Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1068
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The author of this essay deals with the specificity of sociology in Poland, reaching for the book of Antoni Sułek A Mirror on the High Road. Chapters from the History of Social Research in Poland (2019). Chapters of this book taken as a set constitute a review of the key issues that Polish sociologists strived to tackle in the 20th century. For approximately half of the book (6 chapters) Sułek focuses on issues of Polish sociology from the mid-1950s to the turn of the 1990s: the first is the change of theoretical and methodological paradigms in Polish sociology in the second half of the 20th century; the second is the successes of Polish sociology, but also its weaknesses—the author devoted much space to the theoretical limitations that prevented sociologists from predicting the formation of Solidarity in 1980. The third topic is the historical analysis of surveys conducted in the last decade of communism—their reliability as well as social and political functions. Finally, Sułek’s vision of socially-involved sociology appears. The strength of such sociology lies in its methodology, with which specific phenomena can be correctly defined, impartially analysed, and systematically investigated. And this in turn enables evidence-based debate and policy.

Go to article

Authors and Affiliations

Piotr T. Kwiatkowski
Download PDF Download RIS Download Bibtex

Abstract

Recent years have witnessed the publication of a number of research papers and books seeking to assess threats of electoral victories of anti-establishment politicians and political parties, described as authoritarian populists. This essay focuses on three books directly addressing the origins and threats of authoritarian populism to democracy. It consists of six sections and the conclusion. The first section presents findings (Norris and Inglehart) based on surveys of values of voters of various age cohorts concluding that authoritarian populism is a temporary backlash provoked by the post-materialist perspective. The second section examines the contention, spelled out in Levitsky and Ziblatt, that increase in openness of American political system produced, unintentionally, a degradation of the American political system. The third section continues brief presentations focusing on to the causes and implications of “illiberal democracy,” and “undemocratic liberalism” (Mounk). The fourth section examines developments in the quality of democracy in the world showing that despite the decline in Democracy Indices, overall there was no slide towards non-democratic forms of government in 2006–2019. The next two sections deal with dimensions missing in reviewed books; the notion of nation-state, international environment, civic culture and, in particular, dangers of radical egalitarianism to democracy. The last section concludes with regrets that the authors ignored rich literature on fragility of democracy and failed to incorporate in their analyses deeper structural factors eroding democracy: by the same token, return to the pre-populist shock trajectory is unlikely to assure survival of liberal democracy.

Go to article

Authors and Affiliations

Antoni Z. Kamiński
Bartłomiej K. Kamiński
Download PDF Download RIS Download Bibtex

Abstract

The article presents Charles Taylor’s critical philosophy of language and it reviews his recent book on the human linguistic capacity. Critical philosophy of language is understood here as a broad (philosophical, social and political) perspective on language characterized by multifaceted concern with the linguistic and cognitive mechanisms involved in language use. The paper discusses Taylor’s interest in language and philosophy of language, and focuses on his seminal distinction between the ‘designative-instrumental’ and ‘constitutive-expressive’ theories of language. In the former theory language is understood within the confi nes of Cartesian representational epistemology, whereas in the latter language constitutes meaning and shapes human experience (one of the features important for defi ning the critical approach to philosophy of language).

Go to article

Authors and Affiliations

Piotr Stalmaszczyk
Download PDF Download RIS Download Bibtex

Abstract

The article presents an overview and a classification of X-ray detection methods. The main motivation for its preparation was the need to select a suitable and useful method for detecting signals from a currently developed miniature micro-electro-mechanical system (MEMS) X-ray source. The described methods were divided into passive and active ones, among which can be distinguished: chemical, luminescent, thermo-luminescent, gas ionization, semiconductor, and calorimetric methods. The advantages and drawbacks of each method were underlined, as well as their usefulness for the characterisation of the miniature MEMS X-ray source.
Go to article

Authors and Affiliations

Paweł Urbański 
1
ORCID: ORCID
Tomasz Grzebyk
1
ORCID: ORCID

  1. Faculty of Electronics, Photonics and Microsystems, Wrocław University of Science and Technology, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Fano resonance is an optical effect that emerges from the coherent coupling and interference (constructive and destructive) between the continuous state (background process) and the Lorentzian state (resonant process) in the plasmonic waveguide-resonator system. This effect has been used in the applications like optical sensors. These sensors are extensively used in sensing biochemicals and gases by the measurement of refractive index changes as they offer high sensitivity and ultra-high figure of merit. Herein, we surveyed several plasmonic Fano sensors with different geometries composed of metal-insulator-metal waveguide(s). First, the resonators are categorized based on different architectures. The materials and methods adopted for these designs are precisely surveyed and presented. The performances are compared depending upon the characterization parameters like sensitivity and figure of merit. Finally, based on the survey of very recent models, the advances and challenges of refractive index sensing deployed on Fano resonances are discussed.
Go to article

