan, Iran
  3. Department of Electrical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran

[?]

Bibliography

[1] M. Zhang and R. Schmidt. Sensitivity analysis of an auto-correlation-function-based damage index and its application in structural damage detection. Journal of Sound and Vibration, 333(26):7352–7363, 2014. doi: 10.1016/j.jsv.2014.08.020.
[2] T.W. Kim and J.H. Kim. Eigensensitivity based optima distribution of a viscoelastic damping layer for a flexible beam. Journal of Sound and Vibration, 273(1-2):201–218, 2004. doi: 0.1016/S0022-460X(03)00479-6.
[3] F. van Keulen, R.T. Haftka, and N.H. Kim. Review of options for structural design sensitivity analysis. Part 1: Linear systems. Computer Methods in Applied Mechanics and Engineering, 194(30-33):3213–3243, 2005. doi: 0.1016/j.cma.2005.02.002.
[4] D.A. Tortorelli and P. Michaleris. Design sensitivity analysis: Overview and review. Inverse Problems in Engineering, 1(1):71–105, 1994, doi: 10.1080/174159794088027573.
[5] R.L. Fox and M.P. Kapoor. Rates of change of eigenvalues and eigenvectors. AIAA Journal, 6(12):2426–2429, 1968. doi: 10.2514/3.5008.
[6] S. Adhikari and M.I. Friswell. Eigenderivative analysis of asymmetric non-conservative systems. International Journal for Numerical Methods in Engineering, 51(6):709–733, 2001. doi: 10.1002/NME.186.
[7] R.B. Nelson. Simplified calculation of eigenvector derivatives. AIAA Journal, 14(9):1201–1205, 1976. doi: 10.2514/3.7211.
[8] M.I. Friswell and S. Adhikari. Derivatives of complex eigenvectors using Nelson’s method. AIAA Journal, 38(12):2355–2357, 2000. doi: 10.2514/2.907.
[9] S. Adhikari and M.I. Friswell. Calculation of eigenrelation derivatives for nonviscously damped systems using Nelson’s method. AIAA Journal, 44(8):1799–1806, 2006. doi: 10.2514/1.20049.
[10] L. Li, Y. Hu, X. Wang, and L. Ling. Eigensensitivity analysis of damped systems with distinct and repeated eigenvalues. Finite Elements in Analysis and Design, 72:21–34, 2013. doi: 10.1016/j.finel.2013.04.006.
[11] L. Li, Y. Hu, and X. Wang. A study on design sensitivity analysis for general nonlinear eigenproblems. Mechanical Systems and Signal Processing, 34(1-2):88–105, 2013. doi: 10.1016/j.ymssp.2012.08.011.
[12] T.H. Lee. An adjoint variable method for structural design sensitivity analysis of a distinct eigenvalue problem. KSME International Journal, 13(6):470–476, 1999. doi: 10.1007/BF02947716.
[13] T.H. Lee. Adjoint method for design sensitivity analysis of multiple eigenvalues and associated eigenvectors. AIAA Journal, 45(8):1998–2004, 2007. doi: 10.2514/1.25347.
[14] S. He, Y. Shi, E. Jonsson, and J.R.R.A. Martins. Eigenvalue problem derivatives computation for a complex matrix using the adjoint method. Mechanical Systems and Signal Processing, 185:109717, 2023. doi: 10.1016/j.ymssp.2022.109717.
[15] R. Lewandowski and M. Łasecka-Plura. Design sensitivity analysis of structures with viscoelastic dampers. Computers and Structures, 164:95–107, 2016. doi: 10.1016/j.compstruc.2015.11.011.
[16] Z. Ding, L. Li, G. Zou, and J. Kong. Design sensitivity analysis for transient response of non-viscously damped systems based on direct differentiate method. Mechanical Systems and Signal Processing, 121:322–342, 2019. doi: 10.1016/j.ymssp.2018.11.031.
[17] Z. Ding, J. Shi, Q. Gao, Q. Huang, and W.H. Liao. Design sensitivity analysis for transient responses of viscoelastically damped systems using model order reduction techniques. Structural and Multidisciplinary Optimization, 64:1501–1526, 2021. doi: 10.1007/s00158-021-02937-9.
[18] R. Haftka. Second-order sensitivity derivatives in structural analysis. AIAA Journal, 20(12):1765–1766, 1982. doi: 10.2514/3.8020.
[19] M.S. Jankovic. Exact nth derivatives of eigenvalues and eigenvectors. Journal of Guidance, Control, and Dynamics, 17(1):136–144, 1994. doi: 10.2514/3.21170.
[20] J.Y. Ding, Z.K. Pan, and L.Q. Chen. Second-order sensitivity analysis of multibody systems described by differential/algebraic equations: adjoint variable approach. International Journal of Computer Mathematics, 85(6):899–913, 2008. doi: 10.1080/00207160701519020.
[21] M. Martinez-Agirre and M.J. Elejabarrieta. Higher order eigensensitivities-based numerical method for the harmonic analysis of viscoelastically damped structures. International Journal for Numerical Methods in Engineering, 88(12):1280–1296, 2011. doi: 10.1002/nme.3222.
[22] H. Kim and M. Cho. Study on the design sensitivity analysis based on complex variable in eigenvalue problem. Finite Elements in Analysis and Design, 45:892–900, 2009. doi: 10.1016/j.finel.2009.07.002.
[23] A. Bilbao, R. Aviles, J. Aguirrebeitia, and I.F. Bustos. Eigensensitivity-based optimal damper location in variable geometry trusses. AIAA Journal, 47(3):576–591, 2009. doi: 10.2514/1.37353.
[24] R.M. Lin, J.E. Mottershead, and T.Y. Ng. A state-of-the-art review on theory and engineering applications of eigenvalue and eigenvector derivatives. Mechanical Systems and Signal Processing, 138:106536, 2020. doi: 10.1016/j.ymssp.2019.106536.
[25] R. Lewandowski, A. Bartkowiak, and H. Maciejewski. Dynamic analysis of frames with viscoelastic dampers: a comparison of dampers models. Structural Engineering and Mechanics, 41(1):113–137, 2012. doi: 10.12989/sem.2012.41.1.113.
[26] S.W. Park. Analytical modeling of viscoelastic dampers for structural and vibration control. International Journal of Solids and Structures, 38(44-45):8065–8092, 2001. doi: 10.1016/S0020-7683(01)00026-9.
[27] R. Lewandowski. Sensitivity analysis of structures with viscoelastic dampers using the adjoint variable method. Civil-Comp Proceedings, 106, 2014.
[28] J.S. Arora and J.B. Cardoso. Variational principle for shape design sensitivity analysis. AIAA Journal, 30(2):538–547, 1992. doi: 10.2514/3.10949.
[29] Z. Pawlak and R. Lewandowski. The continuation method for the eigenvalue problem of structures with viscoelastic dampers. Computers and Structures, 125:53–61, 2013. doi: 10.1016/j.compstruc.2013.04.021.
[30] R. Lewandowski and M. Baum. Dynamic characteristics of multilayered beams with viscoelastic layers described by the fractional Zener model. Archive of Applied Mechanics, 85(12):1793–1814, 2015. doi: 10.1007/s00419-015-1019-2.
[31] R. Lewandowski, P. Litewka and P. Wielentejczyk. Free vibrations of laminate plates with viscoelastic layers using the refined zig-zag theory – Part 1: Theoretical background. Composite Structures, 278:114547, 2021. doi: 10.1016/j.compstruct.2021.114547.
[32] M. Kamiński, A. Lenartowicz, M. Guminiak, and M. Przychodzki. Selected problems of random free vibrations of rectangular thin plates with viscoelastic dampers. Materials, 15(19): 6811, 2022. doi: 10.3390/ma15196811.
Go to article
Download PDF Download RIS Download Bibtex

Abstract

Unmanned, battery-powered quadrotors have a limited onboard energy resources. However, flight duration might be increased by reasonable energy expenditure. A reliable mathematical model of the drone is required to plan the optimum energy management during the mission. In this paper, the theoretical energy consumption model was proposed. A small, low-cost DJI MAVIC 2 Pro quadrotor was used as a test platform. Model parameters were obtained experimentally in laboratory conditions. Next, the model was implemented in MATLAB/Simulink and then validated using the data collected during real flight trials in outdoor conditions. Finally, the Monte-Carlo simulation was used to evaluate the model reliability in the presence of modeling uncertainties. It was obtained that the parameter uncertainties could affect the amount of total consumed energy by less than 8% of the nominal value. The presented model of energy consumption might be practically used to predict energy expenditure, battery state of charge, and voltage in a typical mission of a drone.
Go to article