Bibliography

  1. De Tommasi, E. et al. Frontiers of light manipulation in natural, metallic, and dielectric nanostructures. Riv. del Nuovo Cim. 44, 1–68 (2021). https://doi.org/10.1007/s40766-021-00015-w
  2. Maier, S. Surface plasmon polaritons at metal /insulator interfaces. in Plasmonics: Fundamentals and Applications:Chapter 2, 1–2 (Springer, New York, 2007). https://doi.org/10.1007/0-387-37825-1_2
  3. Zhang, J., Zhang, L. & Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D. Appl. Phys. 45, 113001 (2012).span> https://doi.org/10.1088/0022-3727/45/11/113001
  4. Naik, G. V, Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076
  5. Luo, & Yan, L. Surface plasmon polaritons and its applications. IEEE Photon. J. 4, 590–595 (2012). https://doi.org/10.1109/JPHOT.2012.2189436.
  6. Saleh, E. A. & Teich, M. C. Fundamentals of Photonics. 1114–1115 (2nd ed.) (Wiley press, 2007). https://doi.org/10.1063/1.2809878
  7. Gramotnev, K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010). https://doi.org/10.1038/nphoton.2009.282
  8. Kinsey, N., Ferrera, M., Shalaev, V. M. & Boltasseva, A. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. Opt. Soc. Am. B 32, 121–142 (2015). https://doi.org/10.1364/JOSAB.32.000121
  9. Amoosoltani, N., Yasrebi, N., Farmani, A. & Zarifkar, A. A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation IEEE Sens. J. 20, 9097–9104 (2020). https://doi.org/10.1109/JSEN.2020.2987319
  10. Han, Z. & Bozhevolnyi, S. I. Radiation guiding with surface plasmon polaritons. Reports Prog. Phys. 76, 016402 (2013). https://doi.org/10.1088/0034-4885/76/1/016402
  11. Lu, H., Wang, G. X. & Liu, X.M. Manipulation of light in MIM plasmonic waveguide systems. Chin. Sci. Bull. 58, 3607–3616 (2013). https://doi.org/10.1007/s11434-013-5989-6
  12. Onbasli, M. C. & Okyay, A. K. Nanoantenna couplers for metal-insulator-metal waveguide interconnects. Proc. SPIE 7757, 77573R (2010). https://doi.org/10.1117/12.876177
  13. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017). https://doi.org/10.1038/nphoton.2017.142
  14. Luk’Yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010). https://doi.org/10.1038/nmat2810
  15. Wang, J. et al. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Express 21, 2236–2244 (2013). https://doi.org/10.1364/OE.21.002236
  16. Lovera, A., Gallinet, B., Nordlander, P. & Martin, O. J. F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527–4536 (2013). https://doi.org/10.1021/nn401175j
  17. Fan, J. A. et al. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett. 10, 4680–4685 (2010) . https://doi.org/10.1021/nl1029732
  18. Kazanskiy, N. L., Khonina, S. N. & Butt, M. A. Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: A brief Phys. E Low Dimens. Syst. Nanostruct. 117, 113798 (2020). https://doi.org/10.1016/j.physe.2019.113798
  19. Verellen, N. et al. Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods. Nano Lett. 14, 2322–2329 (2014). https://doi.org/10.1021/nl404670x
  20. Huang, Y., Min, C., Dastmalchi, P. & Veronis, G. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt. Express 23, 14922 (2015) . https://doi.org/10.1364/OE.23.014922
  21. Luo, S., Li, B., Xiong, D., Zuo, D. & Wang, X. A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12, 223–227 (2017). https://doi.org/10.1007/s11468-016-0253-y
  22. Rakhshani, M. R. & Mansouri-Birjandi, M. A. A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin Photonics Nanostruct. 32, 28–34 (2018). https://doi.org/10.1016/j.photonics.2018.08.002
  23. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J. Mod. Opt. 66, 1038–1043 (2019). https:/doi.org/10.1080/09500340.2019.1601272
  24. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 202, 163655 (2020). https://doi.org/10.1016/j.ijleo.2019.163655
  25. Economou,  N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969). https://doi.org/10.1103/PhysRev.182.539
  26. Yang, & Lu, Z. Subwavelength plasmonic waveguides and plasmonic materials. Int. J. Opt. 2012 (2012). https://doi.org/10.1155/2012/258013
  27. Han, Z. & Bozhevolnyi, S. I. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt. Express 19, 3251 (2011). https://doi.org/10.1364/OE.19.003251
  28. Zhan, S. et al. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J. Phys. D. Appl. Phys. 47, (2014).https:/doi.org/10.1088/0022-3727/47/20/205101
  29. Piao, X., Yu, S., Koo, S., Lee, K. & Park, N. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt. Express 19, 10907–10912 (2011). https://doi.org/10.1364/OE.19.010907
  30. Fu, Y. H., Zhang, J. B., Yu, Y. F. & Luk’yanchuk, B. Generating and manipulating higher order Fano resonances in dual-disk. ACS Nano 6, 5130–5137 (2012). https://doi.org/10.1021/nn3007898
  31. Fang, J., Zhang, M., Zhang, F. & Yu, H. Plasmonic sensor based on Fano resonance. Guangdian Gongcheng/Opto-Electron. Eng. 44, 221–225 (2017). https://doi.org/10.3969/j.issn.1003-501X.2017.02.012
  32. Yu, Y. et al. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry. Laser Photonics Rev. 9, 241–247 (2015). https://doi.org/10.1002/lpor.201400207
  33. Chen, Z. & Yu, L. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J. 6, 1–8 (2014). https://doi.org/ 1109/JPHOT.2014.2368779
  34. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010). https://doi.org/10.1103/RevModPhys.82.2257
  35. Chen, Z. et al. A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system. IEEE Photon. Technol. Lett. 27, 1695–1698 (2015). https://doi.org/ 1109/LPT.2015.2437850
  36. Wei, W., Yan, X., Shen, B. & Zhang, X. Plasmon-induced transparency in an asymmetric bowtie structure. Nanoscale Res. Lett. 14, 246 (2019). https://doi.org/10.1186/s11671-019-3081-0
  37. Song, H., Singh, R., Cong, L. & Yang, H. Engineering the Fano resonance and electromagnetically induced transparency in near-field coupled bright and dark J. Phys. D. Appl. Phys. 48, 035104 (2015). https://doi.org/10.1088/0022-3727/48/3/035104
  38. Yu, S., Piao, X., Hong, J. & Park, N. Progress toward high-Q perfect absorption : A Fano anti-laser. Phys. Rev. A 92, 011802R (2015). https://doi.org/10.1103/PhysRevA.92.011802
  39. Yan, X. et al. High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring Plasmonics 12, 1449–1455 (2016). https://doi.org/10.1007/s11468-016-0405-0
  40. Chen, J., Gan, F., Wang, Y. & Li, G. Plasmonic sensing and modulation based on Fano resonances. Adv. Opt. Mater. 6, 1701152 (2018). https://doi.org/10.1002/adom.201701152
  41. Deng, Y., Cao, G. & Yang, H. Tunable Fano resonance and high-sensitivity sensor with high figure of merit in plasmonic coupled cavities. Photonics Nanostruct. 28, 45–51 (2018). https://doi.org/10.1016/j.photonics.2017.11.008
  42. Hayashi, S., Nesterenko, D. V. & Sekkat, Z. Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors. Appl. Express 8, 022201 (2015). https://doi.org/10.7567/apex.8.022201
  43. Heuck, M., Kristensen, P. T., Elesin, Y. & Mørk, J. Improved switching using Fano resonances in photonic crystal structures. Opt. Lett. 38, 2466 (2013). https://doi.org/10.1364/OL.38.002466
  44. Chen, Z. et al. Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 320, 6–11 (2014). https://doi.org/10.1016/j.optcom.2013.12.079
  45. Qi, J. et al. Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt. Express 22, 14688–14695 (2014). https://doi.org/10.1364/OE.22.014688
  46. Chen, Z.-Q. et al. Fano resonance based on multimode interference in symmetric plasmonic structures and its applications in plasmonic nanosensors. Chin. Lett. 30, 057301 (2013). https://doi.org/10.1088/0256-307x/30/5/057301
  47. Gu, P., Birch, D. J. S. & Chen, Y. Dye-doped polystyrene-coated gold nanorods: Towards wavelength tuneable SPASER. Methods Appl. Fluoresc. 2, 024004 (2014). https://doi.org/10.1088/2050-6120/2/2/024004
  48. Zafar, R. & Salim, M. Enhanced Figure of Merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15, 6313–6317 (2015). https://doi.org/10.1109/JSEN.2015.2455534
  49. Zhang, Y. et al. Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt. Commun. 370, 203–208 (2016). https://doi.org/10.1016/j.optcom.2016.03.001
  50. Zhang, Y. et al. Ultra-high Sensitivity plasmonic nanosensor based on multiple Fano resonance in the MDM side-coupled cavities. Plasmonics 12, 1099– 1105 (2017). https://doi.org/10.1007/s11468-016-0363-6
  51. Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Transmission line and equivalent circuit models for plasmonic waveguide components. EEE J. Sel. Top. Quantum 14, 1462–1472 (2008). https://doi.org/10.1109/JSTQE.2008.924431
  52. Han, Z., Van, V., Herman, W. N. & Ho, P.-T. Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Opt. Express 17, 12678– 12684 (2009). https://doi.org/10.1364/OE.17.012678
  53. Li, Q., Wang, T., Su, Y., Yan, M. & Qiu, M. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367 (2010). https://doi.org/10.1364/OE.18.008367
  54. Achanta, V.G. Surface waves at metal-dielectric interfaces: Material science perspective. Rev. Phys. 5, 100041 (2020). https://doi.org/10.1016/j.revip.2020.100041
  55. Niu, L., Zhang, J. B., Fu, Y. H., Kulkarni, S. & Luky`anchuk, B. Fano resonance in dual-disk ring plasmonic nanostructures. Opt. Express 19, 22974–22981 (2011). https://doi.org/10.1364/OE.19.022974
  56. Kolwas, K. & Derkachova, A. Impact of the Interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials 10, 1411 (2020). https://doi.org/10.3390/nano10071411
  57. Thomas, A. Plasmonics. in Narrow Plasmon Resonances in Hybrid Systems 7–27 (Springer, 2018). https://doi.org/10.1007/978-3-319-97526-9
  58. Noah, N. M. Design and synthesis of nanostructured materials for sensor applications. J. Nanomater. 2020, 8855321 (2020). https://doi.org/10.1155/2020/8855321
  59. Chen, F. & Yao, D. Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Opt. Commun. 369, 72–78 (2016). https://doi.org/10.1016/j.optcom.2016.02.024
  60. Zhang, Y. et al. High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth Appl. Phys. A 125, 13 (2019). https://doi.org/10.1007/s00339-018-2283-0
  61. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019). https://doi.org/10.1016/j.rinp.2019.102420
  62. Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011). https://doi.org/10.1364/OME.1.001090
  63. West, R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010). https://doi.org/10.1002/lpor.200900055
  64. Deng, Y. et al. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Sci. Rep. 7, 10639 (2017). https://doi.org/10.1038/s41598-017-10626-1
  65. Zhang, Z. et al. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18, 116 (2018). https://doi.org/10.3390/s18010116
  66. Chauhan, D., Adhikari, R., Saini, R. K., Chang, S. H. & Dwivedi, R. P. Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 223, 165545 (2020). https://doi.org/10.1016/j.ijleo.2020.165545
  67. Zhang, Z., Luo, L., Xue, C., Zhang, W. & Yan, S. Fano resonance based on metal-insulator-metal waveguide-coupled double rectan-gular cavities for plasmonic Sensors 16, 22–24 (2016). https://doi.org/10.3390/s16050642
  68. Chen, Z., Cui, L., Song, X., Yu, L. & Xiao, J. High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt. Commun. 340, 1–4 (2015). https://doi.org/10.1016/j.optcom.2014.11.081
  69. Tian, J., Wei, G., Yang, R. & Pei, W. Fano resonance and its application using a defective disk resonator coupled to an MDM plasmon waveguide with a nano-wall. Optik 208, 164136 (2020). https://doi.org/10.1016/j.ijleo.2019.164136
  70. Chou Chao, C.-T., Chou Chau, Y.-F & Chiang, H.-P. Multiple Fano resonance modes in an ultra-compact plasmonic waveguide-cavity system for sensing applications. Results 27, 104527 (2021). https://doi.org/10.1016/j.rinp.2021.104527
  71. Rakhshani, M. R. Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups. Photonics 39, 100768 (2020). https://doi.org/10.1016/j.photonics.2020.100768
  72. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019). https://doi.org/10.1016/j.rinp.2019.102420
  73. Ren, X., Ren, K. & Cai, Y. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl. Opt. 56, H1–H9 (2017). https://doi.org/10.1364/AO.56.0000H1
  74. Tang, Y. et al. Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17, 784 (2017). https://doi.org/10.3390/s17040784
  75. Yang, X., Hua, E., Su, H., Guo, J. & Yan, S. A nanostructure with defect based on Fano resonance for application on refractive-index and temperature sensing. Sensors 20, 4125 (2020). https://doi.org/10.3390/s20154125
  76. Chen, Y. et al. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator. Opt. Laser Technol. 101, 273–278 (2018). https://doi.org/10.1016/j.optlastec.2017.11.022
  77. Binfeng, Y., Ruohu, Z., Guohua, H. & Yiping, C. Ultra-sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics 11, 1157–1162 (2016). https://doi.org/10.1007/s11468-015-0154-5
  78. Zhang, Q., Huang, X.-G., Lin, X.-S., Tao, J. & Jin, X.-P. A subwavelength coupler-type MIM optical filter. Opt. Express 17, 7549–7554(2009). https://doi.org/10.1364/OE.17.007549
  79. Rakhshani, M. R. Fano resonances based on plasmonic square resonator with high figure of merits and its application in glucose concentrations sensing. Opt. Quantum 51, 287 (2019). https://doi.org/10.1007/s11082-019-2007-5
  80. Chen, F., Zhang, H., Sun, L., Li, J. & Yu, C. Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser Technol. 116, 293–299 (2019). https://doi.org/10.1016/j.optlastec.2019.03.044
  81. He, Y. et al. Convert from Fano resonance to electromagnetically induced transparency effect using anti-symmetric H-typed metamaterial resonator. Opt. Quantum Electron. 52, 391 (2020). https://doi.org/10.1007/s11082-020-02513-3
  82. Dionne, J. et al. A. Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010). https://doi.org/10.1109/JSTQE.2009.2034983
  83. Zhan, S. et al. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci. Rep. 6, 22428 (2016). https://doi.org/10.1038/srep22428
  84. Guo, Z. et al. Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors 18, 1348 (2018). https://doi.org/10.3390/s18051348
  85. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Multiple Fano resonances in a coupled plasmonic resonator system. J. Appl. Phys. 126, 083102 (2019). https://doi.org/10.1063/1.5105358
  86. Chen, Z., Song, X., Duan, G., Wang, L. & Yu, L. Multiple Fano resonances control in MIM side-coupled cavities systems. IEEE Photonics J. 7, 1–10 (2015). https://doi.org/10.1109/JPHOT.2015.2433012
  87. Zhang, X. et al. Refractive Index Sensor based on Fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photonic Sens. 8, 367– 374 (2018). https://doi.org/10.1007/s13320-018-0509-6
  88. Yang, X. et al. Fano resonance in a MIM waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors 19, 4972 (2019). https://doi.org/10.3390/s19224972
  89. Wang, W.-D., Zheng, L. & Qi, J.-G. High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric nanocylinder dimer metamaterials. Appl. Express 12, 075002 (2019). https://doi.org/10.7567/1882-0786/ab206a
  90. Špačková, B., Wrobel, P., Bocková, M. & Homola, J. Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104, 2380–2408 (2016). https://doi.org/10.1109/JPROC.2016.2624340
  91. Li, S. et al. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt. Express 25, 3525–3533 (2017). https://doi.org/10.1364/OE.25.003525
  92. Butt, M. A., Kazanskiy, N. L. & Khonina, S. N. Nanodots decorated asymmetric metal-insulator-metal waveguide resonator structure based on Fano resonances for refractive index sensing Laser Phys. 30, (2020). https://doi.org/10.1088/1555-6611/ab9090
  93. Chen, Z., Cao, X. & Song, X. Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11, 307– 313 (2016). https://doi.org/10.1007/s11468-015-0035-y
  94. Wang, Y., Li, S., Zhang, Y. & Yu, L. Independently formed multiple Fano resonances for ultra-high sensitivity plasmonic nanosensor. Plasmonics 13, 107– 113 (2018). https://doi.org/10.1007/s11468-016-0489-6
  95. Chen, J. et al. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 482, 126563 (2021). https://doi.org/10.1016/j.optcom.2020.126563
  96. Chen, J. et al. Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8, 1627–1631 (2013). https://doi.org/10.1007/s11468-013-9580-4
  97. Wen, K. et al. Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10, 27–32 (2015). https://doi.org/10.1007/s11468-014-9772-6
  98. Yang, J. et al. Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor. Plasmonics 12, 1665–1672 (2017). https://doi.org/10.1007/s11468-016-0432-x
  99. Wen, K., Chen, L., Zhou, J., Lei, L. & Fang, Y. A Plasmonic chip-scale refractive index sensor design based on multiple Fano reso-nances. Sensors 18, 3181 (2018). https://doi.org/10.3390/s18103181
  100. Liu, Y. et al. Theoretical design of plasmonic refractive index sensor based on the fixed band detection. IEEE J. Sel. Top. Quantum Electron. 25, 1–6 (2019). https://doi.org/10.1109/JSTQE.2018.2827661
  101. Qiao, L., Zhang, G., Wang, Z., Fan, G. & Yan, Y. Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 433, 144–149 (2019). https://doi.org/10.1016/j.optcom.2018.09.055
  102. Xiao, G. et al. High sensitivity plasmonic sensor based on Fano resonance with inverted u-shaped resonator. Sensors 21, 1–12 (2021). https://doi.org/10.3390/s21041164
  103. Li, C. et al. Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor. IEEE Photonics J. 9, 1– 9 (2017). https://doi.org/10.1109/JPHOT.2017.2763781
  104. Shi, X. et al. Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Opt. Commun. 427, 326–330 (2018). https://doi.org/10.1016/j.optcom.2018.06.042
  105. Chen, Z. et al. Sensing characteristics based on Fano resonance in rectangular ring waveguide. Opt. Commun. 356, 373–377 (2015). https://doi.org/10.1016/j.optcom.2015.08.020
  106. Wang, M., Zhang, M., Wang, Y., Zhao, R. & Yan, S. Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19, 791 (2019). https://doi.org/10.3390/s19040791
  107. Yu, S., Zhao, T., Yu, J. & Pan, D. Tuning multiple fano resonances for on-chip sensors in a plasmonic system. Sensors 19, 1559 (2019). https://doi.org/10.3390/s19071559
  108. Rahmatiyar, M., Danaie, M. & Afsahi, M. Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt. Quantum 52, 153 (2020). https://doi.org/10.1007/s11082-020-02266-z
  109. Li, Z. et al. Manipulation of multiple Fano resonances based on a novel chip-scale MDM structure. IEEE Access 8, 32914–32921 (2020). https://doi.org/10.1109/ACCESS.2020.2973417
  110. Fang, Y. et al. Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photon. J. 11, 1–8 (2019). https://doi.org/1109/JPHOT.2019.2914483
  111. Wang, Q., Ouyang, Z., Sun, Y., Lin, M. & Liu, Q. Linearly tunable Fano resonance modes in a plasmonic nanostructure with a waveguide loaded with two rectangular cavities coupled by a circular Nanomaterials 9, 678 (2019). https://doi.org/10.3390/nano9050678
  112. Su, H. et al. Sensing features of the Fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity. Appl. Sci. 10, 5096 (2020). https://doi.org/10.3390/app10155096
  113. Wang, S., Zhao, T., Yu, S. & Ma, W. High-performance nano-sensing and slow-light applications based on tunable multiple Fano resonances and EIT-like effects in coupled plasmonic resonator IEEE Access 8, 40599–40611 (2020). https://doi.org/10.1109/ACCESS.2020.2974491
  114. Li, Z. et al. Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system. IEEE Access 7, 59369–59375 (2019). https://doi.org/10.1109/ACCESS.2019.2914466
  115. El Haffar, R., Farkhsi, A. & Mahboub, O. Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A 126, 486 (2020). https://doi.org/10.1007/s00339-020-03660-w
  116. Hassan, M. F., Hasan, M. M., Ahmed, M. I. & Sagor, R.H. Numerical investigation of a plasmonic refractive index sensor based on rectangular MIM topology. in 2020 International Seminar on Intelligent Technology and its Applications ISITIA 2020, 77–82 (IEEE, 2020). https://doi.org/10.1109/ISITIA49792.2020.9163755
  117. Wang, Y. et al. Design of sub wavelength-grating-coupled Fano resonance sensor in mid-infrared. Plasmonics 16, 463–469 (2021). https://doi.org/10.1007/s11468-020-01313-5
  118. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Double Fano resonances based on different mechanisms in a MIM plasmonic system. Photonics Nanostruct. 36, 100714 (2019). https://doi.org/10.1016/j.photonics.2019.100714
  119. Chen, Z., Chen, J., Yu, L. & Xiao, J. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator. Plasmonics 10, 131–137 (2015). https://doi.org/10.1007/s11468-014-9786-0
  120. Pang, S. et al. The sensing characteristics based on electro-magnetically-induced transparency-like response in double-sided stub and a nano-disk waveguide Mod. Phys. Lett. B 31, 1–9 (2017). https://doi.org/10.1142/S0217984917501019
  121. Zhang, Z. D. et al. Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12, 1007–1013 (2017). https://doi.org/10.1007/s11468-016-0352-9
  122. Akhavan, A., Ghafoorifard, H., Abdolhosseini, S. & Habibiyan, H. Metal-insulator-metal waveguide-coupled asymmetric resonators for sensing and slow light IET Optoelectron. 12, 220–227 (2018). https://doi.org/10.1049/iet-opt.2018.0028
  123. Shi, H. et al. A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator. Micromachines 12, 495 (2021). https://doi.org/10.3390/mi12050495
  124. Meng, Z.-M. & Qin, F. Realizing prominent Fano resonances in metal-insulator-metal plasmonic Bragg gratings side-coupled with plasmonic nanocavities. Plasmonics 13, 2329–2336 (2018). https://doi.org/10.1007/s11468-018-0756-9
  125. Tathfif, I., Rashid, K.S., Yaseer, A. A. & Sagor, R.H. Alternative material titanium nitride based refractive index sensor embedded with defects: An emerging solution in sensing Results Phys. 29, 104795 (2021). https://doi.org/10.1016/j.rinp.2021.104795
  126. Li, Q. et al. Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials. Adv. Mater. Technol. 5, 1–7 (2020). https://doi.org/10.1002/admt.201900840
  127. Ge, J. et al. Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance. Opt. Express 28, 31781–31795 (2020). https://doi.org/10.1364/OE.405348
Go to article

Authors and Affiliations

Rammani Adhikari
1 2
Diksha Chauhan
1
Genene T. Mola
3
Ram P. Dwivedi
1

  1. Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India
  2. School of Engineering, Pokhara University, Pokhara Metropolitan City 30, Kaski, Nepal
  3. School of Chemistry and Physics, University of Kwazulu Natal, Scottsville, South Africa
Download PDF Download RIS Download Bibtex

Abstract

This work summarises investigations focused on the photoanode impact on the photovoltaic response of dye-sensitized solar cells. This is a comparison of the results obtained by the authors’ research team with literature data. The studies concern the effect of the chemical structure of the applied dye, TiO2 nanostructure, co-adsorbents addition, and experimental conditions of the anode preparation. The oxide substrates were examined using a scanning electron microscope to determine the thickness and structure of the material. The TiO2 substrates with anchored dye molecules were also tested for absorption properties in the UV-Vis light range, largely translating into current density values. Photovoltaic parameters of the fabricated devices with sandwich structure were obtained from current-voltage measurements. During tests conducted with the N719 dye, it was found that devices containing an 8.4 µm thick oxide semiconductor layer had the highest efficiency (5.99%). At the same time, studies were carried out to determine the effect of the solvent and it was found that the best results were obtained using an ACN : tert-butanol mixture (5.46%). Next, phenothiazine derivatives (PTZ-1–PTZ-6) were used to prepare the devices; among the prepared solar cells, the devices containing PTZ-2 and PTZ-3 had the highest performance (6.21 and 6.22%, respectively). Two compounds designated as Th-1 and M-1 were used to prepare devices containing a dye mixture with N719.
Go to article

Bibliography

  1. Kishore Kumar, D. et al. Functionalized metal oxide nanoparticles for efficient dye-sensitized solar cells (DSSCs): A review. Sci. Energy Technol. 3, 472–481 (2020). https://doi.org/10.1016/j.mset.2020.03.003
  2. Gerischer, H., Michel-Beyerle, M. E., Rebentrost, F. & Tributsch, H. Sensitization of charge injection into semiconductors with large band gap. Acta 13, 1509–1515 (1968). https://doi.org/10.1016/0013-4686(68)80076-3
  3. Tsubomura, H., Matsumura M., Nomura, Y. & Amamiya, T. Dye senstized Zinc oxide: aqueous electrolyte: platinumphotocell. Nature 261, 402–403 (1976). https://doi.org/10.1038/261402a0
  4. O’Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0
  5. Ji, J.-M., Zhou, H., Eom, Y. K., Kim, C. H. & Kim, H. K. 14.2% efficiency dye-sensitized solar cells by co-sensitizing novel thieno[3,2-b]indole-based organic dyes with a promising porphyrin sensitizer. Energy Mater. 10, 1–12 (2020). https://doi.org/10.1002/aenm.202000124
  6. Gnida, P., Libera, M., Pająk, A. & Schab-Balcerzak, E. Examination of the effect of selected factors on the photovoltaic response of dye-sensitized solar cells. Energy Fuels 34, 14344–14355 (2020). https://doi.org/10.1021/acs.energyfuels.0c02188
  7. Selvaraj, P. et al. Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Energy Mater. Sol. Cells 175, 29–34 (2018). https://doi.org/10.1016/j.solmat.2017.10.006
  8. Baglio, V., Girolamo, M., Antonucci, V. & Aricò, A. S. Influence of TiO2 film thickness on the electrochemical behaviour of dye-sensitized solar cells. Int. J. Sci. 6, 3375–3384 (2011).
  9. Zhang, H. et al. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination. Mater. Res. Bull. 49, 126–131 (2014). https://doi.org/10.1016/j.materresbull.2013.08.058
  10. Madurai Ramakrishnan, V. et al. Transformation of TiO2 nanoparticles to nanotubes by simple solvothermal route and its performance as dye-sensitized solar cell (DSSC) photoanode. J. Hydrog. 45, 15441–15452 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.021
  11. Lee, S. et al. Two-step sol-gel method-based TiO2 nanoparticles with uniform morphology and size for efficient photo-energy conversion devices. Chem. Mater. 22, 1958–1965 (2010). https://doi.org/10.1021/cm902842k
  12. Gnida, P. et al. Impact of TiO2 nanostructures on dye-sensitized solar cells performance. Materials 14, 13–15 (2021). https://doi.org/10.3390/ma14071633
  13. Slodek, A. et al. New benzo [ h ] quinolin-10-ol derivatives as co-sensitizers for DSSCs. Materials 14, 1–19 (2021) https://doi.org/10.3390/ma14123386
  14. Lee, K. M. et al. Efficient and stable plastic dye-sensitized solar cells based on a high light-harvesting ruthenium sensitizer. J. Mater. Chem. 19, 5009–5015 (2009). https://doi.org/10.1039/b903852c
  15. Kumar, V., Gupta, R. & Bansal, A. Role of chenodeoxycholic acid as co-additive in improving the efficiency of DSSCs. Sol. Energy 196, 589–596 (2020) https://doi.org/10.1016/j.solener.2019.12.034
  16. Ko, S. H. et al. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett. 11, 666–671 (2011). https://doi.org/10.1021/nl1037962
  17. Lee, K.-M. Effects of co-adsorbate and additive on the performance of dye-sensitized solar cells: A photophysical study. Sol. Energy Mater. Sol. Cells 91, 1426–1431 (2007). https://doi.org/10.1016/j.solmat.2007.03.009
  18. Wang, X. et al. Enhanced performance of dye-sensitized solar cells based on a dual anchored diphenylpyranylidene dye and N719 co-sensitization. J. Mol. Struct. 1206, 127694 (2020). https://doi.org/10.1016/j.molstruc.2020.127694
  19. Kula, S. et al. Effect of thienyl units in cyanoacrylic acid derivatives toward dye-sensitized solar cells. Photochem. Photobiol. B, Biol. 197, 111555 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111555
  20. Kotowicz, S. et al. Photoelectrochemical and thermal characteri-zation of aromatic hydrocarbons substituted with a dicyanovinyl unit. Pigm. 180, 108432 (2020). https://doi.org/10.1016/j.dyepig.2020.108432
  21. Fabiańczyk, A. et al. Effect of heterocycle donor in 2-cyanoacrylic acid conjugated derivatives for DSSC applications. Energy 220, 1109–1119 (2021). https://doi.org/10.1016/j.solener.2020.08.069
  22. Luo, J. et al. Co-sensitization of dithiafulvenyl-phenothiazine based organic dyes with N719 for efficient dye-sensitized solar cells. Acta 211, 364–374 (2016). https://doi.org/10.1016/j.electacta.2016.05.175
  23. Wu, Z. S. et al. New organic dyes with varied arylamine donors as effective co-sensitizers for ruthenium complex N719 in dye sensitized solar cells. Power Sources 451, 227776 (2020). https://doi.org/10.1016/j.jpowsour.2020.227776
  24. Dang Quang, L. N., Kaliamurthy, A. K. & Hao, N. H. Co-sensitization of metal based N719 and metal free D35 dyes: An effective strategy to improve the performance of DSSC. Mater. 111, 110589 (2021). https://doi.org/10.1016/J.OPTMAT.2020.110589
  25. Lee, H., Kim, J., Kim, D. Y. & Seo, Y. Co-sensitization of metal free organic dyes in flexible dye sensitized solar cells. Electron. 52, 103–109 (2018). https://doi.org/10.1016/j.orgel.2017.10.003
  26. Magne, C., Urien, M. & Pauporté, T. Enhancement of photovoltaic performances in dye-sensitized solar cells by co-sensitization with metal-free organic dyes. RSC Adv. 3, 6315–6318 (2013). https://doi.org/10.1039/c3ra41170b
  27. Kovash Jr., C. S., Hoefelmeyer, J. D. & Logue, B. A. TiO 2 compact layers prepared by low temperature colloidal synthesis and deposition for high performance dye-sensitized solar cells. Acta 67, 18–23 (2012). https://doi.org/10.1016/j.electacta.2012.01.092
  28. Cha, S. I. et al. Dye-sensitized solar cells on glass paper: TCO-free highly bendable dye-sensitized solar cells inspired by the traditional Korean door structure. Energy Environ. Sci. 5, 6071–6075 (2012). https://doi.org/10.1039/c2ee03096a
  29. Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Chem. Bull. 4, 92–97 (2015). https://doi.org/10.17628/ECB.2015.4.92
  30. Slodek, A. et al. Dyes based on the D/A-acetylene linker-phenothiazine system for developing efficient dye-sensitized solar cells. Mater. Chem. C 7, 5830–5840 (2019). https://doi.org/10.1039/C9TC01727E
  31. Slodek, A. et al. Investigations of new phenothiazine-based com­pounds for dye-sensitized solar cells with theoretical insight. Materials 13, 2292 (2020). https://www.mdpi.com/1996-1944/13/10/2292
  32. Li, X., Wang, Y., Liu, Y. & Ge, W. Green, room-temperature, fast route for NH4Yb2F7:Tm3+ nanoparticles and their blue upconversion luminescence properties. Mater.111, 110605 (2021). https://doi.org/10.1016/j.optmat.2020.110605
  33. Li, S. et al. Comparative studies on the structure-performance relationships of phenothiazine-based organic dyes for dye-sensitized solar cells. ACS Omega 6, 6817–6823 (2021). https://doi.org/10.1021/acsomega.0c05887
  34. Zhang, C., Wang, S. & Li, Y. Phenothiazine organic dyes containing dithieno[3,2-b:2′,3′-d]pyrrole (DTP) units for dye-sensitized solar cells. Energy 157, 94–102 (2017). https://doi.org/10.1016/j.solener.2017.08.012
  35. Duvva, N., Eom, Y. K., Reddy, G., Schanze, K. S. & Giribabu, L. Bulky phenanthroimidazole-phenothiazine D-?-A based organic sensitizers for application in efficient dye-sensitized solar cells. ACS Appl. Energy Mater. 3, 6758–6767 (2020). https://doi.org/10.1021/acsaem.0c00892
  36. Huang, Z.-S., Meier, H. & Cao, D. Phenothiazine-based dyes for efficient dye-sensitized solar cells. Mater. Chem. C 4, 2404–2426 (2016). https://doi.org/10.1039/c5tc04418a
  37. Althagafi, I. & El-Metwaly, N. Enhancement of dye-sensitized solar cell efficiency through co-sensitization of thiophene-based organic compounds and metal-based N-719. J. Chem. 14, 103080 (2021). https://doi.org/10.1016/J.ARABJC.2021.103080
  38. Wu, Z., Wei, Y., An, Z., Chen, X. & Chen, P. Co-sensitization of N719 with an organic dye for dye-sensitized solar cells application. Korean Chem. Soc. 35, 1449–1454 (2014). https://doi.org/10.5012/bkcs.2014.35.5.1449
  39. Xu, Z. et al. DFT/TD-DFT study of novel T shaped phenothiazine-based organic dyes for dye-sensitized solar cells applications. Acta A Mol. Biomol. Spectrosc. 212, 272–280 (2019). https://doi.org/10.1016/J.SAA.2019.01.002
  40. Afolabi, S. O. et al. Design and theoretical study of phenothiazine-based low bandgap dye derivatives as sensitizers in molecular photovoltaics. Quantum Electron. 52, 1–18 (2020). https://doi.org/10.1007/s11082-020-02600-5
  41. Arunkumar, A., Shanavas, S. & Anbarasan, P. M. First-principles study of efficient phenothiazine-based D–π–A organic sensitizers with various spacers for DSSCs. Comput. Electron. 17,
    1410–1420 (2018). https://doi.org/10.1007/s10825-018-1226-5
  42. Nath, N. C. D., Lee, H. J. Choi, W.-Y. & Lee, J.-J. Electrochemical approach to enhance the open-circuit voltage (Voc) of dye-sensitized solar cells (DSSCs). Acta 109, 39–45 (2013). https://doi.org/10.1016/J.ELECTACTA.2013.07.057
Go to article

Authors and Affiliations

Paweł Gnida
1
ORCID: ORCID
Aneta Slodek
2
ORCID: ORCID
Ewa Schab-Balcerzak
2 1
ORCID: ORCID

  1. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska St., 41-819 Zabrze, Poland
  2. Institute of Chemistry, University of Silesia, 9 Szkolna St., 40-006 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the last decade several papers have announced usefulness of two-dimensional materials for high operating temperature photodetectors covering long wavelength infrared spectral region. Transition metal dichalcogenide photodetectors, such as PdSe 2/MoS 2 and WS 2/HfS 2 and WS 2/HfS 2 heterojunctions, have been shown to achieve record detectivities at room temperature (higher than HgCdTe photodiodes). Under these circumstances, it is reasonable to consider the advantages and disadvantages of two-dimensional materials for infrared detection. This review attempts to answer the question thus posed.
Go to article

Bibliography

  1. Rogalski, A. 2D Materials for Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2020).
  2. Rogalski, A. Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2019).
  3. Rogalski, A. Quantum well photoconductors in infrared detector technology. Appl. Phys. 93, 4355–4391 (2003). https://doi.org/10.1063/1.1558224
  4. Kinch, M. A. State-of-the-Art Infrared Detector Technology. (SPIE Press, Bellingham, 2014).
  5. Rogalski, A., Martyniuk P. & Kopytko, M. Challenges of small-pixel infrared detectors: a review. Prog. Phys. 79, 046501-1–42 (2016). https://doi.org/10.1088/0034-4885/79/4/046501
  6. Rogalski, A., Martyniuk, P., Kopytko, M. & Hu, W. Trends in performance limits of the HOT infrared photodetectors. Sci. 11, 501 (2021). https://doi.org/10.3390/app11020501
  7. Piotrowski J. & Rogalski, A. Comment on “Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe” [J. Appl. Phys. 74, 4774 (1993)]. Appl. Phys. 80, 2542–2544 (1996). https://doi.org/10.1063/1.363043
  8. Robinson, J., Kinch, M., Marquis, M., Littlejohn, D. & Jeppson, K. Case for small pixels: system perspective and FPA challenge. SPIE 9100, 91000I-1–10 (2014). https://doi.org/10.1117/12.2054452
  9. Holst  C. & Lomheim, T. C. CMOS/CCD Sensors and Camera Systems. (JCD Publishing and SPIE Press, Winter Park, 2007).
  10. Holst, G. C. & Driggers, R. G. Small detectors in infrared system design. Eng. 51, 096401-1–10 (2012).
  11. Boreman, G. D. Modulation Transfer Function in Optical and Electro-Optical Systems. (2nd edition) (SPIE Press, Bellingham, 2021).
  12. Higgins, W. M., Seiler, G. N., Roy, R. G. & Lancaster, R. A. Standard relationships in the properties of Hg1–xCdx J. Vac. Sci. Technol. A 7, 271–275 (1989). https://doi.org/10.1116/1.576110
  13. Chu, J. H., Li, B., Liu, K. & Tang, D. Empirical rule of intrinsic absorption spectroscopy in Hg1−xCd x J. Appl. Phys. 75, 1234 (1994). https://doi.org/10.1063/1.356464
  14. Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics 4, 2962−2970 (2017). https://doi.org/10.1021/acsphotonics.7b01103
  15. Kinch, M. A. et al. Minority carrier lifetime in p-HgCdTe. Electron. Mater. 34, 880–884 (2005). https://doi.org/10.1007/s11664-005-0036-2
  16. Lee, D. et al. Law 19: the ultimate photodiode performance metric. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  17. Yang, Z., Dou, J. & Wang, M. Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors. in Two-Dimensional Materials for Photodetector (ed. Nayak, P. K.) 1–20 (IntechOpen, 2018). http://doi.org/10.5772/intechopen.74021
  18. Pi, L., Li, L., Liu, K., Zhang, Q. Li, H. & Zhai, T. Recent progress on 2D noble-transition-metal Adv. Funct. Mater. 29, 1904932 (2019). https://doi.org/10.1002/adfm.201904932
  19. Vargas-Bernal, R. Graphene Against Other Two-Dimensional Materials: A Comparative Study on the Basis of Photonic Applications. in Graphene Materials (eds. Kyzas, G. Z. & Mitropoulos, A. Ch.) 103–121 (IntechOpen, 2017). http://doi.org/10.5772/67807
  20. Rogalski, A., Martyniuk, P. & Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Quantum Electron. 68, 100228 (2019). https://doi.org/10.1016/j.pquantelec.2019.100228
  21. Delaunay, P. Y., Nosho, B. Z., Gurga, A. R., Terterian, S. & Rajavel,  D. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL. Proc. SPIE 10177, 101770T-1–12 (2017). https://doi.org/10.1117/12.2266278
  22. Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  23. Lee, D. et al. Law 19 – The Ultimate Photodiode Performance Metric. in Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials 13–15 (2019).
  24. Rogalski, A., Kopytko, M., Martyniuk, P. & Hu, W. Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electron. Rev. 28, 82–92 (2020). https://doi.org/10.24425/opelre.2020.132504
  25. Tennant, W. E., Lee, D., Zandian, M., Piquette, E. & Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic. Electron. Mater. 37, 1406–1410 (2008). https://doi.org/10.1007/s11664-008-0426-3
  26. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Adv. 3, e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
  27. Du, S. et al. A broadband fluorographene photodetector. Mater. 29, 1700463 (2017). https://doi.org/10.1002/adma.201700463
  28. Long, M. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511−2519 (2019). https://doi.org/10.1021/acsnano.8b09476
  29. Chen, Y. Unipolar barrier photodetectors based on van der Waals heterostructures. Electron. 4, 357–363 (2021). https://doi.org/10.1038/s41928-021-00586-w
  30. Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017). https://doi.org/10.1021/acsnano.7b07028
  31. Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020). https://org/10.1038/s41565-020-0717-2
  32. VIGO System Catalog 2018/2019. VIGO System S.A. https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf (2018).
  33. Mercury Cadmium Telluride Detectors. Teledyne Judson Techno-logies LLC http://www.teledynejudson.com/prods/Documents/MCT_shortform_Dec2002.pdf (2002).
  34. Zhong, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization Nano Res. 14, 1840–1862 (2021). https://doi.org/10.1007/s12274-020-3247-1
  35. Huang, et al. Waveguide integrated black phosphorus photo-detector for mid-infrared applications. ACS Nano 13, 913–921 (2019). https://doi.org/10.1021/acsnano.8b08758
  36. Bullock, J. et al. Polarization-resolved black phosphorus/ molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Photonics 12, 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
  37. Yu, X. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Commun. 9, 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
  38. Yu, X. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Commun. 9, 4299 (2018). https://doi.org/10.1038/s41467-018-06776-z
  39. Long, M., Wang, P., Fang, H. & Hu. W. Progress, challenges, and opportunities for 2D material-based photodetectors. Funct. Mater. 1803807 (2018). https://doi.org/10.1002/adfm.201803807
  40. Wang, P. et al. Arrayed van der Waals broadband detectors for dual-band detection. Mater. 29, 1604439 (2017). https://doi.org/10.1002/adma.201604439
  41. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Photonics 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
  42. Konstantatos, G. et al. Hybrid graphene-quantum dot photo-transistors with ultrahigh gain. Nanotechnol. 7, 363–368 (2012). https://doi.org/10.1038/nnano.2012.60
  43. Phillips, J. Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590–4594 (2002). https://doi.org/10.1063/1.1455130
  44. Jerram P. & Beletic, J. Teledyne’s high performance infrared detectors for space missions. SPIE 11180, 111803D-2 (2018). https://doi.org/10.1117/12.2536040
  45. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductor. Rev. 44, 3691–3718 2015. https://doi.org/10.1039/C5CS00106D
  46. Wang, J. et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13, 1700894 (2017). https://doi.org/10.1002/smll.201700894
  47. An, J. et al. Research development of 2D materials-based photodetectors towards mid-infrared regime. Nano Select 2, 527 (2021). https://doi.org/10.1002/nano.202000237
  48. Wu, D. et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. Mater. Chem. A 8, 3632–3642 (2020). https://doi.org/10.1039/C9TA13611H
  49. Zeng, L.-H. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Funct. Mater. 29, 1806878 (2019). https://doi.org/10.1002/adfm.201806878
  50. Imec shows excellent performance in ultra-scaled FETs with 2D-material channel. Imec. https://www.imec-int.com/en/articles/imec-shows-excellent-performance-in-ultra-scaled-fets-with-2d-material-channel (2019).
  51. Scaling Up Large-area Integration of 2D Materials. Compound Semiconductor. https://compoundsemiconductor.net/article/112712/Scaling_Up_Large-area_Integration_Of_2D_Materials (2021).
  52. Briggs, N. et al. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019). https://doi.org/10.1088/2053-1583/aaf836
  53. IRDS International Roadmap for Devices and SystemsTM 2018 Update. IEEE. https://irds.ieee.org/images/files/pdf/2018/2018IRDS
    _MM.pdf
    (2018).
Go to article