Bibliography

[1] Z. He and L. Zhao. A simple attitude control of quadrotor helicopter based on Ziegler-Nichols rules for tuning PD parameters. The Scientific World Journal, 2014: 280180, 2014. doi: 10.1155/2014/280180.
[2] P. Jimenez, P. Lichota, D. Agudelo, and K. Rogowski. Experimental validation of total energy control system for UAVs. Energies, 13(1):14, 2020. doi: 10.3390/en13010014.
[3] C. Aoun, N. Daher, and E. Shammas. An energy optimal path-planning scheme for quadcopters in forests. 2019 IEEE 58th Conference on Decision and Control (CDC), pages 8323–8328, Nice, France, 11–13 December 2019. doi: 10.1109/CDC40024.2019.9029345.
[4] T.A. Rodrigues, J. Patrikar, A. Choudhry, J. Feldgoise, V. Arcot, A. Gahlaut, S. Lau, B. Moon, B. Wagner, H. S. Matthews, S. Scherer, and C. Samaras. In-flight positional and energy use data set of a DJI Matrice 100 quadcopter for small package delivery. Scientific Data, 8:155, 2021. doi: 10.1038/s41597-021-00930-x.
[5] F. Yacef, N. Rizoug, and L. Degaa. Energy-efficiency path planning for quadrotor UAV under wind conditions. 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT), pages 1133–1138, Prague, Czech Republic, 29 June–2 July 2020. doi: 10.1109/CoDIT49905.2020.9263968.
[6] F. Yacef, O. Bouhali, M. Hamerlain, and N. Rizoug. Observer-based adaptive fuzzy backstepping tracking control of quadrotor unmanned aerial vehicle powered by Li-ion battery. Journal of Intelligent and Robotic Systems, 84(1–4):179–197, 2016. doi: 10.1007/s10846-016-0345-0.
[7] F. Yacef, N. Rizoug, O. Bouhali, and M. Hamerlain. Optimization of energy consumption for quadrotor UAV. International Micro Air Vehicle Conference and Flight Competition (IMAV) 2017, Toulouse, France, 18-21 September 2017.
[8] F. Yacef, N. Rizoug, L. Degaa, O. Bouhali, and M. Hamerlain. Trajectory optimisation for a quadrotor helicopter considering energy consumption. 2017 4th International Conference on Control, Decision and Information Technologies (CoDIT), pages 1030–1035, Barcelona, Spain, 5–7 April 2017. doi: 10.1109/CoDIT.2017.8102734.
[9] G. Jia, S. Gong, R. Guo, and M. Li. Energy consumption model of BLDC quadrotor UAVs for mobile communication trajectory planning. TechRxiv. doi: 10.36227/techrxiv.19181228.v1.
[10] F. Morbidi, R. Cano, and D. Lara. Minimum-energy path generation for a quadrotor UAV. 2016 Ieee International Conference on Robotics and Automation (ICRA), pages 1492–1498, Stockholm, Sweden, 16–21 May 2016. doi: 10.1109/ICRA.2016.7487285.
[11] S. Jee and H. Cho. Comparing energy consumption following flight pattern for quadrotor. Journal of IKEEE, 22(3):747–753, 2018. doi: 10.7471/ikeee.2018.22.3.747.
[12] C.W. Chan and T.Y. Kam. A procedure for power consumption estimation of multi-rotor unmanned aerial vehicle. Journal of Physics: Conference Series, 1509:012015, 2020. doi: 10.1088/1742-6596/1509/1/012015.
[13] Y. Wang, Y. Wang, and B. Ren. Energy saving quadrotor control for field inspection. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(3):1768–1777, 2020. doi: 10.1109/TSMC.2020.3037071.
[14] H. Lu, K. Chen, X.B. Zhai, B. Chen, and Y. Zhao. Tradeoff between duration and energy optimization for speed control of quadrotor unmanned aerial vehicle. 2018 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN), pages 1–5, Shenzhen, China, 5–7 December 2018. doi: 10.1109/ISPCE-CN.2018.8805801.
[15] N. Bezzo, K. Mohta, C. Nowzari, I. Lee, V. Kumar, and G. Pappas. Online planning for energy-efficient and disturbance-aware UAV operations. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5027–5033, Daejeon, Korea, 9–14 October 2016. doi: 10.1109/IROS.2016.7759738.
[16] V. Agarwal and R.R. Tewari. Improving energy efficiency in UAV attitude control using deep reinforcement learning. Journal of Scientific Research, 65(3):209–219, 2021.
[17] A. Korneyev, M. Gorobetz, I. Alps, and L. Ribickis. Adaptive traction drive control algorithm for electrical energy consumption minimisation of autonomous unmanned aerial vehicle. Electrical, Control and Communication Engineering, 15(2):62–70, 2019. doi: 10.2478/ecce-2019-0009.
[18] J.F. Roberts, J.-C. Zufferey, and D. Floreano. Energy management for indoor hovering robots. 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1242–1247, Nice, France, 22–26 September 2008. doi: 10.1109/IROS.2008.4650856.
[19] A.S. Prasetia, R.-J. Wai, Y.-L. Wen, and Y.-K. Wang. Mission-based energy consumption prediction of multirotor UAV. IEEE Access, 7:33055–33063, 2019. doi: 10.1109/ACCESS.2019.2903644.
[20] X. Wu, J. Zeng, A. Tagliabue, and M. W. Mueller. Model-free online motion adaptation for energy-efficient flight of multicopters. Arxiv. doi: 10.48550/arXiv.2108.03807.
[21] C. Di Franco and G. Buttazzo. Energy-aware coverage path planning of UAVs. 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, pages 111–117, Vila Real, Portugal, 08–10 April 2015. doi: 10.1109/ICARSC.2015.17.
[22] T. Dietrich, S. Krug, and A. Zimmermann. An empirical study on generic multicopter energy consumption profiles. 2017 Annual IEEE International Systems Conference (SysCon), pages 1–6, Montreal, QC, Canada, 24–27 April 2017. doi: 10.1109/SYSCON.2017.7934762.
[23] H.V. Abeywickrama, B.A. Jayawickrama, Y. He, and E. Dutkiewicz. Empirical power consumption model for UAVs. 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pages 1-5, Chicago, IL, USA, 27–30 August 2018. doi: 10.1109/VTCFall.2018.8690666.
[24] R. Shivgan and Z. Dong. Energy-efficient drone coverage path planning using genetic algorithm. 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), pages 1–6, Newark, NJ, USA, 11–14 May 2020. doi: 10.1109/HPSR48589.2020.9098989.
[25] C. Di Franco and G. Buttazzo. Coverage path planning for UAVs photogrammetry with energy and resolution constraints. Journal of Intelligent & Robotic Systems, 83:445–462, 2016. doi: 10.1007/s10846-016-0348-x.
[26] N. Gao, Y. Zeng, J. Wang, D. Wu, C. Zhang, Q. Song, J. Qian and S. Jin. Energy model for UAV communications: Experimental validation and model generalization. China Communications, 18(7):253–264, 2021. doi: 10.23919/JCC.2021.07.020.
[27] N. Kreciglowa, K. Karydis, and V. Kumar, Energy efficiency of trajectory generation methods for stop-and-go aerial robot navigation. 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pages 656–662, Miami, USA, 13–16 June 2017. doi: 10.1109/ICUAS.2017.7991496.
[28] P. Pradeep, S.G. Park, and P. Wei. Trajectory optimization of multirotor agricultural. 2018 IEEE Aerospace Conference, pages 1–7, Big Sky, USA, 3–10 March 2018. doi: 10.1109/AERO.2018.8396617.
[29] M-h. Hwang, H-R. Cha and S.Y. Jung. Practical endurance estimation for minimizing energy consumption of multirotor unmanned aerial vehicles. Energies, 11(9):2221, 2018. doi: 10.3390/en11092221.
[30] A. Abdilla, A. Richards, and S. Burrow. Power and endurance modelling of battery-powered rotorcraft. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 675–680, Hamburg, Germany, 28 September–2 October 2015. doi: 10.1109/IROS.2015.7353445.
[31] J. Apeland, D. Pavlou, and T. Hemmingsen. Suitability Analysis of implementing a fuel cell on a multirotor drone. Journal of Aerospace Technology and Management, 12:e3220, 2020. doi: 10.5028/jatm.v12.1172.
[32] Z. Liu, R. Sengupta and A. Kurzhanskiy. A power consumption model for multi-rotor small unmanned aircraft systems. 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pages 310–315, Miami, FL, USA, 13–16 June 2017. doi: 10.1109/ICUAS.2017.7991310.