Authors and Affiliations

Antoni Rogalski
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Graphene applications in electronic and optoelectronic devices have been thoroughly and intensively studied since graphene discovery. Thanks to the exceptional electronic and optical properties of graphene and other two-dimensional (2D) materials, they can become promising candidates for infrared and terahertz photodetectors.

Quantity of the published papers devoted to 2D materials as sensors is huge. However, authors of these papers address them mainly to researches involved in investigations of 2D materials. In the present paper this topic is treated comprehensively with including both theoretical estimations and many experimental data.

At the beginning fundamental properties and performance of graphene-based, as well as alternative 2D materials have been shortly described. Next, the position of 2D material detectors is considered in confrontation with the present stage of infrared and terahertz detectors offered on global market. A new benchmark, so-called “Law 19”, used for prediction of background limited HgCdTe photodiodes operated at near room temperature, is introduced. This law is next treated as the reference for alternative 2D material technologies. The performance comparison concerns the detector responsivity, detectivity and response time. Place of 2D material-based detectors in the near future in a wide infrared detector family is predicted in the final conclusions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The review exposes basic concepts and manifestations of the singular and structured light fields. The presentation is based on deep intrinsic relations between the singularities and the rotational phenomena in light; it involves essentially the dynamical aspects of light fields and their interactions with matter. Due to their topological nature, the singularities of each separate parameter (phase, polarization, energy flow, etc.) form coherent interrelated systems (singular networks), and the meaningful interconnections between the different singular networks are analysed. The main features of singular-light structures are introduced via generic examples of the optical vortex and circular vortex beams. The review describes approaches for generation and diagnostics of different singular networks and underlines the role of singularities in formation of optical field structures. The mechanical action of structured light fields on material objects is discussed on the base of the spin-orbital (canonical) decomposition of electromagnetic momentum, expressing the special roles of the spin (polarization) and spatial degrees of freedom. Experimental demonstrations spectacularly characterize the topological nature and the immanent rotational features of the light-field singularities. The review is based on the results obtained by its authors with a special attention to relevant works of other researchers.
Go to article

Bibliography

  1. Descartes, R. Principia Phylosophiae. (Amsterdam, 1644); Dioptrique, Meteores. (Leyden, 1637).
  2. Descartes, R. [The World]. Le Monde, Ou Traité De La Lumière. (Abaris Books, 1979).
  3. Fresnel, A. Œuvres Complètes. (Imprimerie Imperiale, France, 1866–1870). (In French)
  4. Faraday, M. Experimental Researches in Chemistry and Physics. (Taylor & Francis, 1859). https://doi.org/10.5962/bhl.title.30054
  5. Maxwell, J. C. Treatise on Electricity and Magnetism. (Cambridge University Press, 1873). https://doi.org/10.1017/CBO9780511709333
  6. Sadowsky, A. Acta et Commentationes Imp. Universitatis Jurievensis (olim Dorpatensis) 7, 1–3 (1899). (In Russian)
  7. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. R. Soc. Lond. A 82, 560–567 (1909). https://doi.org/10.1098/rspa.1909.0060
  8. Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Rev. 50, 115–125 (1939). https://doi.org/10.1103/PhysRev.50.115
  9. Ignatowski, W. S. Diffraction by a lens of arbitrary aperture. Opt. Inst. I, 1–36 (1919). https://doi.org/10.1017/9781108552264.019
  10. Boivin, A., Dow, J. & Wolf, E. Energy flow in the neighbourhood of the focus of a coherent beam. Opt. Soc. Am. 57, 1171–1176 (1967). https://doi.org/10.1364/JOSA.57.001171
  11. Baranova, N.B. et al. Wave-front dislocations: topological limitations for adaptive systems with phase conjugation. Opt. Soc. Am. 73, 525–528 (1983). https://doi.org/10.1364/JOSA.73.000525
  12. Angelsky, O. V., Maksimyak, P. P., Magun, I. I. & Perun, T. O. On spatial stochastiation of optical fields and feasibilities of optical diagnostics of objects with large phase inhomogeneities. Spectr. 71, 123–128 (1991).
  13. Coullet, P., Gil, L. & Rocca, F. Optical vortices. Commun. 73, 403–408 (1989). https://doi.org/10.1016/0030-4018(89)90180-6
  14. Gottfried, K. Quantum Mechanics. (Benjamin, 1966).
  15. Simmonds, J. W. & Guttmann, M. J. States, Waves and Photons. (Addison-Wesley, 1970).
  16. Berestetskii, V. B., Lifshits, E. M. & Pitaevskii, L. P. Quantum Electrodynamics. (Butterworth-Heinemann, 1982). https://doi.org/10.1016/C2009-0-24486-2
  17. Allen, L., Beijersbergen, M. V., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Rev. A 45, 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185
  18. Bazhenov, V. Yu., Vasnetsov, M. V. & Soskin M. S. Laser beams with screw dislocations in their wavefronts. JETP Lett. 52, 429–431(1990).
  19. Soskin, M. S. & Vasnetsov, M. V. Nonlinear singular optics. Pure Appl. Opt. 7, 301–311 (1998). https://doi.org/10.1088/0963-9659/7/2/019
  20. Soskin, M. S. & Vasnetsov, M. V. Chapter 4–Singular optics. Opt. 42, 219–276 (2001). https://doi.org/10.1016/S0079-6638(01)80018-4
  21. Nye, J. F. & Berry, M. V. Dislocations in wave trains. R. Soc. Lond. 336, 165–190 (1974). https://doi.org/10.1098/rspa.1974.0012
  22. Berry, M. V. Singularities in Waves and Rays. in Physics of Defects. (eds. Balian, R., Klaeman, M. & Poirier, J. P.) 453–549 (North Holland Publishing Company, 1981).
  23. Nye, J. F. Natural Focusing and Fine Structure of Light. Caustics and Wave Dislocations. (Institute of Physics Publishing: Bristol and Philadelphia, 1999).
  24. Gbur, G., Tyson, R. K., Vortex beam propagation through atmospheric turbulence and topological charge conservation. Opt. Soc. Am. A: Opt. Image Sci. Vis. 25, 225–230 (2008). https://doi.org/10.1364/JOSAA.25.000225
  25. Angelsky, O. V. et al. Structured light: ideas and concepts. Front. Phys. 8, 114 (2020). https://doi.org/10.3389/fphy.2020.00114
  26. Andrews, D. L. Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces. (Academic Press, 2011). https://doi.org/10.1016/B978-0-12-374027-4.X0001-1
  27. Bekshaev, A., Bliokh, K. & Soskin, M. Internal flows and energy circulation in light beams. J Opt. 13, 053001 (2011). https://doi.org/10.1088/2040-8978/13/5/053001
  28. Rubinsztein-Dunlop, H. et al. Roadmap on structured light. Opt. 19, 013001 (2017).
    https://doi.org/10.1088/2040-8978/19/1/013001
  29. Rotenberg, N. & Kuiper, L. Mapping nanoscale light fields. Nat. Photonics 8, 919–926 (2014). https://doi.org/10.1038/nphoton.2014.285
  30. Aiello, A. & Banzer, P. The ubiquitous photonic wheel. Opt. 18, 085605 (2016). http://dx.doi.org/10.1088/2040-8978/18/8/085605
  31. Aiello, A. et al. From transverse angular momentum to photonic wheels. Photonics 9, 789–795 (2015). https://doi.org/10.1038/nphoton.2015.203
  32. Bekshaev, A. & Soskin, M. S. Transverse energy flows in vectorial fields of paraxial beams with singularities. Opt. Commun., 271, 332–348 (2007). https://doi.org/10.1016/j.optcom.2006.10.057
  33. Bliokh, K. & Nori, F. Transverse and longitudinal angular momenta of light. Phys. Rep. 592, 1–38 (2015). https://doi.org/10.1016/j.physrep.2015.06.003
  34. Dennis, M. , O’Holleran, K. & Padgett, M. J. Chapter 5 Singular optics: optical vortices and polarization singularities. Prog. opt. 53, 293–363 (2009). https://doi.org/10.1016/S0079-6638(08)00205-9
  35. Basisty, I. , Soskin, M. S. & Vasnetsov, M. V. Optical wavefront dislocations and their properties. Opt. Comm. 119, 604–612 (1995). https://doi.org/10.1016/0030-4018(95)00267-C
  36. Soskin, M. , Vasnetsov, M. V. & Basisty, I. V. Optical wavefront dislocations. Proc. SPIE 2647, 57–62 (1995). https://doi.org/10.1117/12.226741
  37. White, A. et al. Interferometric measurements of phase singulari­ties in the output of a visible laser. J. Mod. Opt. 38, 2531–2541 (1991). https://doi.org/10.1080/09500349114552651
  38. Heckenberg, N. , McDuff, R., Smith, C. P. & White, A. G. Generation of optical singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992). https://doi.org/10.1364/OL.17.000221
  39. Angelsky, O. Optical Correlation Techniques and Applications. (Bellingham: SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999
  40. Allen, L., Padgett, M. & Babiker, M. IV The orbital angular momentum of light. Prog. Opt. 39, 291–372 (1999). https://doi.org/10.1016/S0079-6638(08)70391-3
  41. Bekshaev, A., Soskin, M. & Vasnetsov M. Paraxial Light Beams with Angular Momentum. (New York: Nova Science Publishers, 2008). https://arxiv.org/abs/0801.2309
  42. Gbur, G. Singular Optics. (CRC Press, 2016). https://doi.org/10.1201/9781315374260
  43. Senthilkumaran, P. Singularities in Physics and Engineering. (IOP Publishing,2018). https://doi.org/10.1088/978-0-7503-1698-9
  44. Yao, A. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics 3, 161–204 (2011). https://doi.org/10.1364/AOP.3.000161
  45. Barnett, S. , Babiker, M. & Padgett, M. J. Optical orbital angular momentum. Philos. Trans. R. Soc. A 375, 0444 (2017). http://doi.org/10.1098/rsta.2015.0444
  46. Habraken, S. M. Light with A Twist: Ray Aspects (Leiden University, Netherlands, 2010).
  47. Alexeyev, C. N. Propagation of optical vortices in periodically perturbed weakly guiding optical fibres. (Institute of Physical Optics of the Ministry of Education and Science of Ukraine, Lviv, 2010). (in Russian)
  48. Ruchi, Senthilkumaran P. & Pal, S. Phase singularities to polarization singularities. Int. J. Opt. 2020, 2812803 (2020). https://doi.org/10.1155/2020/2812803
  49. Born, M. & Wolf, E. Principles of Optics. (Pergamon, 1968).
  50. Landau, L. & Lifshitz, E. M. The classical theory of fields. Course of theoretical physics Vol. 2. (Pergamon, 1975). https://doi.org/10.1016/C2009-0-14608-1
  51. Berry, M. Optical currents. J. Opt. A: Pure Appl. Opt. 11, 11094001 (2009). https://doi.org/10.1088/1464-4258/11/9/094001
  52. Haus, H. Waves and Fields in Optoelectronics (Prentice-Hall, Inc., 1984).
  53. Bekshaev, A. & Karamoch, A. I. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Opt. Commun. 281, 1366–1374 (2008). https://doi.org/10.1016/j.optcom.2007.11.032
  54. Bekshaev, A. , Karamoch, A. I., Khoroshun, G. M., Masajada, J. & Ryazantsev, O. I. Special features of a functional beam splitter: diffraction grating with groove bifurcation. in Advances in Engineering Research vol. 28. (ed. Petrova, V. M.) 1–86 (Nova Science Publishers New York, 2019).
  55. McGloin, D. & Dholakia, K. Bessel beams: diffraction in a new light. Phys. 46, 15–28 (2005). https://doi.org/10.1080/0010751042000275259
  56. Karimi, E., Zito, G., Piccirillo, B., Marrucci, L. & Santamato, E. Hypergeometric-Gaussian modes. Lett. 32, 3053–3055 (2007). https://doi.org/10.1364/OL.32.003053
  57. Abramovitz, M. & Stegun, I. Handbook of Mathematical Functions (National Bureau of Standards, 1964)
  58. Berry, M. Paraxial beams of spinning light. SPIE 3487, 6–11 (1998). https://doi.org/10.1117/12.317704
  59. Roux, F. Distribution of angular momentum and vortex morphology in optical beams. Opt. Commun. 242, 45–55 (2004). https://doi.org/10.1016/j.optcom.2004.08.006
  60. Bekshaev, A., Orlinska, O. & Vasnetsov, M. Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction. Commun. 283, 2006–2016 (2010). https://doi.org/10.1016/j.optcom.2010.01.012
  61. Baranova, N. , Zel’dovich, B. Ya., Mamaev, A. V., Philipetskii, N. F. & Shkunov, V. V. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment). JETP Lett. 33, 195–199 (1981).
  62. Beijersbergen, M. , Allen, L., Van der Veen, H. E. L. O. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993). https://doi.org/10.1016/0030-4018(93)90535-D
  63. Bekshaev, A. & Popov, A. Optical system for Laguerre-Gaussian / Hermite-Gaussian mode conversion. SPIE 4403, 296–301 (2001). https://doi.org/10.1117/12.428283
  64. Soroko, L. Holography and Coherent Optics. (Springer, Boston, 1980). https://doi.org/10.1007/978-1-4684-3420-0
  65. Petrov, D. Vortex–edge dislocation interaction in a linear medium. Opt.Commun.188, 307–312 (2001). https://doi.org/10.1016/S0030-4018(01)00993-2
  66. Cheng, S. et al. Composite spiral zone plate. IEEE Photon. J. 11, 1–11(2018). https://doi.org/10.1109/JPHOT.2018.2885004
  67. Sabatyan, A. & Behjat, Z. Radial phase modulated spiral zone plate for generation and manipulation of optical perfect vortex. Quantum Electron. 49, 371 (2017).
    https://doi.org/10.1007/s11082-017-1211-4
  68. Bekshaev, A. & Karamoch, A. I. Displacements and deformations of a vortex light beam produced by the diffraction grating with embedded phase singularity. Opt. Commun. 281, 3597–3610 (2008). https://doi.org/10.1016/j.optcom.2008.03.070
  69. Anan'ev, Y. & Bekshaev, A. Y. Theory of intensity moments for arbitrary light beams. Opt. Spectrosc. 76, 558–568 (1994).
  70. Bekshaev, A. , Mohammed, K. A. & Kurka, I. A. Transverse energy circulation and the edge diffraction of an optical vortex beam. Appl. Opt. 53, B27–B37 (2014). https://doi.org/10.1364/AO.53.000B27
  71. Oemrawsingh, S. R. et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 688–694 (2004). https://doi.org/10.1364/AO.43.000688
  72. Berry, M. V. Optical vortices evolving from helicoidal integer and fractional phase steps. Opt. A Pure Appl. Opt. 6, 259 (2004). https://doi.org/10.1088/1464-4258/6/2/018
  73. Kotlyar, V. V. et al. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate.  Opt. Soc. Am. A: Opt. Image Sci. Vis. 22(5), 849–861(2005). https://doi.org/10.1364/JOSAA.22.000849
  74. Bomzon, Z., Biener, G., Kleiner, V. & Hasman, E. Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings. Lett. 27, 1141–1143 (2002). https://doi.org/10.1364/OL.27.001141
  75. Biener, G., Niv, A., Kleiner, V. & Hasman, E. Formation of helical beams by use of Pancharatnam–Berry phase optical elements. Let. 27, 1875–1877 (2002). https://doi.org/10.1364/OL.27.001875
  76. Niv, A., Biener, G., Kleiner, V. & Hasman, E. Manipulation of the Pancharatnam phase in vectorial vortices. Express 14, 4208–4220 (2006). https://doi.org/10.1364/OE.14.004208
  77. Marucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Rev. Lett. 96, 163905 (2006). https://doi.org/10.1103/PhysRevLett.96.163905
  78. Basistiy, I. , Pas’ko, V. A., Slyusar, V. V., Soskin, M. S & Vasnetsov, M. V. Synthesis and analysis of optical vortices with fractional topological charges. J. Opt. A Pure Appl. Opt. 6, S166–S169 (2004). https://doi.org/10.1088/1464-4258/6/5/003
  79. Gbur, G. Fractional vortex Hilbert’s hotel. Optica 3, 222–225 (2016). https://doi.org/10.1364/OPTICA.3.000222
  80. Freund, I. & Shvartsman, N. Wave-field phase singularities: the sign principle. Rev. A 50, 5164 (1994). https://doi.org/10.1103/PhysRevA.50.5164
  81. Soskin, S., Gorshkov, V. N., Vasnetsov, M. V., Malos, J. T. & Heckenberg, N. R. Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 56, 4064–4075 (1997). https://doi.org/10.1103/PhysRevA.56.4064
  82. Bialynicki-Birula, I. & Bialynicka-Birula, Z. Rotational frequency shift. Rev. Lett. 78, 2539–2542 (1997). https://doi.org/10.1103/PhysRevLett.78.2539
  83. Garetz, B. Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981). https://doi.org/10.1364/JOSA.71.000609
  84. Garetz, B. & Arnold, S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave plate. Opt. Commun. 31, 1–3 (1979).
    https://doi.org/10.1016/0030-4018(79)90230-X
  85. Simon, R., Kimble, H. & Sudarshan, E. C. G. Evolving geometric phase and its dynamical manifestation as a frequency shift: An optical experiment. Phys. Rev. Lett. 61, 19–22 (1988). https://doi.org/10.1103/PhysRevLett.61.19
  86. Bretenaker, F.& Le Floch, A. Energy exchanges between a rotating retardation plate and a laser beam. Rev. Lett. 65, 2316 (1990). https://doi.org/10.1103/PhysRevLett.65.2316
  87. Courtial, J., Dholakia, K., Robertson, D. , Allen, L. & Padgett, M. J. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett. 80, 3217–3219 (1998). https://doi.org/10.1103/PhysRevLett.80.3217
  88. Courtial, J., Robertson, D. , Dholakia, K., Allen, L. & Padgett, M. J. Rotational frequency shift of a light beam. Phys. Rev. Lett. 81, 4828–4830 (1998). https://doi.org/10.1103/PhysRevLett.81.4828
  89. Bekshaev, A. et al. Observation of rotational Doppler effect with an optical-vortex one-beam interferometer. Ukr. J. Phys. 47, 1035–1040 (2002). http://archive.ujp.bitp.kiev.ua/files/journals/47/11/471105p.pdf
  90. Basistiy, I.V., Bekshaev, A. , Vasnetsov, M. V., Slyusar, V. V. & Soskin, M. S. Observation of the rotational Doppler effect for optical beams with helical wave front using spiral zone plate. JETP Lett. 76, 486–489 (2002). https://doi.org/10.1134/1.1533771
  91. Basistiy, I. , Slyusar, V. V., Soskin, M. S., Vasnetsov, M. V. & Bekshaev, A. Ya. Manifestation of the rotational Doppler effect by use of an off-axis optical vortex beam. Opt. Lett. 28, 1185–1187 (2003). https://doi.org/10.1364/OL.28.001185
  92. Bekshaev, A. & Popov, A. Non-collinear rotational Doppler effect. SPIE 5477, 55–66 (2004). https://doi.org/10.1117/12.558759
  93. Bekshaev, A. & Grimblatov, V. M. Energy method of analysis of optical resonators with mirror deformations. Opt. Spectrosc. 58, 707–709 (1985).
  94. Bekshaev, A. , Grimblatov, V. M. & Kalugin, V. V. Misaligned Ring Resonator with A Lens-Like Medium. (Odessa University, 2016). https://doi.org/10.48550/arXiv.1612.01407
  95. Bekshaev, A. Manifestation of mechanical properties of light waves in vortex beam optical systems. Opt. Spectrosc. 88, 904–910 (2000). https://doi.org/10.1134/1.626898
  96. Bekshaev, A. Mechanical properties of the light wave with phase singularity. Proc. SPIE 3904, 131–139 (1999). https://doi.org/10.1117/12.370396
  97. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M.V. Rotation of arbitrary optical image and the rotational Doppler effect. Ukr. J. Phys. 49, 490–495 (2004). http://archive.ujp.bitp.kiev.ua/files/journals/49/5/490512p.pdf
  98. Vinitskii, S. I., Derbov, V. L, Dubovik, V. M., Markovski, B. & Stepanovskii, Yu. P. Topological phases in quantum mechanics and polarization optics. Sov. Phys. Usp. 33, 403–429 (1990). https://doi.org/10.1070/PU1990v033n06ABEH002598
  99. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. An optical vortex as a rotating body: mechanical features of a singular light beam. J. Opt. A Pure Appl. Opt. 6, S170–S174 (2004). https://doi.org/10.1088/1464-4258/6/5/004
  100. Allen, L. & Padgett, M. The Poynting vector in Laguerre-Gaussian beams and the interpretation of their angular momentum density. Opt. Commun. 184, 67–71 (2000). https://doi.org/10.1016/S0030-4018(00)00960-3
  101. Bekshaev, A. Transverse rotation of the instantaneous field distribution and the orbital angular momentum of a light beam. J. Opt. A Pure Appl. Opt. 11, 094004 (2009). https://doi.org/10.1088/1464-4258/11/9/094004
  102. Bekshaev, A. Internal energy flows and instantaneous field of a monochromatic paraxial light beam. Appl. Opt. 51, C13–C16 (2012). https://doi.org/10.1364/AO.51.000C13
  103. Lekner, J. TM, TE, and ‘TEM’ beam modes: exact solutions and their problems. Opt. A Pure Appl. Opt. 3, 407–412 (2001). https://doi.org/10.1088/1464-4258/3/5/314
  104. Lekner, J. Phase and transport velocities in particle and electromagnetic beams. Opt. A Pure Appl. Opt. 4, 491–499 (2002). https://doi.org/10.1088/1464-4258/4/5/301
  105. Lekner, J. Polarization of tightly focused laser beams. Opt. A Pure Appl. Opt. 5, 6–14 (2003). https://doi.org/10.1088/1464-4258/5/1/302
  106. He, H., Friese, M. J., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995). https://doi.org/10.1103/PhysRevLett.75.826
  107. Rubinsztein-Dunlop, H., Nieminen, T. , Friese, M. E. J. & Heckenberg, N. R. Optical trapping of absorbing particles. Adv. Quantum Chem. 30, 469–492 (1998). https://doi.org/10.1016/S0065-3276(08)60523-7
  108. Gahagan, K. & Swartzlander, G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996). https://doi.org/10.1364/OL.21.000827
  109. Gahagan, K. & Swartzlander, G. A. Trapping of low-index microparticles in an optical vortex. J. Opt. Soc. Am. B 15, 524–534 (1998). https://doi.org/10.1364/JOSAB.15.000524
  110. Simpson, N. , McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45, 1943–1949 (1998). https://doi.org/10.1080/09500349808231712