[33] L. Zhang, A. Celik, S. Dang, and B. Shihada. Energy-efficient trajectory optimization for UAV-assisted IoT networks. IEEE Transactions on Mobile Computing, 21(12):4323–4337, 2022. doi: 10.1109/TMC.2021.3075083.
[34] Y. Chen, D. Baek, A. Bocca, A. Macii, E. Macii, and M. Poncino. A case for a battery-aware model of drone energy consumption. 2018 IEEE International Telecommunications Energy Conference (INTELEC), pages 1–8, Turino, Italy, 7–11 October 2018. doi: 10.1109/INTLEC.2018.8612333.
[35] [Online]. https://www.dji.com/pl/mavic-2/info, [Accessed on: 13 July 2021].
[36] National Aeronautics and Space Administration, U.S. Standard Atmosphere, 1976, Washington, D.C., 1976.
[37] P.H. Zipfel. Modeling and Simulation of Aerospace Vehicle Dynamics. American Institute of Aeronautics and Astronautics. Reston, USA, 2000.
[38] D. Allerton. Principles of Flight Simulation. John Wiley and Sons, 2009.
[39] B.L. Stevens, F.L. Lewis, and E.N. Johnson. Aircraft Control and Simulation. Dynamics, Controls Design, and Autonomous Systems. John Wiley and Sons, 2015.
[40] M. Dreier. Introduction to Helicopter and Tiltrotor Simulation. American Institute of Aeronautics and Astronautics. Reston, USA, 2007.
[41] P. Lichota, F. Dul, and A. Karbowski. System identification and LQR controller design with incomplete state observation for aircraft trajectory tracking. Energies, 13(20):5354, 2020. doi: 10.3390/en13205354.
[42] M. Abzug. Computational Flight Dynamics. American Institute of Aeronautics and Astronautics. Reston, USA, 1998.
[43] S.K. Phang, C. Cai, B.M. Chen, and T.H. Lee. Design and Mathematical Modeling of a 4-Standard-Propeller (4SP) Quadrotor. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, pages 3270–3275, Beijing, China, 6–8 July 2012. doi: 10.1109/WCICA.2012.6358437.
[44] J. Sanketi, R. Kasliwal, S. Raghavan, and S. Awan. Modelling and simulation of a multi-quadcopter concept. International Journal of Engineering Research & Technology (IJERT), 5(10):566–571, 2016.
[45] N.M. Salma and K. Osman. Modelling and PID control system integration for quadcopter DJIF450 attitude stabilization. Indonesian Journal of Electrical Engineering and Computer Science, 19(3):1235–1244. doi: 10.11591/ijeecs.v19.i3.pp1235-1244.
[46] P. Pounds, R. Mahony, and P. Corke. Modelling and control of a large quadrotor robot. Control Engineering Practice, 18(7):691–699, 2010. doi: 10.1016/j.conengprac.2010.02.008.
[47] Z. Benić, P. Piljek, and D. Kotarski. Mathematical modelling of unmanned aerial vehicles with four rotors. Interdisciplinary Description of Complex Systems, 14(1):88–100, 2016. doi: 10.7906/indecs.14.1.9.
[48] I.M. Salameh, E.M. Ammar, and T.A. Tutunji. Identification of quadcopter hovering using experimental data. 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), pages 1–6, Amman, Jordan, 3–5 November 2015. doi: 10.1109/AEECT.2015.7360559.
[49] [Online]. Available: https://airdata.com [Accessed on: 27 January 2022].
[50] W. Jaafar and H. Yanikomeroglu. Dynamics of quadrotor UAVs for aerial networks: An energy perspective. Arxiv, 2019. doi: 10.48550/arXiv.1905.06703.
[51] P. Pradeep and P. Wei. Energy efficient arrival with rta constraint for multirotor eVTOL in urban air mobility. Journal of Aerospace Information Systems, 16(7):1–15, 2019. doi: 10.2514/1.I010710.
[52] F. Morbidi and D. Pisarski. Practical and accurate generation of energy-optimal trajectories for a planar quadrotor. 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 355–361, Xi'an, China, 30 May–5 June 2021. doi: 10.1109/ICRA48506.2021.9561395.
[53] T. Mesbahi, N. Rizoug, P. Bartholomeus, and P. Le Moigne. Li-ion battery emulator for electric vehicle applications. 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), pages 1–8, Beijing, China, 15–18 October 2013. doi: 10.1109/VPPC.2013.6671688.
[54] F. Li, W.-P. Song, B.-F. Song, and H. Zhang, Dynamic modeling, simulation, and parameter study of electric quadrotor system of Quad-Plane UAV in wind disturbance environment. International Journal of Micro Air Vehicles, 13:1–23, 2021. doi: 10.1177/17568293211022211.
[55] O. Tremblay and L-A. Dessaint. Experimental validation of a battery dynamic model for ev applications. World Electric Vehicle Journal, 3(2):289–298, 2009. doi: 10.3390/wevj3020289.
[56] S.M. Mousavi and M. Nikdel. Various battery models for various simulation studies and applications. Renewable and Sustainable Energy Reviews, 32:477–485, 2014. doi: 10.1016/j.rser.2014.01.048.
[57] S.M. Azam. Battery Identification, Prediction and Modelling. Master Thesis, Colorado State University, Fort Collins, Colorado, USA, 2018.
[58] E. Raszmann, K. Baker, Y. Shi, and D. Christensen. Modeling stationary lithium-ion batteries for optimization and predictive control. 2017 IEEE Power and Energy Conference at Illinois (PECI), pages 1–7, Champaign, IL, USA, 23–24 February 2017. doi: 10.1109/PECI.2017.7935755.
[59] H. Hemi, N.K. M’Sirdi, and A. Naamane. A new proposed shepherd model of a li-ion open circuit battery based on data fitting. IMAACA 2019, Lisbon, Portugal, 2019.
[60] [Online]: https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html. [Accessed on: 9 October 2021].
[61] H. Hinz. Comparison of lithium-ion battery models for simulating storage systems in distributed power generation. Inventions, 4(3):41, 2019. doi: 10.3390/inventions4030041.
[62] L.E. Romero, D.F. Pozo, and J.A. Rosales. Quadcopter stabilization by using PID controllers. Maskana, 5:175–186, 2016.
[63] A. Rodić and G. Mester. The modeling and simulation of an autonomous quad-rotor microcopter in a virtual outdoor scenario. A cta Polytechnica Hungarica, 8(4):107–122, 2011.
[64] A.L. Salih, M. Moghavvemi, H.A.F. Mohamed, and K.S. Gaeid. Flight PID controller design for a UAV quadrotor. Scientific Research and Essays, 5(23):3660–3667, 2010.
[65] V. Brito, A. Brito, L.B. Palma, and P. Gil. Quadcopter control approaches and performance analysis. In Proceedings of the 15th International Conference on Informatics in Control, Automation and–Robotics - Volume 1: ICINCO, pages 86–93, Porto, Portugal, 29–31 July, 2018. doi: 10.5220/0006902600960103.
[66] [Online]. Available: https://www.dji.com/pl/downloads/products/mavic-2. [Accessed on: 7 August 2021].
[67] M. Jacewicz, M. Żugaj, R. Głębocki, and P. Bibik. Quadrotor model for energy consumption analysis. Energies, 15(19):7136, 2022. doi: 10.3390/en15197136.
[68] M. Jacewicz, P. Lichota, D. Miedziński, and R. Głębocki. Study of model uncertainties influence on the impact point dispersion for a gasodynamicaly controlled projectile. Sensors, 22(9):3257, 2022. doi: 10.3390/s22093257.
[69] M. Jacewicz, R. Głębocki, and R. Ożóg. Monte-Carlo based lateral thruster parameters optimization for 122 mm rocket. In: R. Szewczyk, C. Zieliński, M. Kaliczyńska (eds) Automation 2020: Towards Industry of the Future. AUTOMATION 2020. Advances in Intelligent Systems and Computing, volume 1140, pages 125–134, Springer, 2020. doi: 10.1007/978-3-030-40971-5_12.
[70] C. Coulombe, J.-F. Gamache, A. Mohebbi, C. Abolfazl, U. Chouinard and S. Achiche, Applying robust design methodology to a quadrotor drone. In Proceedings of the 21st International Conference on Engineering Design (ICED17), Vol 4: Design Methods and Tools, Vancouver, Canada, 21–25 August 2017.
Go to article