  111. Simpson, N. , Allen, L. & Padgett, M. J. Optical tweezers and optical spanners with Laguerre Gaussian modes. J. Mod. Opt. 43, 2485–2491 (1996). https://doi.org/10.1080/09500349608230675
  112. O’Neil, A. & Padgett, M. J. Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Opt. Commun. 185, 139–143 (2000). https://doi.org/10.1016/S0030-4018(00)00989-5
  113. Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Rev. E 59, 3676–3681 (1999). https://doi.org/10.1103/PhysRevE.59.3676
  114. Friese, M. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P. & Hanstorp, D. Optically driven micromachine elements. Appl. Phys. Lett. 78, 547–549 (2001). https://doi.org/10.1063/1.1339995
  115. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001). https://doi.org/10.1126/science.1058591
  116. Grier, D. A revolution in optical manipulation. Nature 424, 810–816 (2003). https://doi.org/10.1038/nature01935
  117. Bowman, R. & Padgett, M. J. Optical trapping and binding. Rep. Prog. Phys. 76, 026401 (2013). https://doi.org/10.1088/0034-4885/76/2/026401
  118. Padgett, M. & Bowman, R. Tweezers with a twist. photonics 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81
  119. Jack, Ng., Lin, Zh. & Chan, C. T. Theory of optical trapping by an optical vortex beam. Rev. Lett. 104, 103601 (2010). https://doi.org/10.1103/PhysRevLett.104.103601
  120. Yuehan, T. et al. Multi-trap optical tweezers based on composite vortex beams. Commun. 485, 126712 (2021). https://doi.org/10.1016/j.optcom.2020.126712
  121. Chun-Fu, K. & Chu, S.-Ch. Numerical study of the properties of optical vortex array laser tweezers. Express 21, 26418–26431 (2013). https://doi.org/10.1364/OE.21.026418
  122. Mokhun, I. Introduction to Linear Singular Optics. in Optical Correlation Techniques and Applications (ed. Angelsky, O.) 1–132 (Bellingham, SPIE Press PM168, 2007). https://doi.org/10.1117/3.714999.ch1
  123. Mokhun, I .I. Introduction to Linear Singular Optics (Chernivtsi National University, 2012) (In Russian)
  124. Angelsky, O. , Besaga, R. N. & Mokhun, I. I. Appearance of wave front dislocations under interference among beams with simple wave fronts. Proc. SPIE 3317, 97–100 (1997). https://doi.org/10.1117/12.295666
  125. O’Holleran, K., Padgett, M. & Dennis, M.  R. Topology of optical vortex lines formed by the interference of three, four, and five plane waves. Opt. Express 14, 3039–3044 (2006). https://doi.org/10.1364/OE.14.003039
  126. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Tailored complex 3D vortex lattice structures by perturbed multiples of three-plane waves. Opt. 51, 1872–1878 (2012). https://doi.org/10.1364/AO.51.001872
  127. Kapoor, A., Kumar, M., Senthilkumaran, P. & Joseph, J. Optical vortex array in spatially varying lattice. Commun. 365, 99–102 (2016). https://doi.org/10.1016/j.optcom.2015.11.074
  128. Xavier, J., Vyas, S., Senthilkumaran, P. & Joseph, J. Complex 3D vortex lattice formation by phase-engineered multiple beam interference. J. Opt. 2012, 863875 (2012). https://doi.org/10.1155/2012/863875
  129. Galvez, E. , Rojec, B. L., Beach, K. & Cheng, X. C-point Singularities in Poincaré Beams (2014). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.712.1192&rep=rep1&type=pdf
  130. Mokhun, A. , Soskin, M. S. & Freund, I. Elliptic critical points in paraxial optical fields. Opt. Commun. 208, 223–253 (2002). https://doi.org/10.1016/S0030-4018(02)01585-7
  131. Mokhun, I., Galushko, Yu., Kharitonova, Ye., Viktorovskaya, Yu. & Khrobatin, R. Elementary heterogeneously polarized field modeling. Lett. 36, 2137–2139 (2011). https://doi.org/10.1364/OL.36.002137
  132. Angelsky, O. , Dominikov, N. N., Maksimyak, P. P. & Tudor, T. Experimental revealing of polarization waves. Appl. Opt. 38, 3112–3117 (1999). https://doi.org/10.1364/AO.38.003112
  133. Angelsky, O. , Hanson, S. G., Zenkova, C. Yu., Gorsky, M. P. & Gorodin’ska, N. V. On polarization metrology (estimation) of the degree of coherence of optical waves. Opt. Express, 17, 15623–15634 (2009). https://doi.org/10.1364/OE.17.015623
  134. Mokhun, I., Khrobatin, R. & Viktorovskaya, Ju. The behavior of the Poynting vector in the area of elementary polarization singularities. Appl. 37, 261–277 (2007).
  135. Khrobatin, R. & Mokhun, I. Shift of application point of angular momentum in the area of elementary polarization singularity. Opt. A Pure Appl. Opt. 10, 064015 (2008).
    https:/doi.org/10.1088/1464-4258/10/6/064015
  136. Angelsky, O. , Besaga, R. N., Mokhun, I. I., Soskin, M. S. & Vasnetsov, M. V. Singularities in vectoral fields. Proc. SPIE 3904, 40–55 (1999). https://doi.org/10.1117/12.370443
  137. Mokhun, I. , Arkhelyuk, A., Galushko, Yu., Kharitonova, Ye., & Viktorovskaya, Ju. Experimental analysis of the Poynting vector characteristics. Appl. Opt. 51, C158–C162 (2012). https://doi.org/10.1364/AO.51.00C158
  138. Mokhun, I., Arkhelyuk, A. , Galushko, Yu., Kharitonova, Ye. & Viktorovskaya, Yu. Angular momentum of an incoherent Gaussian beam. Appl. Opt. 53, B38–B42 (2014). https://doi.org/10.1364/AO.53.000B38
  139. Andronov, A. , Vitt, A. A. & Khaikin, S. E. Theory of Oscillators (Pergamon Press, 1966).
  140. Bekshaev, A. Spin angular momentum of inhomogeneous and transversely limited light beams. Proc. SPIE 6254, 56–63 (2006). https://doi.org/10.1117/12.679902
  141. O’Neil, A. , MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002). https://doi.org/10.1103/PhysRevLett.88.053601
  142. Bekshaev, A. , Soskin, M. S. & Vasnetsov, M. V. Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. J. Opt. Soc. Amer. A 20, 1635–1643 (2003). https://doi.org/10.1364/JOSAA.20.001635
  143. Belinfante, F. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 7, 449 (1940). https://doi.org/10.1016/S0031-8914(40)90091-X
  144. Bliokh, K. , Dressel, J. & Nori, F. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys. 16, 093037 (2014). https://doi.org/10.1088/1367-2630/16/9/093037
  145. Angelsky, O. et al. Investigation of optical currents in coherent and partially coherent vector fields. Opt. Express 19, 660–672 (2011). https://doi.org/10.1364/OE.19.000660
  146. Zenkova, C. Yu., Gorsky, M. , Maksimyak, P. P. & Maksimyak, A. P. Optical currents in vector fields. App. Opt. 50, 1105–1112 (2011) https://doi.org/10.1364/AO.50.001105
  147. Angelsky, V., Zenkova, C. Yu., Hanson, S. G. & Zheng, J. Extraordinary manifestation of evanescent wave in biomedical application. Front. Phys. 8, 159 (2020). https://doi.org/10.3389/fphy.2020.00159
  148. Angelsky, O., Bekshaev. A., Dragan, G., Maksimyak, P., Zenkova, C.Y. & Zheng, J., Structured light control and diagnostics using optical crystals. Phys. 9, 368 (2021). https://doi.org/10.3389/fphy.2021.715045
  149. Angelsky, O. Introduction to Singular Correlation Optics. (SPIE Press, 2019).
  150. Allen, L. & Padgett, M. Response to question #79. Does a plane wave carry spin angular momentum? Am. J. Phys. 70, 567–568 (2002). https://doi.org/10.1119/1.1456075
  151. Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical tweezers and paradoxes in electromagnetism. Opt. 13, 044017 (2011). https://doi.org/10.1088/2040-8978/13/4/044017
  152. Stewart, A. M. Angular momentum of the electromagnetic field: the plane wave paradox resolved. J. Phys. 26, 635–641 (2005). https://doi.org/10.1088/0143-0807/26/4/008
  153. Bekshaev, A. “Spin” and “Orbital” Flows in A Circularly Polarized Paraxial Beam: Orbital Rotation Without Orbital Angular Momentum. https://arxiv.org/ftp/arxiv/papers/0908/0908.2526.pdf (2009).
  154. Bekshaev, A. & Vasnetsov, M. Vortex Flow of Light: “Spin” and “Orbital” Flows in a Circularly Polarized Paraxial Beam. in Twisted Photons. Applications of Light with Orbital Angular Momentum (eds. Torres, J. & Torner, L.) chapter 2 (Weinheim: Wiley-VCH, 2011). https://doi.org/10.1002/9783527635368.ch2
  155. Bekshaev, A. & Soskin, M. Transverse energy flows in vectorial fields of paraxial light beams. SPIE 6729, 67290G (2007). https://doi.org/10.1117/12.751952
  156. Dienerowitz, M., Mazilu, M. & Dholakia, K. Optical manipulation of nanoparticles: a review. Nanophotonics 2, 021875 (2008). https://doi.org/10.1117/1.2992045
  157. Gouesbet, G. T-matrix methods for electromagnetic structured beams: a commented reference database for the period 2014–2018. Quant. Spectrosc. Radiat. Transf. 230, 247–281 (2019). https://doi.org/10.1016/j.jqsrt.2019.04.004
  158. Nieminen, T. , Loke, V. L., Stilgoe, A. B., Heckenberg, N. R., & Rubinsztein-Dunlop, H. T-matrix method for modelling optical tweezers. J. Mod. Opt. 58, 528–544 (2011). https://doi.org/10.1080/09500340.2010.528565
  159. Bekshaev, A. , Bliokh, K. Y. & Nori, F. Mie scattering and optical forces from evanescent fields: A complex-angle approach. Opt. Express 21, 7082–7095 (2013). https://doi.org/10.1364/OE.21.007082
  160. Аngelsky, O., Bekshaev, A., Maksimyak, P., Maksimyak, A. & Hanson, S. Measurement of small light absorption in microparticles by means of optically induced rotation. Express 23, 7152–7163 (2015). https://doi.org/10.1364/OE.23.007152
  161. Bekshaev A. , Angelsky O. V., Sviridova S. V. & Zenkova C. Yu. Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows. Adv. Opt. Technol. 2011, 723901 (2011). https://doi.org/10.1155/2011/723901
  162. Bekshaev, A. , Angelsky, O. V., Hanson, S. G. & Zenkova, C. Yu. Scattering of inhomogeneous circularly polarized optical field and mechanical manifestation of the internal energy flows. Phys. Rev. A 86, 023847-10 (2012). https://doi.org/10.1103/PhysRevA.86.023847
  163. Bohren, C. & Huffman, D. R. Absorption and Scattering of Light by Small Particles. (Wiley-VCH, 1983).
  164. Bekshaev, A. Subwavelength particles in an inhomogeneous light field: Optical forces associated with the spin and orbital energy flows. J. Opt. 15, 044004 (2013). https://doi.org/10.1088/2040-8978/15/4/044004
  165. Bliokh, K. Y., Bekshaev, A.Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Commun. 5, 3300 (2014). https://doi.org/10.1038/ncomms4300
  166. Liberal, I., Ederra, I., Gonzalo, R. & Ziolkowski, R. W. Electromagnetic force density in electrically and magnetically polarizable media. Rev. A 88, 053808 (2013). https://doi.org/10.1103/PhysRevA.88.053808
  167. Nieto-Vesperinas, M., Saenz, J. , Gomez-Medina, R. & Chantada, L. Optical forces on small magnetodielectric particles. Opt. Express 18, 11428–11443 (2010). https://doi.org/10.1364/OE.18.011428
  168. Canaguier-Durand, A., Cuche, A., Cyriaque, G. & Ebbesen, T.W. Force and torque on an electric dipole by spinning light fields. Rev. A 88, 033831 (2013). https://doi.org/10.1103/PhysRevA.88.033831
  169. Bliokh, K. , Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phy. 15, 033026 (2013). https://doi.org/10.1088/1367-2630/15/3/033026
  170. Xu, X. & Nieto-Vesperinas, M. Azimuthal imaginary Poynting momentum density. Phys. Rev. Lett. 123, 233902 (2019). https://doi.org/10.1103/PhysRevLett.123.233902
  171. Nieto-Vesperinas, M. & Xu, X. Reactive helicity and reactive power in nanoscale optics: Evanescent waves. Kerker conditions. Optical theorems and reactive dichroism. Rev. Res. 3, 043080 (2021). https://doi.org/10.1103/PhysRevResearch.3.043080
  172. Bekshaev, A., Kontush, S., Popov, A. & Van Grieken, R. Application of light beams with non-zero angular momentum in optical study of micrometer-size aerosol particles. SPIE 4403, 287–295 (2001). https://doi.org/10.1117/12.428282
  173. Bekshaev, A. Abraham-Based Momentum and Spin of Optical Fields Under Conditions of Total Reflection. https://arxiv.org/ftp/arxiv/papers/1710/1710.01561.pdf (2017).
  174. Angelsky, O. V. et al. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams. Express 20, 3563–3571 (2012). https://doi.org/10.1364/OE.20.003563
  175. Angelsky, O.V. et al. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow. Express 20, 11351–11356 (2012). https://doi.org/10.1364/OE.20.011351
  176. Angelsky, O. V., Bekshaev, A.  Ya., Maksimyak, P.  P. & Polyanskii, P. V. Internal energy flows and optical trapping. Photonic  News 25, 20–21 (2014).
  177. Bekshaev, A. Y., Bliokh, K. Y. & Nori, F. Transverse spin and momentum in two-wave interference. Rev. X 5, 011039 (2015). https://doi.org/10.1103/PhysRevX.5.011039
  178. Antognozzi, M. et al. Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever. Phys. 12, 731–735 (2016). https//doi.org/10.1038/nphys3732
  179. Bekshaev, A. Y. Dynamical characteristics of an electromagnetic field under conditions of total reflection. Opt. 2, 045604 (2018). https://doi.org/10.1088/2040-8986/aab035
  180. Bliokh, K. Y. & Nori, F. Transverse spin of a surface polariton. Rev. A 85, 061801 (2012). https://doi.org/10.1103/PhysRevA.85.061801
  181. Bliokh, K. Y., Smirnova, D. & Nori, F. Quantum spin Hall effect of light. Science 348, 1448–1451 (2015). https://doi.org/1126/science.aaa9519
  182. Bliokh, K. Y. Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Photonics 9, 796 (2015). https://doi.org/10.1038/nphoton.2015.201
  183. Skelton, S. E. et al. Evanescent wave optical trapping and transport of micro and nanoparticles on tapered optical fibers. Quant. Spectrosc. Radiat. Transf. 113, 2512–2520 (2012). https://doi.org/10.1016/j.jqsrt.2012.06.005
  184. Chang, S., Kim, J. T., Jo, J. H. & Lee, S. Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering. Opt. Commun. 139, 252–261 (1997). https://doi.org/10.1016/S0030-4018(97)00144-2
  185. Song, Y. G., Han, B. M. & Chang, S. Force of surface plasmon-coupled evanescent fields on Mie particles. Commun. 198, 7–19 (2001). https://doi.org/10.1016/S0030-4018(01)01484-5
  186. Angelsky, O. V. et al. Influence of evanescent wave on birefringent microplates. Express 25, 2299–2311 (2017). https://doi.org/10.1364/OE.25.002299
  187. Zenkova C. Yu., Ivanskyi, D. I. & Kiyashchuk, T. V. Optical torques and forces in birefringent microplate. Appl. 47, 1–11 (2017). https://doi.org/10.5277/oa170313
  188. Angelsky, O. V., Zenkova, C. Yu. & Ivansky, D. I. Mechanical action of the transverse spin momentum of an evanescent wave on gold nanoparticles in biological objects media. Optoelectron. Adv. Mater. 20, 217–226 (2018).
  189. Angelsky, O.V. et al. Controllying and manipulation of red blood cells by evanescent waves. Appl. 49, 597–611 (2019). https://doi.org/10.37190/oa190406
  190. Angelsky,  V. et al. Peculiarities of control of erythrocytes moving in an evanescent field. J. Biomed. Opt. 24, 055002 (2019). https://doi.org/10.1117/1.JBO.24.5.055002
  191. Angelsky, O.V. et al. Peculiarities of energy circulation in evanescent field. Application for red blood cells. Mem. Neural Netw. (Inf. Opt.) 28, 11–20 (2019). https://doi.org/10.3103/S1060992X19010028
  192. Berry, M. V. & Dennis, M. R. The optical singularities of birefringent dichroic chiral crystals. R. Soc. Lond. 459, 1261 (2003). https://doi.org/10.1098/rspa.2003.1155
  193. Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Rev. A 83, 021803(R) (2011). https://doi.org/10.1103/PhysRevA.83.021803
  194. Desyatnikov, A. S., Sukhorukov, A. A. & Kivshar, Y. S. Azimuthons: spatially modulated vortex solitons. Rev. Lett. 95: 20, 203904 (2005). https://doi.org/10.1103/PhysRevLett.95.203904
  195. Kivshar, Y. S. Vortex solitons and rotating azimuthons in nonlinear media. Topologica 2, 005 (2009). https://doi.org/3731/topologica.2.005
  196. Bekshaev, A., Angelsky, O. & Hanson, S.G. Transformations and Evolution of Phase Singularities in Diffracted Optical Vortices. in Advances in Optics: Reviews, Book Series Vol. 1 (ed. Yurish, S. Y.) 345–385 (International Frequency Sensor Association (IFSA), Spain, 2018). http://www.sensorsportal.com/HTML/BOOKSTORE/Advances_in_Optics_Vol_1.pdf
  197. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Singular skeleton evolution and topological reactions in edge-diffracted circular optical-vortex beams. Commun. 397, 72–83 (2017). https://doi.org/10.1016/j.optcom.2017.03.062
  198. Bekshaev, A., Chernykh, A., Khoroshun, A. & Mikhaylovskaya, L. Localization and migration of phase singularities in the edge-diffracted optical-vortex beams. Opt. 18 024011 (2016). https://doi.org/10.1088/2040-8978/18/2/024011
  199. Bekshaev, A., Khoroshun, A. & Mikhaylovskaya, L. Transformation of the singular skeleton in optical-vortex beams diffracted by a rectilinear phase step. Opt. 21, 084003 (2019). https://doi.org/10.1088/2040-8986/ab2c5b
  200. Bekshaev, A. Spin-orbit interaction of light and diffraction of polarized beams. Opt. 19, 085602 (2017). https://doi.org/10.1088/2040-8986/aa746a
  201. Fedoseyev, V. G. Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam. Commun. 193, 9–18 (2001). https://doi.org/10.1016/S0030-4018(01)01262-7
  202. Okuda, H. & Sasada, H. Significant deformations and propagation variations of Laguerre-Gaussian beams reflected and transmitted at a dielectric interface. Opt. Am. A: Opt. Image Sci. Vis. 25, 881–890 (2008). https://doi.org/10.1364/JOSAA.25.000881
  203. Bekshaev, A. Ya. & Popov, A. Yu. Method of light beam orbital angular momentum evaluation by means of space-angle intensity moments. J. Phys. Opt. 3, 249–257 (2002). https://doi.org/10.3116/16091833/3/4/249/2002
  204. Bekshaev, A. Ya. Oblique section of a paraxial light beam: criteria for azimuthal energy flow and orbital angular momentum. Opt. A Pure Appl. Opt. 11, 094003 (2009). https://doi.org/10.1088/1464-4258/11/9/094003
  205. Bekshaev, A. Ya. Improved theory for the polarization-dependent transverse shift of a paraxial light beam in free space. J. Phys. Opt. 12, 10–18 (2011). https://doi.org/10.3116/16091833/12/1/10/2011
  206. Bekshaev, A. Ya. Polarization-dependent transformation of a paraxial beam upon reflection and refraction: A real-space approach. Rev. A 85, 023842 (2012). https://doi.org/10.1103/PhysRevA.85.023842
  207. Bliokh, K. Y. & Aiello, A. Goos–Hänchen and Imbert–Fedorov beam shifts: an overview. J. Opt. 15, 014001 (2013). https://doi.org/10.1088/2040-8978/15/1/014001
Go to article