Authors and Affiliations

Robert Głębocki
1
ORCID: ORCID
Marcin Żugaj
1
ORCID: ORCID
Mariusz Jacewicz
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Power and Aeronautical Engineering, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine how the change of glass laminate fibres to flax fibres will affect the stability of thin-walled angle columns. Numerical analyses were conducted by the finite element method. Short L-shaped columns with different configurations of reinforcing fibres and geometric parameters were tested. The axially compressed structures were simply supported on both ends. The lowest two bifurcation loads and their corresponding eigenmodes were determined. Several configurations of unidirectional fibre arrangement were tested. Moreover, the influence of a flange width change by ±100% and a column length change by ±33% on the bifurcation load of the compressed structure was determined. It was found that glass laminate could be successfully replaced with a bio-laminate with flax fibres. Similar results were obtained for both materials. For the same configuration of fibre arrangement, the flax laminate showed a lower sensitivity to the change in flange width than the glass material. However, the flax laminate column showed a greater sensitivity to changes in length than the glass laminate one. In a follow-up study, selected configurations will be tested experimentally.
Go to article

Bibliography

[1] S.V. Joshi, L.T. Drzal, A.K Mohanty, and S. Arora. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3):371–376, 2004. doi: 10.1016/j.compositesa.2003.09.016.
[2] P. Wambua, J. Ivens .and I.Verpoest. Natural fibers: can they replace glass in fiber reinforced plastics? Composites Science and Technology, 63(9):1259–1264, 2003. doi: 10.1016/S0266-3538(03)00096-4.
[3] D.B. Dittenber and H.V.S. GangaRao. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A: Applied Science and Manufacturing, 43(8):1419–1429, 2012. doi: 10.1016/j.compositesa.2011.11.019.
[4] A. Stamboulis, C.A. Baillie, and T. Peijs. Effects of environmental conditions on mechanical and physical properties of flax fibers. Composites Part A: Applied Science and Manufacturing, 32(8):1105–1115, 2001. doi: 10.1016/S1359-835X(01)00032-X.
[5] L. Pil, F. Bensadoun, J. Pariset, and I. Verpoest. Why are designers fascinated by flax and hemp fiber composites? Composites Part A: Applied Science and Manufacturing, 83:193–205, 2016. doi: 10.1016/j.compositesa.2015.11.004.
[6] H.Y. Cheung, M.P. Ho, K.T. Lau, F. Cardona, And D. Hui. Natural fiber-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 40(7):655–663, 2009. doi: 10.1016/j.compositesb.2009.04.014.
[7] M.I. Misnon, Md M. Islam, J.A. Epaarachchi, and K.T. Lau. Potentiality of utilising natural textile materials for engineering composites applications. Materials & Design, 59:359–368, 2014. doi: 10.1016/j.matdes.2014.03.022.
[8] T. Gurunathan, S. Mohanty, and S.K. Nayak. A review of the recent developments in biocomposites based on natural fibers and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77:1–25, 2015. doi: 10.1016/j.compositesa.2015.06.007.
[9] H.L. Bos, M.J.A. Van Den Oever, and O.C.J.J. Peters. Tensile and compressive properties of flax fibers for natural fiber reinforced composites. Journal of Materials Science, 37:1683–1692, 2002. doi: 10.1023/A:1014925621252.
[10] C. Baley. Analysis of the flax fibers tensile behavior and analysis of the tensile stiffness increase. Composites Part A: Applied Science and Manufacturing, 33(7):939–948, 2002. doi: 10.1016/S1359-835X(02)00040-4.
[11] C. Baley, M. Gomina, J. Breard, A. Bourmaud, and P. Davies. Variability of mechanical properties of flax fibers for composite reinforcement. A review. Industrial Crops and Products, 145:111984, 2020. doi: 10.1016/j.indcrop.2019.111984.
[12] I. El Sawi, H. Bougherara, R. Zitoune, and Z. Fawaz. Influence of the manufacturing process on the mechanical properties of flax/epoxy composites. J ournal of Biobased Materials and Bioenergy, 8(1):69–76, 2014. doi: 10.1166/jbmb.2014.1410.
[13] K. Strohrmann and M. Hajek. Bilinear approach to tensile properties of flax composites in finite element analyses. Journal of Materials Science, 54:1409–1421, 2019. doi: 10.1007/s10853-018-2912-1.
[14] Z. Mahboob, Y. Chemisky, F. Meraghni, and H. Bougherara. Mesoscale modelling of tensile response and damage evolution in natural fiber reinforced laminates. Composites Part B: Engineering, 119:168–183, 2017. doi: 10.1016/j.compositesb.2017.03.018.
[15] Z. Mahboob, I. El Sawi, R. Zdera, Z. Fawaz, and H. Bougherara. Tensile and compressive damaged response in Flax fiber reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 92:118–133, 2017. doi: 10.1016/j.compositesa.2016.11.007.
[16] C. Nicolinco, Z. Mahboob, Y. Chemisky, F. Meraghni, D. Oguamanam, and H. Bougherara. Prediction of the compressive damage response of flax-reinforced laminates using a mesoscale framework. Composites Part A: Applied Science and Manufacturing, 140:106153, 2021. doi: 10.1016/j.compositesa.2020.106153.
[17] R.T. Durai Prabhakaran, H. Teftegaard, C.M. Markussen, and B. Madsen. Experimental and theoretical assessment of flexural properties of hybrid natural fiber composites. Acta Mechanica, 225:2775–2782, 2014. doi: 10.1007/s00707-014-1210-5.
[18] M. Fehri, A. Vivet, F. Dammak, M. Haddar, and C. Keller. A characterization of the damage process under buckling load in composite reinforced by flax fibers. Journal of Composites Science, 4(3):85, 2020. doi: 10.3390/jcs4030085.
[19] V. Gopalan, V. Suthenthiraveerappa, J.S. David, J. Subramanian,A.R. Annamalai, and C.P. Jen. Experimental and numerical analyses on the buckling characteristics of woven flax/epoxy laminated composite plate under axial compression. Polymers, 13(7):995, 2021. doi: 10.3390/polym13070995.
[20] J. Gawryluk and A. Teter. Experimental-numerical studies on the first-ply failure analysis of real, thin-walled laminated angle columns subjected to uniform shortening. Composite Structures, 269:114046, 2021. doi: 10.1016/j.compstruct.2021.114046.
[21] J. Gawryluk. Impact of boundary conditions on the behavior of thin-walled laminated angle column under uniform shortening. Materials, 14(11):2732, 2021. doi: 10.3390/ma14112732.
[22] J. Gawryluk. Post-buckling and limit states of a thin-walled laminated angle column under uniform shortening. Engineering Failure Analysis, 139:106485, 2022. doi: 10.1016/j.engfailanal.2022.106485.
[23] ABAQUS 2020 HTML Documentation, DassaultSystemes.
[24] T. Kubiak and L. Kaczmarek, Estimation of load-carrying capacity for thin-walled composite beams. Composite Structures, 119:749–756, 2015. doi: 10.1016/j.compstruct.2014.09.059.
[25] T. Kubiak, S. Samborski, and A. Teter. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Composite Structures, 133:921–929, 2015. doi: 10.1016/j.compstruct.2015.08.023.
[26] M. Urbaniak, A. Teter, and T. Kubiak. Influence of boundary conditions on the critical and failure load in the GFPR channel cross-section columns subjected to compression. Composite Structures, 134:199–208, 2015. doi: 10.1016/j.compstruct.2015.08.076.
[27] A. Teter and Z. Kolakowski. On using load-axial shortening plots to determine the approximate buckling load of short, real angle columns under compression. Composite Structures, 212:175–183, 2019. doi: 10.1016/j.compstruct.2019.01.009.
[28] A. Teter, Z. Kolakowski, and J. Jankowski. How to determine a value of the bifurcation shortening of real thin-walled laminated columns subjected to uniform compression? Composite Structures, 247, 12430, 2020 doi: 10.1016/j.compstruct.2020.112430.
Go to article

Authors and Affiliations

Jarosław Gawryluk
1
ORCID: ORCID

  1. Department of Applied Mechanics, Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The automotive industry requires more and more light materials with good strength and formability at the same time. The answer to this type of demands are, among others, aluminium alloys of the 6xxx series, which are characterized by a high strength-to-weight ratio and good corrosion resistance. Different material state can affect formability of AlMgSi sheets. These study analysed the influence of heat treatment conditions on the drawability of the sheet made of 6082 aluminium alloy. The studies on mechanical properties and plastic anisotropy for three orientations (0, 45, 90°) with respect to the rolling direction were carried out. The highest plasticity was found for the material in the 0 temper condition. The influence of heat treatment conditions on the sheet drawability was analysed using the Erichsen, Engelhardt-Gross, Fukui and AEG cupping tests. It was found that the material state influenced the formability of the sheet. In the case of bulging, the sheet in the annealed state was characterized by greater drawability, and in the deep drawing process, greater formability was found for the naturally aged material.
Go to article

Bibliography

[1] W. Muzykiewicz, Validation tests for the 6082-grade sheet in the "0" state with an account of its application for deep drawing processes. Rudy i Metale Nieżelazne, 51(7):422–427, 2006. (in Polish).
[2] A.C.S. Reddy, S. Rajesham, P.R. Reddy, and A.C. Umamaheswar. Formability: A review on different sheet metal tests for formability. AIP Conference Proceedings, 2269:030026, 2020. doi: 10.1063/5.0019536.
[3] Y. Dewang, V. Sharma, and Y. Batham. influence of punch velocity on deformation behavior in deep drawing of aluminum alloy. Journal of Failure Analysis and Prevention, 21(2):472–487, 2021. doi: 10.1007/s11668-020-01084-5.
[4] S. Bansal. Study of Deep Drawing Process and its Parameters Using Finite Element Analysis. Master Thesis, Delhi Technological University, India, 2022.
[5] E. Nghishiyeleke, M. Mashingaidze, and A. Ogunmokun, Formability characterization of aluminium AA6082-O sheet metal by uniaxial tension and Erichsen cupping tests. International Journal of Engineering and Technology, 7(4):6768–6777, 2018.
[6] J. Adamus, M. Motyka, and K. Kubiak. Investigation of sheet-titanium drawability. In: 12th World Conference on Titanium (Ti-2011), Beijing, China, 19-24 June 2011.
[7] R.R. Goud, K.E. Prasad, and S.K. Singh. formability limit diagrams of extra-deep-drawing steel at elevated temperatures. Procedia Materials Science, 6:123–128, 2014. doi: 10.1016/j.mspro.2014.07.014.
[8] R. Norz, F.R. Valencia, S. Gerke, M. Brünig, and W. Volk. Experiments on forming behaviour of the aluminium alloy AA6016. IOP Conference Series: Materials Science and Engineering, 1238(1):012023, 2022. doi: 10.1088/1757-899X/1238/1/012023.
[9] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge. Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280(1):37–49, 2000. doi: 10.1016/S0921-5093(99)00653-X.
[10] J.C. Benedyk. Aluminum alloys for lightweight automotive structures. In P.K. Mallick (ed.): Materials, Design and Manufacturing for Lightweight Vehicles. Woodhead Publishing, pages 79–113, 2010. doi: 10.1533/9781845697822.1.79.
[11] M. Bloeck. Aluminium sheet for automotive applications. In J. Rowe (ed.): Advanced Materials in Automotive Engineering. Woodhead Publishing Limited, pages 85–108, 2012. doi: 10.1533/9780857095466.85.
[12] N.I. Kolobnev, L.B. Ber, L.B. Khokhlatova, and D.K. Ryabov. Structure, properties and application of alloys of the Al – Mg – Si – (Cu) system. Metal Science and Heat Treatment, 53(9-10):440–444, 2012. doi: 10.1007/s11041-012-9412-8.
[13] P. Lackova, M. Bursak, O. Milkovic, M. Vojtko, and L. Dragosek, Influence of heat treatment on properties of EN AW 6082 aluminium alloy. Acta Metallurgica Slovaca, 21(1):25–34, 2015. doi: 10.12776/ams.v21i1.553.
[14] R. Prillhofer, G. Rank, J. Berneder, H. Antrekowitsch, P. Uggowitzer, and S. Pogatscher. Property criteria for automotive Al-Mg-Si sheet alloys. Materials, 7(7):5047–5068, 2014. doi: 10.3390/ma7075047.
[15] N.C.W. Kuijpers, W.H. Kool, P.T.G. Koenis, K.E. Nilsen, I. Todd, and S. van der Zwaag. Assessment of different techniques for quantification of α-Al(FeMn)Si and β-AlFeSi intermetallics in AA 6xxx alloys. Materials Characterization, 49(5):409–420, 2002. doi: 10.1016/S1044-5803(03)00036-6.
[16] G. Mrówka-Nowotnik. Influence of chemical composition variation and heat treatment on microstructure and mechanical properties of 6xxx alloys. Archives of Materials Science and Engineering, 46(2):98–107, 2010.
[17] G. Mrówka-Nowotnik, J. Sieniawski, and A. Nowotnik. Tensile properties and fracture toughness of heat treated 6082 alloy. Journal of Achievements of Materials and Manufacturing Engineering, 12(1-2):105–108, 2006.
[18] G. Mrówka-Nowotnik, J. Sieniawski, and A. Nowotnik. Effect of heat treatment on tensile and fracture toughness properties of 6082 alloy. Journal of Achievements of Materials and Manufacturing Engineering, 32(2):162–170, 2009.
[19] X. He, Q. Pan, H. Li, Z. Huang, S. Liu, K. Li, and X. Li. Effect of artificial aging, delayed aging, and pre-aging on microstructure and properties of 6082 aluminum alloy. Metals, 9(2):173, 2019. doi: 10.3390/met9020173.
[20] Z. Li, L. Chen, J. Tang, G. Zhao, and C. Zhang. Response of mechanical properties and corrosion behavior of Al–Zn–Mg alloy treated by aging and annealing: A comparative study. Journal of Alloys and Compounds, 848:156561, 2020. doi: 10.1016/j.jallcom.2020.156561.
[21] J.R. Hirsch. Automotive trends in aluminium - the European perspective. Materials Forum, 28(1):15–23, 2004.
[22] W. Moćko and Z.L. Kowalewski. Dynamic properties of aluminium alloys used in automotive industry. Journal of KONES Powertrain and Transport, 19(2):345–351, 2012.
[23] N. Kumar, S. Goel, R. Jayaganthan, and H.-G. Brokmeier. Effect of solution treatment on mechanical and corrosion behaviors of 6082-T6 Al alloy. Metallography, Microstructure, and Analysis, 4(5):411–422, 2015. doi: 10.1007/s13632-015-0219-z.
[24] M. Fujda, T. Kvackaj, and K. Nagyová. Improvement of mechanical properties for EN AW 6082 aluminium alloy using equal-channel angular pressing (ECAP) and post-ECAP aging. Journal of Metals, Materials and Minerals, 18(1):81–87, 2008.
[25] I. Torca, A. Aginagalde, J.A. Esnaola, L. Galdos, Z. Azpilgain, and C. Garcia. Tensile behaviour of 6082 aluminium alloy sheet under different conditions of heat treatment, temperature and strain rate. Key Engineering Materials, 423:105–112, 2009. doi: 10.4028/www.scientific.net/KEM.423.105.
[26] O. Çavuşoğlu, H.İ. Sürücü, S. Toros, and M. Alkan, Thickness dependent yielding behavior and formability of AA6082-T6 alloy: experimental observation and modeling. The International Journal of Advanced Manufacturing Technology, 106:4083–4091, 2020. doi: 10.1007/s00170-019-04878-6.
[27] J. Slota, I. Gajdos, T. Jachowicz, M. Siser, and V. Krasinskyi. FEM simulation of deep drawing process of aluminium alloys. Applied Computer Science, 11(4):7–19, 2015.
[28] Ö. Özdilli. An investigation of the effects of a sheet material type and thickness selection on formability in the production of the engine oil pan with the deep drawing method. International Journal of Automotive Science And Technology, 4(4):198–205, 2020. doi: 10.30939/ijastech..773926.
[29] W.T. Lankford, S.C. Snyder, and J.A. Bauscher. New criteria for predicting the press performance of deep drawing sheets. ASM Transactions Quarterly, 42:1197–1232, 1950.
[30] A.C. Sekhara Reddy, S. Rajesham, and P. Ravinder Reddy. Evaluation of limiting drawing ratio (LDR) in deep drawing by rapid determination method. International Journal of Current Engineering and Technology, 4(2):757–762, 2014.
[31] R.U. Kumar. Analysis of Fukui’s conical cup test. International Journal of Innovative Technology and Exploring Engineering, 2(2):30–31, 2013.
[32] Ł. Kuczek, W. Muzykiewicz, M. Mroczkowski, and J. Wiktorowicz. Influence of perforation of the inner layer on the properties of three-layer welded materials. Archives of Metallurgy and Materials, 64(3):991–996, 2019. doi: 10.24425/AMM.2019.129485.
[33] O. Engler and J. Hirsch. Polycrystal-plasticity simulation of six and eight ears in deep-drawn aluminum cups. Materials Science and Engineering: A, 452–453:640–651, 2007. doi: 10.1016/j.msea.2006.10.108.
[34] M. Koç, J. Culp, and T. Altan. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. Journal of Materials Processing Technology, 174(1-3):342–354, 2006. doi: 10.1016/j.jmatprotec.2006.02.007.
[35] C.S.T. Chang, I. Wieler, N. Wanderka, and J. Banhart. Positive effect of natural pre-ageing on precipitation hardening in Al–0.44 at% Mg–0.38 at% Si alloy. Ultramicroscopy, 109(5):585–592, 2009. doi: 10.1016/j.ultramic.2008.12.002.
[36] S. Jin, T. Ngai, G. Zhang, T. Zhai, S. Jia, and L. Li. Precipitation strengthening mechanisms during natural ageing and subsequent artificial aging in an Al-Mg-Si-Cu alloy. Materials Science and Engineering: A, 724:53–59, 2018. doi: 10.1016/j.msea.2018.03.006.
[37] E. Ishimaru, A. Takahashi, and N. Ono. Effect of material properties and forming conditions on formability of high-purity ferritic stainless steel. Nippon Steel Technical Report. Nippon Steel & Sumikin Stainless Steel Corporation, 2010.
[38] E.H. Atzema. Formability of auto components. In R. Rana and S.B. Singh (eds.): Automotive Steels. Design, Metallurgy, Processing and Applications. Woodhead Publishing, pages 47–93, 2017. doi: 10.1016/B978-0-08-100638-2.00003-1.
Go to article