Authors and Affiliations

Oleg V. Angelsky
1 2
Aleksandr Ya. Bekshaev
3
Igor I. Mokhun
2
Mikhail V. Vasnetsov
4
Claudia Yu. Zenkova
1 2
Steen G. Hanson
5
Jun Zheng
1

  1. Taizhou Research Institute of Zhejiang University, Taizhou, China
  2. Chernivtsi National University, Chernivtsi, Ukraine
  3. Physics Research Institute, Odessa I. I. Mechnikov National University, Odessa, Ukraine
  4. Department of Optical Quantum Electronics, Institute of Physics of the NAS of Ukraine, Kyiv, Ukraine
  5. DTU Fotonik, Department of Photonics Engineering, DK-4000 Roskilde, Denmark
Download PDF Download RIS Download Bibtex

Abstract

Adopting mode division multiplex (MDM) technology as the next frontier for optical fiber communication and on-chip optical interconnection systems is becoming very promising because of those remarkable experimental results based on MDM technology to enhance capacity of optical transmission and, hence, making MDM technology an attractive research field. Consequently, in recent years the large number of new optical devices used to control modes, for example, mode converters, mode filters, mode (de)multiplexers, and mode-selective switches, have been developed for MDM applications. This paper presents a review on the recent advances on mode converters, a key component usually used to convert a fundamental mode into a selected high-order mode, and vice versa, at the transmitting and receiving ends in the MDM transmission system. This review focuses on the mode converters based on planar lightwave circuit (PLC) technology and various PLC-based mode converters applied to the above two systems and realized with different materials, structures, and technologies. The basic principles and performances of these mode converters are summarized.
Go to article

Bibliography

  1. Essiambre, R. -J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010). https://doi.org/10.1109/JLT.2009.2039464
  2. CISCO: Cisco Visual Netwroking Index: Forecast and Trends, 2017–2022 White Paper.
  3. [Online]. Available at: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. (Accessed: 19th September 2020)
  4. Agrell, E. et al. Roadmap of optical communications. J. Opt. 18, 063002 (2016). http://dx.doi.org/10.1088/2040-8978/18/6/063002
  5. Tkach, R. W. Scaling optical communications for the next decade and beyond. Bell Labs Tech. J. 14, 3–10 (2010). https://doi.org/10.1002/bltj.20400
  6. Yu, J. & Zhang, J. Recent progress on high-speed optical transmission. Digit. Commun. Netw. 2, 65–76 (2016). http://doi.org/10.1016/j.dcan.2016.03.002
  7. Abbas, H. S. & Gregory, M. A. The next generation of passive optical networks: A review. J. Netw. Comput. Appl. 67, 53–74 (2016). http://dx.doi.org/10.1016/j.jnca.2016.02.015
  8. Sillard, P. Next-generation fibers for space-division-multiplexed transmissions. J. Lightwave Technol. 33, 1092–1099 (2015). https://doi.org/10.1109/JLT.2014.2371134
  9. Richardson, D., Fini, J. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013). https://doi.org/10.1038/nphoton.2013.94
  10. Klaus, W. et al. Advanced space division multiplexing technologies for optical networks. J. Opt. Commun. Netw. 9, C1–C11 (2017). https://doi.org/10.1364/JOCN.9.0000C1
  11. Nakazawa, M. Exabit optical communication explored using 3M scheme. Jap. J. Appl. Phys. 53, , 08MA01 (2014). http://dx.doi.org/10.7567/JJAP.53.08MA01
  12. Winzer, P. J. Optical networking beyond WDM. IEEE Photonics J. 4, 647–651 (2012). https://doi.org/10.1109/JPHOT.2012.2189379
  13. Chiang, K. S. Polymer optical waveguide devices for mode-division-multiplexing applications. Proc. SPIE 10242, Integrated Optics: Physics and Simulations III, 102420R (2017). https://doi.org/10.1117/12.2265275
  14. Sabitu, R., Khan, N. & Malekmohammadi, A. Recent progress in optical devices for mode division multiplex transmission system. Opto-Electron. Review 27, 252–267 (2019). https://doi.org/10.1016/j.opelre.2019.07.001
  15. Ryf, R., Fontaine, N. K., Guan, B., Huang, B. & Tkach, R. W. 305-km combined wavelength and mode-multiplexed transmission over conventional graded-index multimode fibre. in The European Conference on Optical Communication (ECOC), 1–3 (2014).
  16. Hayashi, T. et al. Six-mode 19-core fiber with 114 spatial modes for weakly-coupled mode-division-multiplexed transmission. J. Lightwave Technol. 35, 748–754 (2017). https://doi.org/10.1109/JLT.2016.2617894
  17. Soma, D. et al. 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+ L band. J. Lightwave Technol. 36, 1362–1368 (2018). https://doi.org/10.1364/JLT.36.001362
  18. Van Uden, R. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photon. 8, 865–870 (2014). https://doi.org/10.1038/nphoton.2014.243
  19. Dai, D. X. & Bowers, J. E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics 3, 283–311 (2014). https://doi.org/10.1515/nanoph-2013-0021
  20. Luo, L. -W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1038/ncomms4069
  21. Hsu, Y. et al. 2.6 Tbit/s on-chip optical interconnect supporting mode-division-multiplexing and PAM-4 signal. IEEE Photonics Technol. Lett. 30, 1052–1055 (2018). https://doi.org/10.1109/LPT.2018.2829508
  22. Zhang, W., Ghorbani, H., Shao, T. & Yao, J. On-Chip 4×10 GBaud/s Mode-Division Multiplexed PAM-4 Signal Transmission. IEEE J. Sel. Top. Quantum Electron. 26, 1–8 (2020). https://doi.org/10.1109/JSTQE.2020.2964388
  23. Huang, Y., Xu, G. & Ho, S. -T. An ultracompact optical mode order converter. IEEE Photonics Technol. Lett. 18, 2281–2283 (2006). https://doi.org/10.1109/LPT.2006.884886
  24. Oner, B., Üstün, K., Kurt, H., Okyay, A. K. & Turhan-Sayan, G. Large bandwidth mode order converter by differential waveguides. Opt. Express 23, 3186–3195 (2015). https://doi.org/10.1364/OE.23.003186
  25. Uematsu, T., Ishizaka, Y., Kawaguchi, Y., Saitoh, K. & Koshiba, M. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol. 30, 2421–2426 (2012). https://doi.org/10.1109/JLT.2012.2199961
  26. Han, L., Liang, S., Zhu, H., Qiao, L., Xu, J. & Wang, W. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt. Lett. 40, 518-521 (2015). http://dx.doi.org/10.1364/OL.40.000518
  27. Guo, F. et al. An MMI-based mode (DE) MUX by varying the waveguide thickness of the phase shifter. IEEE Photonics Technol. Lett. 28, 2443–2446 (2016). https://doi.org/10.1109/LPT.2016.2599934
  28. Chack, D., Hassan, S. & Qasim, M. Broadband and low crosstalk silicon on-chip mode converter and demultiplexer for mode division multiplexing. Appl. Opt. 59, 3652–3659 (2020). https://doi.org/10.1364/AO.390085
  29. Linh, H. D. T., Dung, T. C., Tanizawa, K., Thang, D. D. & Hung, N. T. Arbitrary TE0/TE1/TE2/TE3 Mode Converter Using 1× 4 Y-Junction and 4× 4 MMI Couplers. IEEE J. Sel. Top. Quantum Electron. 26, 1–8 (2019). https://doi.org/10.1109/JSTQE.2019.2937169
  30. González-Andrade, D. et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photonics J. 10, 1–10 (2018). https://doi.org/10.1109/JPHOT.2018.2819364
  31. Leuthold, J., Eckner, J., Gamper, E., Besse, P. A. & Melchior, H. Multimode interference couplers for the conversion and combining of Zero- and First-Order modes. J. Lightwave Technol. 16, 1228–1239 (1998). https://doi.org/10.1109/50.701401
  32. Guo, F. et al.Two-mode converters at 1.3 μm based on multimode interference couplers on InP substrates. Chin. Phys. Lett. 33, 024203 (2016). http://dx.doi.org/10.1088/0256-307X/33/2/024203
  33. Chen, H. -T. & Webb, K. J. Silicon-on-insulator irregular waveguide mode converters. Opt. Lett. 31, 2145–2147 (2006). https://doi.org/10.1364/OL.31.002145
  34. Chen, D. et al. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 23, 11152–11159 (2015). https://doi.org/10.1364/OE.23.011152
  35. Chen, Z. Y. Bridged coupler and oval mode converter based silicon mode division (de)multiplexer and Terabit WDM-MDM system demonstration. J. Lightwave Technol. 36, 2757–2766 (2018). https://dx.doi.org/10.1109/JLT.2018.2818793
  36. Zhu, D. et al. Design of compact TE-polarized mode-order converter in silicon waveguide with high refractive index material. IEEE Photonics J. 10, 1–7 (2018). https://doi.org/10.1109/JPHOT.2018.2883209
  37. Abu-Elmaaty, B. E., Sayed, M. S., Pokharel, R. K. & Shalaby, H. M. General silicon-on-insulator higher-order mode converter based on substrip dielectric waveguides. Appl. Opt. 58, 1763–1771 (2019). https://doi.org/10.1364/AO.58.001763
  38. Cheng, Z. et al. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt. Express 27, 34434–34441 (2019). https://doi.org/10.1364/OE.27.034434
  39. Ye, W., Yuan, X., Gao, Y. & Liu, J. Design of broadband silicon-waveguide mode-order converter and polarization rotator with small footprints. Opt. Express 25, 33176–33183 (2017). https://doi.org/10.1364/OE.25.033176
  40. Liu, L. et al. Design of a compact silicon-based TM-polarized mode-order converter based on shallowly etched structures. Appl. Opt. 58, 9075–9081 (2019). https://doi.org/10.1364/AO.58.009075
  41. Hao, L. et al. Efficient TE-polarized mode-order converter based on high-index-contrast polygonal slot in a silicon-on-insulator waveguide. IEEE Photonics J. 11, 1–10 (2019). https://doi.org/10.1109/JPHOT.2019.2907640
  42. Zhao, Y. et al. Ultra-compact silicon mode-order converters based on dielectric slots. Opt. Lett. 45, 3797–3800 (2020). https://doi.org/10.1364/OL.391748
  43. Jia, H. et al. Ultra-compact dual-polarization silicon mode-order converter. Opt. Lett. 44, 4179–4182 (2019). https://doi.org/10.1364/OL.44.004179
  44. Zhang, M. R., Chen, K. X., Jin, W. & Chiang, K. S. Electro-optic mode switch based on lithium-niobate Mach–Zehnder interferometer. Appl. Opt. 55, 4418–4422 (2016). https://doi.org/10.1364/AO.55.004418
  45. Hanzawa, N. et al. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission. Opt. Express 21, 25752–25760 (2013). https://doi.org/10.1364/OE.21.025752
  46. Saitoh, K. et al. PLC-based LP11 mode rotator for mode-division multiplexing transmission. Opt. Express 22, 19117–19130 (2014). https://doi.org/10.1364/OE.22.019117
  47. Hanzawa, N. et al. Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Opt. Express 22, 29321–29329 (2014). https://doi.org/10.1364/OE.22.029321
  48. Hanzawa, N. et al. PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip. J. Lightwave Technol. 33, 1161–1165 (2015). https://doi.org/10.1109/JLT.2014.2378281
  49. Saitoh, K. et al. PLC-based mode multi/demultiplexers for mode division multiplexing. Opt. Fiber Technol. 35, 80–92 (2017). https://doi.org/10.1016/j.yofte.2016.08.002
  50. Riesen, N., Gross, S., Love, J. D. & Withford, M. J. Femtosecond direct-written integrated mode couplers. Opt. Express 22, 29855–29861 (2014). https://doi.org/10.1364/OE.22.029855
  51. Dong, J. L., Chiang, K. S. & Jin, W. Compact three-dimensional polymer waveguide mode multiplexer. J. Lightwave Technol. 33, 4580–4588 (2015). https://doi.org/10.1109/JLT.2015.2478961
  52. Wei, F. K., Chen, K. X. & Chiang, K. S. Mode conversion with vertical polymer-waveguide directional coupler. in Asia Communication and Photonics Conference, AF1G.3 (2016). https://doi.org/10.1364/ACPC.2016.AF1G.3
  53. Huang, Q. D., Wu, Y. F., Jin, W. & Chiang, K. S. Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers. J. Lightwave Technol. 36, 2903–2911 (2018). https://dx.doi.org/10.1109/JLT.2018.2829143
  54. Zhao, W. K., Chen, K. X., Wu, J. Y. & Chiang, K. S. Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing. IEEE Photonics J. 9, 1–9 (2017). https://doi.org/10.1109/JPHOT.2017.2731046
  55. Zhao, W. K., Chen, K. X. & Wu, J. Y. Broadband mode multiplexer formed with non-planar tapered directional couplers. IEEE Photonics Technol. Lett. 31, 169–172 (2018). https://doi.org/10.1109/LPT.2018.2887352
  56. Yin, M., Deng, Q., Li, Y., Wang, X. & Li, H. Compact and broadband mode multiplexer and demultiplexer based on asymmetric plasmonic–dielectric coupling. Appl. Opt. 53, 6175–6180 (2014). https://doi.org/10.1364/AO.53.006175
  57. Wang, J., Chen, P., Chen, S., Shi, Y. & Dai, D. X. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt. Express 22, 12799–12807 (2014). https://doi.org/10.1364/OE.22.012799
  58. Garcia-Rodriguez, D., Corral, J. L. Griol, A. & Llorente, R. Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550 nm. Opt. Lett. 42, 1221–1224 (2017). https://doi.org/10.1364/OL.42.001221
  59. Luo, L. -W., Gabrielli, L. H. & Lipson, M. On-chip mode-division multiplexer. in Conference on Lasers and Electro-Optics (CLEO 2013) CTh1C.6. (2013). https://doi.org/10.1364/CLEO_SI.2013. CTh1C.6
  60. Yu, Y., Ye, M. & Fu, S. On-chip polarization controlled mode converter with capability of WDM operation. IEEE Photonics Technol. Lett. 27, 1957–1960 (2015). https://doi.org/10.1109/LPT.2015.2448076
  61. Yang, Y., Chen, K. X., Jin, W. & Chiang, K. S. Widely wavelength-tunable mode converter based on polymer waveguide grating. IEEE Photonics Technol. Lett. 27, 1985–1988 (2015). https://doi.org/10.1109/LPT.2015.2448793
  62. Jin, W. & Chiang, K. S. Mode converter with sidewall-corrugated polymer waveguide grating. in Opto-Electronics Communication Conference (OECC2015), 1–3 (2015). https://doi.org/10.1109/OECC.2015.7340081
  63. Jin, W. & Chiang, K. S. Mode converters based on cascaded long-period waveguide gratings. Opt. Lett. 41, 3130–3133 (2016). https://doi.org/10.1364/OL.41.003130
  64. Wang, W., Wu, J. Y., Chen, K. X., Jin, W. & Chiang, K. S. Ultra-broadband mode converters based on length-apodized long-period waveguide gratings. Opt. Express 25, 14341–14350 (2017). https://doi.org/10.1364/OE.25.014341
  65. Zhao, W. K., Chen, K. X. & Wu, J. Y. Ultra-short embedded long-period waveguide grating for broadband mode conversion. App. Phys. B 125, 177 (2019). https://doi.org/10.1007/s00340-019-7290-0
  66. Jin, W. & Chiang, K. S. Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications. Opt. Express 26, 15289–15299 (2018). https://doi.org/10.1364/OE.26.015289
  67. Castro, J. M. et al. Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings. Opt. Express 13, 4180–4184 (2005). https://doi.org/10.1364/OPEX.13.004180
  68. Xiao, R. et al. On-chip mode converter based on two cascaded Bragg gratings. Opt. Express 27, 1941–1957 (2019). https://doi.org/10.1364/OE.27.001941
  69. Wang, H. et al. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Opt. Mater. 7, 1801191 (2019). https://doi.org/10.1002/adom.201801191
  70. Ohana, D. & Levy, U. Mode conversion based on dielectric metamaterial in silicon. Opt. Express 22, 27617–27631 (2014). https://doi.org/10.1364/OE.22.027617
  71. Ohana, D., Desiatov, B., Mazurski, N. & Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956–7961 (2016). https://doi.org/10.1021/acs.nanolett.6b04264
  72. Qiu, H. et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt. Express 21, 17904–17911 (2013). https://doi.org/10.1364/OE.21.017904
  73. Zhao, W. K., Feng, J., Chen, K. X. & Chiang, K. S. Reconfigurable broadband mode (de) multiplexer based on an integrated thermally induced long-period grating and asymmetric Y-junction. Opt. Lett. 43, 2082–2085 (2018). https://doi.org/10.1364/OL.43.002082
  74. Zi, X. Z., Wang, L. F., Chen, K. X. & Chiang, K. S. Mode-selective switch based on thermo-optic asymmetric directional coupler. IEEE Photonics Technol. Lett. 30, 618–621 (2018). https://doi.org/10.1109/LPT.2018.2808466
  75. Jin, W. & Chiang, K. S. Mode switch based on electro-optic long-period waveguide grating in lithium niobate. Opt. Lett. 40, 237–240 (2015). https://doi.org/10.1364/OL.40.000237
  76. Jin, W. & Chiang, K. S. Reconfigurable three-mode converter based on cascaded electro-optic long-period gratings. IEEE J. Sel. Top. Quantum Electron. 26, 1–6 (2020). https://doi.org/10.1109/JSTQE.2020.2969568
  77. Zhang, M. R., Ai, W., Chen, K. X., Jin, W. & Chiang, K. S. A lithium-niobate waveguide directional coupler for switchable mode multiplexing. IEEE Photonics Technol. Lett. 30, 1764–1767 (2018). https://doi.org/10.1109/LPT.2018.2868834
  78. Lee, B. -T. & Shin, S. -Y. Mode-order converter in a multimode waveguide. Opt. Lett. 28, 1660–1662 (2003). https://doi.org/10.1364/OL.28.001660
  79. Low, A. L., Yong, Y. S., You, A. H., Chien, S. F. & Teo, C. F. A five-order mode converter for multimode waveguide. IEEE Photonics Technol. Lett. 16, 1673–1675 (2004). https://doi.org/10.1109/LPT.2004.828512
  80. Riesen, N. & Love, J. D. Design of mode-sorting asymmetric Y-junctions. App. Opt. 51, 2778–2783 (2012). https://doi.org/10.1364/AO.51.002778
  81. Driscoll, J. B. et al. .Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett. 38, 1854–1856 (2013). https://doi.org/10.1364/OL.38.001854
  82. Feng, J., Chen, K. X., Ren, K. Y. & Chiang, K. S. Mode (de) multiplexer based on polymer-waveguide asymmetric Y-junction. in Asia Communication and Photonics Conference AF1G.5 (2016). https://doi.org/10.1364/ACPC.2016.AF1G.5
  83. Chen, W. W. et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett. 41, 2851–2854 (2016). https://doi.org/10.1364/OL.41.002851
  84. Fujisawa, T. et al. Scrambling-type three-mode PLC multiplexer based on cascaded Y-branch waveguide with integrated mode rotator. J. Lightwave Technol. 36, 1985–1992 (2018). https://doi.org/10.1109/JLT.2018.2798619
  85. Gao, Y. et al. Compact six-mode (de) multiplexer based on cascaded asymmetric Y-junctions with mode rotators. Opt. Commun. 451, 41–45 (2019). https://dx.doi.org/10.1016/j.optcom.2019.06.010
  86. Watanabe, T. & Kokubun, Y. Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide. IEEE Photonics J. 7, 1–11 (2015). https://doi.org/10.1109/JPHOT.2015.2497234
  87. Dai, D. X., Tang, Y. B. & Bowers, J. E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express 20, 13425–13439 (2012). https://doi.org/10.1364/OE.20.013425
  88. Dai, D. X. & Mao, M. Mode converter based on an inverse taper for multimode silicon Nanophotonicsic integrated circuits Opt. Express 23, 28376–28388 (2015). https://doi.org/10.1364/OE.23.028376
Go to article