Authors and Affiliations

Łukasz Kuczek
1
ORCID: ORCID
Marcin Mroczkowski
1
ORCID: ORCID
Paweł Turek
1

  1. AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The problem of optimal design of symmetrical double-lap adhesive joint is considered. It is assumed that the main plate has constant thickness, while the thickness of the doublers can vary along the joint length. The optimization problem consists in finding optimal length of the joint and an optimal cross-section of the doublers, which provide minimum structural mass at given strength constraints. The classical Goland-Reissner model was used to describe the joint stress state. A corresponding system of differential equations with variable coefficients was solved using the finite difference method. Genetic optimization algorithm was used for numerical solution of the optimization problem. In this case, Fourier series were used to describe doubler thickness variation along the joint length. This solution ensures smoothness of the desired function. Two model problems were solved. It is shown that the length and optimal shape of the doubler depend on the design load.
Go to article

Bibliography

[1] L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, and J.K. Spelt. Analytical models of adhesively bonded joints. Part I: Literature survey. International Journal of Adhesion and Adhesives, 29(3):319–330, 2009. doi: 10.1016/j.ijadhadh.2008.06.005.
[2] E.H. Wong and J. Liu. Interface and interconnection stresses in electronic assemblies – A critical review of analytical solutions. Microelectronics Reliability, 79:206–220, 2017. doi: 10.1016/j.microrel.2017.03.010.
[3] S. Budhe, M.D. Banea, S. de Barros, and L.F.M. da Silva. An updated review of adhesively bonded joints in composite materials. International Journal of Adhesion and Adhesives, 72:30–42, 2017. doi: 10.1016/j.ijadhadh.2016.10.010.
[4] K.P. Barakhov and I.M. Taranenko. Influence of joint edge shape on stress distribution in adhesive film. In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (eds) Integrated Computer Technologies in Mechanical Engineering – 2021. ICTM 2021. Lecture Notes in Networks and Systems, 367:123–132, Springer, Cham, 2022. doi: 10.1007/978-3-030-94259-5_12.
[5] H. Lee, S. Seon, S. Park, R. Walallawita, and K. Lee. Effect of the geometric shapes of repair patches on bonding strength. The Journal of Adhesion, 97(3):1–18, 2019. doi: 10.1080/00218464.2019.1649660.
[6] F. Ramezani, M.R. Ayatollahi, A. Akhavan-Safar, and L.F.M. da Silva. A comprehensive experimental study on bi-adhesive single lap joints using DIC technique. International Journal of Adhesion and Adhesives, 102:102674, 2020. doi: 10.1016/j.ijadhadh.2020.102674.
[7] Ya.S. Karpov. Jointing of high-loaded composite structural components. Part 2. Modeling of stress-strain state. Strength of Materials, 38(5):481–491, 2006. doi: 10.1007/s11223-006-0067-9.
[8] J. Kupski and S. Teixeira de Freitas. Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures. Composite Structures, 268:113923, 2021. doi: 10.1016/j.compstruct.2021.113923.
[9] S. Amidi and J. Wang. An analytical model for interfacial stresses in double-lap bonded joints. The Journal of Adhesion, 95(11):1031–1055, 2018. doi: 10.1080/00218464.2018.1464917.
[10] H. Kumazawa and T. Kasahara. Analytical investigation of thermal and mechanical load effects on stress distribution in adhesive layer of double-lap metal-composite bonded joints. Advanced Composite Materials, 28(4):425–444, 2019. doi: 10.1080/09243046.2019.1575028.
[11] S. Kurennov and N. Smetankina. Stress-strain state of a double lap joint of circular form. Axisymmetric model. In: M. Nechyporuk, V. Pavlikov D. Kritskiy (eds) Integrated Computer Technologies in Mechanical Engineering – 2021. ICTM 2021. Lecture Notes in Networks and Systems, 367:36–46, Springer, Cham, 2022. doi: 10.1007/978-3-030-94259-5_4.
[12] S. E. Stapleton, B. Stier, S. Jones, A. Bergan, I. Kaleel, M. Petrolo, E. Carrera, and B.A. Bednarcyk. A critical assessment of design tools for stress analysis of adhesively bonded double lap joints. Mechanics of Advanced Materials and Structures, 28(8):791–811, 2019. doi: 10.1080/15376494.2019.1600768.
[13] R.H. Kaye and M. Heller. Through-thickness shape optimisation of bonded repairs and lap-joints. I nternational Journal of Adhesion and Adhesives, 22(1):7–21, 2002. doi: 10.1016/s0143-7496(01)00029-x.
[14] S. Kurennov, K. Barakhov, I. Taranenko, and V. Stepanenko. A genetic algorithm of optimal design of beam at restricted sagging. Radioelectronic and Computer Systems, 1:83–91, 2022. doi: 10.32620/reks.2022.1.06.
[15] V.S. Symonov, I.S. Karpov, and J. Juračka. Optimization of a panelled smooth composite shell with a closed cross-sectional contour by using a genetic algorithm. Mechanics of Composite Materials, 49(5):563–570, 2013. doi: 10.1007/s11029-013-9372-0.
[16] N.S. Kulkarni, V.K. Tripathi. Variable thickness approach for finding minimum laminate thickness and investigating effect of different design variables on its performance. Archive of Mechanical Engineering, 65(4):527–551, 2018. doi: 10.24425/ame.2018.125441.
[17] H. Ejaz, A. Mubashar, I.A. Ashcroft, E. Uddin, and M. Khan. Topology optimisation of adhesive joints using non-parametric methods. International Journal of Adhesion and Adhesives, 81:1–10, 2018. doi: 10.1016/j.ijadhadh.2017.11.003.
[18] H.L. Groth and P. Nordlund. Shape optimization of bonded joints. International Journal of Adhesion and Adhesives, 11(4):204–212, 1991. doi: 10.1016/0143-7496(91)90002-y.
[19] R.Q. Rodríguez, R. Picelli, P. Sollero, and R. Pavanello. Structural shape optimization of bonded joints using the ESO method and a honeycomb-like mesh. J ournal of Adhesion Science and Technology, 28(14-15):1451–1466, 2014. doi: 10.1080/01694243.2012.698112.
[20] E.G. Arhore, M. Yasaee, and I. Dayyani. Comparison of GA and topology optimization of adherend for adhesively bonded metal composite joints. International Journal of Solids and Structures, 226-227:111078, 2021. doi: 10.1016/j.ijsolstr.2021.111078.
[21] S. Kumar, and de A. de Tejada Alvarez. Modeling of geometrically graded multi-material single-lap joints. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. doi: 10.2514/6.2015-1885.
[22] S.S. Kurennov: Refined mathematical model of the stress state of adhesive lap joint: experimental determination of the adhesive layer strength criterion. Strength of Materials, 52:779–789, 2020. doi: 10.1007/s11223-020-00231-5.
[23] P. Zou, J. Bricker, and W. Uijttewaal. Optimization of submerged floating tunnel cross section based on parametric Bézier curves and hybrid backpropagation – genetic algorithm. Marine Structures, 74:102807, 2020. doi: 10.1016/j.marstruc.2020.102807.
[24] O. Coskun and H.S.Turkmen. Multi-objective optimization of variable stiffness laminated plates modeled using Bézier curves. Composite Structures, 279:114814, 2022. doi: 10.1016/j.compstruct.2021.114814.
[25] S. Kumar and P.C. Pandey. Behaviour of bi-adhesive joints. Journal of Adhesion Science and Technology, 24(7):1251–1281, 2010. doi: 10.1163/016942409x12561252291982.
[26] Ö. Öz and H. Özer. On the von Mises elastic stress evaluations in the bi-adhesive single-lap joint: a numerical and analytical study. Journal of Adhesion Science and Technology, 28(21):2133–2153, 2014. doi: 10.1080/01694243.2014.948110.
[27] E. Selahi. Elasticity solution of adhesive tubular joints in laminated composites with axial symmetry. Archive of Mechanical Engineering, 65(3):441–456, 2018. doi: 10.24425/124491.
[28] K. Barakhov, D. Dvoretska, and O. Poliakov. One-dimensional axisymmetric model of the stress state of the adhesive joint. In: M. Nechyporuk, V. Pavlikov, D. Kritskiy (eds) I ntegrated Computer Technologies in Mechanical Engineering – 2020. ICTM 2020. Lecture Notes in Networks and Systems, 188:310–319, Springer, Cham, 2021. doi: 10.1007/978-3-030-66717-7_26.
[29] S. Kurennov, N. Smetankina, V. Pavlikov, D. Dvoretskaya, V. Radchenko. Mathematical model of the stress state of the antenna radome joint with the load-bearing edging of the skin cutout. In: D.D. Cioboată, (ed.) International Conference on Reliable Systems Engineering (ICoRSE) – 2021. ICoRSE 2021. Lecture Notes in Networks and Systems, 305:287–295, Springer, Cham, 2022. doi: 10.1007/978-3-030-83368-8_28.
Go to article

Authors and Affiliations

Sergei Kurennov
1
ORCID: ORCID
Konstantin Barakhov
1
ORCID: ORCID
Olexander Polyakov
1
ORCID: ORCID
Igor Taranenko
1
ORCID: ORCID

  1. National Aerospace University “Kharkiv Aviation Institute”, Kharkiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In such applications as in the case of feeders in which a slider-crank mechanism equipped with a rotational spring on its crank is driven by a constant force and a lumped mass at the crank-connecting rod joint center, the slider is required to take on desired speeds and displacements. For this purpose, after obtaining and solving the dynamic model of the slider-crank mechanism, the output of this model is subjected to a modified Hooke-Jeeves method resulting in the development of a procedure for the optimization of selected set of operating parameters. The basic contribution involved in the so-called Hooke-Jeeves method is the procedure by which a cost-effective advancement towards a target optimum point is accomplished in a very short time. A user-friendly interface has also been constructed to support this procedure. The optimization procedure has been illustrated on a numerical example. The validation of the resulting dynamic model has also been demonstrated.
Go to article

Bibliography

[1] M.I. Sarigecili and I.D. Akcali. Design of a uniform ice cutting device. In Proceeding of the 2nd Cilicia International Symposium on Engineering and Technology (CISET 2019), pages 311–317, Mersin, Turkey, 10-12 October, 2019.
[2] İ.D. Akçalı and M.A. Arıoğlu. Geometric design of slider-crank mechanisms for desirable slider positions and velocities. Forschung im Ingenieurwesen, 75:61–71, 2011. doi: 10.1007/s10010-011-0134-7.
[3] M.I. Sarigecili and I.D. Akcali. Development of constant output-input force ratio in slider-crank mechanisms. Inverse Problems in Science and Engineering, 27(5):565–588, 2019. doi: 10.1080/17415977.2018.1470625.
[4] F. Ahmad, A.L. Hitam, K. Hudha, and H. Jamaluddin. Position tracking of slider crank mechanism using PID controller optimized by Ziegler Nichol’s method. Journal of Mechanical Engineering and Technology, 3(2):27–41, 2011.
[5] C.D. Lee, C.W. Chuang, and C.C. Kao. Apply fuzzy PID rule to PDA based control of position control of slider crank mechanisms. In Proceeding of the IEEE Conference on Cybernetics and Intelligent Systems, pages 508–513, Singapore, 1-3 December, 2004. doi: 10.1109/ICCIS.2004.1460467.
[6] P.A. Simionescu. Optimum synthesis of oscillating slide actuators for mechatronic applications. Journal of Computational Design and Engineering, 5(2):215–231, 2018. doi: 10.1016/j.jcde.2017.09.002.
[7] R.R. Bulatović and S.R. Djordjević. Optimal synthesis of a four-bar linkage by method of controlled deviation. Theoretical and Applied Mechanics, 31(3-4):265–280, 2004. doi: 10.2298/TAM0404265B.
[8] A. Arshad, P. Cong, A.A.E. Elmenshawy, and I. Blumbergs. Design optimization for the weight reduction of 2-cylinder reciprocating compressor crankshaft. Archive of Mechanical Engineering, 68(4):449–471, 2021. doi: 10.24425/ame.2021.139311.
[9] J. Beckers, T. Verstraten, B. Verrelst, F. Contino, and J.V. Mierlo. Analysis of the dynamics of a slider-crank mechanism locally actuated with an act-and-wait controller. Mechanism and Machine Theory, 159:104253, 2021. doi: 10.1016/j.mechmachtheory.2021.104253.
[10] A. Antoniou and W-S. Lu. Practical Optimization. Algorithms and Engineering Applications. Springer, New York, 2007. doi: 10.1007/978-0-387-71107-2.
[11] S. Wu, J. Akroyd, S. Mosbach, G. Brownbridge, O. Parry, V. Page, W. Yang, and M. Kraft. Efficient simulation and auto-calibration of soot particle processes in Diesel engines. Applied Energy, 262:114484, 2020. doi: 10.1016/j.apenergy.2019.114484.
[12] L. Mazouz, S.A. Zidi, A. Hafaifa, S. Hadjeri, and T. Benaissa. Optimal regulators conception for wind turbine PMSG generator using Hooke Jeeves method. Periodica Polytechnica Electrical Engineering and Computer Science, 63(3):151–158, 2019. doi: 10.3311/PPee.13548.
[13] L. Benasla, A. Belmadani, and M. Rahli. Hooke-Jeeves’ method applied to a new economic dispatch problem formulation. Journal of Information Science and Engineering, 24(3):907–917, 2008.
[14] C. Li and A. Rahman. Three-phase induction motor design optimization using the modified Hooke-Jeeves method. Electric Machines & Power Systems, 18(1):1–12, 1990. doi: 10.1080/07313569008909446.
[15] L. Litvinas. A hybrid of Bayesian-based global search with Hooke–Jeeves local refinement for multi-objective optimization problems. Nonlinear Analysis: Modelling and Control, 27(3):534–555, 2022. doi: 10.15388/namc.2022.27.26558.
[16] T.M. Alkhamis and M.A. Ahmed. A modified Hooke and Jeeves algorithm with likelihood ratio performance extrapolation for simulation optimization. European Journal of Operational Research, 174(3):1802–1815, 2006. doi: 10.1016/j.ejor.2005.04.032.
[17] M.F. Tabassum, M. Saeed, N.A. Chaudhry, J. Ali, M. Farman, and S. Akram. Evolutionary simplex adaptive Hooke-Jeeves algorithm for economic load dispatch problem considering valve point loading effects. Ain Shams Engineering Journal, 12(1):1001–1015, 2021. doi: 10.1016/j.asej.2020.04.006.
[18] S.C. Chapra and R. Canale. Numerical Methods for Engineers. Sixth ed. McGraw-Hill, New York, 2010.
[19] C. Zhang, S. Hu, Y. Liu and Q. Wang. Optimal design of borehole heat exchangers based on hourly load simulation. Energy, 116(1):1180–1190, 2016. doi: 10.1016/j.energy.2016. 10.045.
[20] M.H. Heydari, Z. Avazzadeh, C. Cattani. Taylor’s series expansion method for nonlinear variable-order fractional 2D optimal control problems. Alexandria Engineering Journal, 59(6):4737–4743, 2020. doi: 10.1016/j.aej.2020.08.035.
Go to article

Authors and Affiliations

Mehmet Ilteris Sarigecili
1
ORCID: ORCID
Ibrahim Deniz Akcali
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Çukurova University, Adana, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Titanium alloys are difficult-to-machine materials due to their complex mechanical and thermophysical properties. An essential factor in ensuring the quality of the machined surface is the analysis and recommendation of vibration processes accompanying cutting. The analytical description of these processes for machining titanium alloys is very complicated due to the complex adiabatic shear phenomena and the specific thermodynamic state of the chip-forming zone. Simulation modeling chip formation rheology in Computer-Aided Forming systems is a practical method for studying these phenomena. However, dynamic research of the cutting process using such techniques is limited because the initial state of the workpiece and tool is a priori assumed to be "rigid", and the damping properties of the fixture and machine elements are not taken into account at all. Therefore, combining the results of analytical modeling of the cutting process dynamics with the results of simulation modeling was the basis for the proposed research methodology. Such symbiosis of different techniques will consider both mechanical and thermodynamic aspects of machining (specific dynamics of cutting forces) and actual conditions of stiffness and damping properties of the “Machine-Fixture-Tool-Workpiece” system.
Go to article

Bibliography

[1] D. Ulutan and T. Ozel. Machining induced surface integrity in titanium and nickel alloys: A review. International Journal of Machine Tools and Manufacture, 51(3):250–280, 2011. doi: 10.1016/j.ijmachtools.2010.11.003.
[2] J.P. Davim (ed.). Machining of Titanium Alloys. Springer-Verlag, Berlin, 2014. doi: 10.1007/978-3-662-43902-9.
[3] M. Motyka, W. Zaja, and J. Sieniawski. Titanium Alloys – Novel Aspects of Their Manufacturing and Processing. IntechOpen, 2019.
[4] J.P. Davim (ed.). Surface Integrity in Machining. Springer, London, 2010. doi: 10.1007/978-1-84882-874-2.
[5] K. Cheng (ed.). Machining Dynamics. Fundamentals, Applications and Practices. Springer, London, 2009. doi: 10.1007/978-1-84628-368-0.
[6] T.L. Schmitz and K.S. Smith. Machining Dynamics. Frequency Response to Improved Productivity. Springer, New York, 2009. doi: 10.1007/978-0-387-09645-2.
[7] W. Cheng and J.C. Outeiro. Modelling orthogonal cutting of Ti-6Al-4 V titanium alloy using a constitutive model considering the state of stress. The International Journal of Advanced Manufacturing Technology, 119:4329–4347, 2022. doi: 10.1007/s00170-021-08446-9.
[8] M. Sima, and T. Özel. Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V. I nternational Journal of Machine Tools and Manufacture, 50(11):943–960, 2010. doi: 10.1016/j.ijmachtools.2010.08.004.
[9] V. Stupnytskyy and I. Hrytsay. Comprehensive analysis of the product’s operational properties formation considering machining technology. Archive of Mechanical Engineering, 67(2):149–167, 2020. doi: 10.24425/ame.2020.131688.
[10] V. Stupnytskyy, I. Hrytsay, and Xianning She. Finite element analysis of thermal and stress-strain state during titanium alloys machining. In: Advanced Manufacturing Processes II. Lecture Notes in Mechanical Engineering, 629–639, Springer, 2021. doi: 10.1007/978-3-030-68014-5_61.
[11] M.K. Gupta, M.E. Korkmaz, M. Sarıkaya, G.M. Krolczyk, M. Günay and S. Wojciechowski. Cutting forces and temperature measurements in cryogenic assisted turning of AA2024-T351 alloy: An experimentally validated simulation approach. Measurement, 188:110594, 2022. doi: 10.1016/j.measurement.2021.110594.
[12] Y.-P. Liu and Y. Altintas. Predicting the position-dependent dynamics of machine tools using progressive network. Precision Engineering, 73: 409–422, 2022. doi: 10.1016/j.precisioneng.2021.10.010.
[13] A. Pramanik and G. Littlefair. Machining of titanium alloy (Ti-6Al-4V)—theory to application. Machining Science and Technology, 19(1):1–49, 2015. doi: 10.1080/10910344.2014.991031.
[14] W. Cheng, J. Outeiro, J.-P. Costes, R. M’Saoubi, H. Karaouni, L. Denguir, V. Astakhov, and F. Auzenat. Constitutive model incorporating the strain-rate and state of stress effects for machining simulation of titanium alloy Ti6Al4V. Procedia CIRP, 77:344–347, 2018. doi: 10.1016/j.procir.2018.09.031.
[15] S. Wojciechowski, P. Twardowski, and M. Pelic. Cutting forces and vibrations during ball end milling of inclined surfaces. P rocedia CIRP, 14:113–118, 2014. doi: 10.1016/j.procir.2014.03.102.
[16] D. Chen, J. Chen, and H. Zhou. The finite element analysis of machining characteristics of titanium alloy in ultrasonic vibration assisted machining. Journal of Mechanical Science and Technology, 35:3601–3618, 2021. doi: 10.1007/s12206-021-0731-9.
[17] Q. Yang, Z. Liu, Z. Shi, and B. Wang. Analytical modeling of adiabatic shear band spacing for serrated chip in high-speed machining. The International Journal of Advanced Manufacturing Technology. 71:1901–1908, 2014. doi: 10.1007/s00170-014-5633-x.
[18] A.Í.S. Antonialli, A.E. Diniz, and R. Pederiva. Vibration analysis of cutting force in titanium alloy milling. International Journal of Machine Tools and Manufacture. 50(1):65–74, 2010. doi: 10.1016/j.ijmachtools.2009.09.006.
[19] G. Korendyasev. An approach to modeling self-oscillations during metal machining based on a finite-element model with small amount of computing resources. Vibroengineering PROCEDIA, 32:6–12, 2020. doi: 10.21595/vp.2020.21437.
[20] J. Klingelnberg. Dynamics of machine tools. In: Klingelnberg, J. (ed.): Bevel Gear, pages 311–320, Springer Vieweg, 2016. doi: 10.1007/978-3-662-43893-0_8.
[21] Y. Petrakov, M. Danylchenko, and A. Petryshyn. Prediction of chatter stability in turning. Eastern-European Journal of Enterprise Technologies, 5(1):58–64, 2019. doi: 10.15587/1729-4061.2019.177291.
[22] S.K. Choudhury, N.N. Goudimenko, and V.A. Kudinov. On-line control of machine tool vibration in turning. International Journal of Machine Tools and Manufacture. 37(6):801–811, 1997. doi: 10.1016/S0890-6955(96)00031-4.
[23] A. Liljerehn. Machine Tool Dynamics. A constrained state-space substructuring approach. Ph.D. Thesis, Göteborg, Sweden, 2016.
[24] G.R. Johnson and W.N. Cook. A constitutive model and data for metals subjected to large strains. High rates and high temperatures. In 7th International Symposium on Ballistics, pages 541–547, Hague, Netherlands, 19–21 April 1983.
[25] Y. Zhang, J.C. Outeiro, and T. Mabrouki. On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP, 31:112–117, 2015. doi: 10.1016/j.procir.2015.03.052.
[26] D. Yan, T. Wu, Y. Liu, and Y. Gao. An efficient sparse-dense matrix multiplication on a multicore system. In 17th International Conference on Communication Technology (ICCT), pages 1880–1883, Chengdu, China, 27-30 October 2017. doi: 10.1109/ICCT.2017.8359956.
[27] M. Binder, F. Klocke, and D. Lung. Tool wear simulation of complex shaped coated cutting tools. Wear, 330–331:600–607, 2015. doi: 10.1016/j.wear.2015.01.015.
[28] D. Alleyne and P. Cawley. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. The Journal of the Acoustical Society of America, 89(3):1159–1168, 1991. doi: 10.1121/1.400530.
[29] C.M. Harris and A.G. Piersol. Harris' Shock and Vibration Handbook. McGraw-Hill, 2002.
[30] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials and Design, 30(3):741–747, 2009. doi: 10.1016/j.matdes.2008.05.015.
Go to article

Authors and Affiliations

Vadym Stupnytskyy
1
ORCID: ORCID
She Xianning
1
ORCID: ORCID
Yurii Novitskyi
1
ORCID: ORCID
Yaroslav Novitskyi
1
ORCID: ORCID

  1. Lviv Polytechnic National University, Lviv, Ukraine

This page uses 'cookies'. Learn more