Authors and Affiliations

Areez K. Memon
1
Kai X. Chen
1

  1. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

Thermal-imaging systems respond to infrared radiation that is naturally emitted by objects. Various multispectral and hyperspectral devices are available for measuring radiation in discrete sub-bands and thus enable a detection of differences in a spectral emissivity or transmission. For example, such devices can be used to detect hazardous gases. However, their operation principle is based on the fact that radiation is considered a scalar property. Consequently, all the radiation vector properties, such as polarization, are neglected. Analysing radiation in terms of the polarization state and the spatial distribution of thereof across a scene can provide additional information regarding the imaged objects. Various methods can be used to extract polarimetric information from an observed scene. We briefly review architectures of polarimetric imagers used in different wavebands. First, the state-of-the-art polarimeters are presented, and, then, a classification of polarimetric-measurement devices is described in detail. Additionally, the data processing in Stokes polarimeters is given. Emphasis is laid on the methods for obtaining the Stokes parameters. Some predictions in terms of LWIR polarimeters are presented in the conclusion.
Go to article

Bibliography

  1. Tyo, S. J., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453–5469 (2006). https://doi.org/10.1364/AO.45.005453
  2. Kudenov, M. W., Pezzaniti, J. L. & Gerhart, G. R. Microbolo-meter-infrared imaging Stokes polarimeter. Opt. Eng. 48, 063201 (2009). https://doi.org/10.1117/1.3156844
  3. Harchanko, J. S., Pezzaniti, L., Chenault, D. & Eades, G. Comparing a MWIR and LWIR polarimetric imager for surface swimmer detection. Proc. SPIE 6945, 69450X (2008). https://doi.org/10.1117/12.778061
  4. Kudenov, M. W., Dereniak, E. L., Pezzaniti, L. & Gerhart, G. R. 2-Cam LWIR imaging Stokes polarimeter. Proc. SPIE 6972, 69720K (2008). https://doi.org/10.1117/12.784796
  5. Rodenhuis, M., Canovas, H., Jeffers, S. V. & Keller, C. U. The Extreme Polarimeter (ExPo): design of a sensitive imaging polarimeter. Proc. SPIE 7014, 70146T (2008). https://doi.org/10.1117/12.788439
  6. van Holstein, R. et al. Combining angular differential imaging and accurate polarimetry with SPHERE/IRDIS to characterize young giant exoplanets. Proc. SPIE 10400, 1040015 (2017). https://doi.org/10.1117/12.2272554
  7. Rotbøll, J., Søbjærg, S. & Skou, N. A novel L-Band polarimetric radiometer featuring subharmonic sampling. Radio Sci. 38, 1–7 (2003). https://doi.org/10.1029/2002RS002666
  8. Yueh, S. H. Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans. Geosci. Remote Sensing 35, 1400–1418 (1997). https://doi.org/10.1109/36.649793
  9. Laymon, C. et al. MAPIR: An airborne polarimetric imaging radiometer in support of hydrologic satellite observations. in IEEE Geoscience and Remote Sensing Symposium 26–30 (2010).
  10. Coulson, K. L., Gray, E. L. & Bouricius, G. M. A study of the reflection and polarization characteristics of selected natural and artificial surfaces. Tech. Informat. Series Rep. R64SD74. (General Electric Co., Missile and Space Div., Space Sciences Lab., 1964)
  11. Lafrance, B. & Herman, M. Correction of the Stratospheric Aerosol Radiative Influence in the POLDER Measurements. IEEE Trans. Geosci. Remote Sensing 36, 1599–1608 (1998). https://doi.org/10.1109/36.718863
  12. Hooper, B. A., Baxter, B., Piotrowski, C., Williams, J. Z. & Dugan, J. An airborne imaging multispectral polarimeter (AROSS-MSP). in Oceans 2009, 1-10 (2009). https://doi.org/10.23919/OCEANS.2009.5422152
  13. Giakos, G. C. et al. Near infrared light interaction with lung cancer cells. in 2011 IEEE International Instrumentation and Measurement Technology Conference 1–6 (2011). https://doi.org/10.1109/IMTC.2011.5944333
  14. Sobczak, M., Kurzynowski, P., Woźniak, W., Owczarek, M. & Drobczyński, S. Polarimeter for measuring the properties of birefringent media in reflective mode. Opt. Express 28, 249–257 (2020). https://doi.org/10.1364/OE.380998
  15. Sadjadi, F. Electro-Optical Systems for Image Recognition. LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242) vol. 2 550–551 (2001). https://doi.org/10.1109/LEOS.2001.968933
  16. Bieszczad, G., Gogler, S. & Krupiński, M. Polarization state imaging in long-wave infrared for object detection. Proc. SPIE 8897, 88970R (2013). https://doi.org/10.1117/12.2028858
  17. Gurton, K. P. & Felton, M. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging. Opt. Express 20, 22344–22359 (2012). https://doi.org/10.1364/OE.20.022344
  18. Więcek, B. & De Mey, G. Termowizja w podczerwieni. Podstawy i zastosowania. (Warszawa: Wydawnictwo Pomiary Automatyka Kontrola, 2011). [in Polish]
  19. Rogalski, A. Infrared detectors. (Amsterdam: Gordon and Breach Science Publishers, 2000).
  20. Chenault, D., Foster, J., Pezzaniti, L., Harchanko, J. & Aycock, T. Polarimetric sensor systems for airborne ISR. Proc. SPIE 9076, 90760K (2014). https://doi.org/10.1117/12.2053918
  21. Holtsberry, B. L. & Voelz, D. G. Material identification from remote sensing of polarized self-emission. Proc. SPIE 11132, 1113203 (2019). https://doi.org/10.1117/12.2528282
  22. Madura, H., Pomiary termowizyjne w praktyce : praca zbiorowa. (Agenda Wydawnicza PAKu, 2004). [in Polish]
  23. Baas, M., Handbook of Optics. (New York: McGraw-Hill, 1995).
  24. Eriksson, J., Bergström, D. & Renhorn, I. Characterization and performance of an LWIR polarimetric imager. Proc. SPIE 10434, 1043407 (2017). https://doi.org/10.1117/12.2278502
  25. Gogler, S., Bieszczad, G. & Swiderski, J. Method of signal processing in a time-division LWIR image polarimetric sensor. Appl. Opt. 59, 7268–7278 (2020). https://doi.org/10.1364/AO.396675
  26. Cremer, F., de Jongm, W. & Schutte, K. Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines. Opt. Eng. 41, 1021–1032 (2002). https://doi.org/10.1117/1.1467362
  27. Pezzaniti, L. J. & Chenault, D. B. A divison of aperture MWIR imaging polarimeter. Proc. SPIE 5888, 58880 (2005). https://doi.org/10.1117/12.623543
  28. Chun, C. S. L., Fleming, D. L., Harvey, W. A. & Torok, E. J. Target discrimination using a polarization sensitive thermal imaging sensor. Proc. SPIE 3062, 60–67 (1997). https://doi.org/10.1117/12.327165
  29. https://moxtek.com/ (2020).
  30. Stokes, R. J., Normand, E. L., Carrie, I. D., Foulger, B. & Lewis, C. Develepment of a QCL based IR polarimetric system for the stand-off detection and location of IEDs. Proc. SPIE 7486, 748609 (2009). https://doi.org/10.1117/12.830076
  31. Chenault D. B., Vaden, J. P., Mitchell, D. A. & Demicco, E. D. New IR polarimeter for improved detection of oil on water. SPIE Newsroom (2017). https://doi.org/10.1117/2.1201610.006717
  32. Tyo, S. J. & Turner, T. S. Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing. Appl. Opt. 40, 1450–1458 (2001). https://doi.org/10.1364/AO.40.001450
  33. Craven-Jones, J., Way, B. M., Hunt, J., Kudenov, M. W. & Mercier, J. A. Thermally stable imaging channeled spectropolari-metry. Proc. SPIE 8873, 88730J (2013). https://doi.org/10.1117/12.2024112
  34. Smith, M. H., Woodruff, J. B. & Howe, J. D. Beam wander considerations in imaging polarimetry. Proc. SPIE 3754, 50–54 (1999). https://doi.org/10.1117/12.366359
Go to article

Authors and Affiliations

Grzegorz Bieszczad
1
ORCID: ORCID
Sławomir Gogler
1
ORCID: ORCID
Jacek Świderski
1
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present review is mainly focused on the extended analysis of the results obtained from coupled measurement techniques of a thermal imaging camera and chronoamperometry for imines in undoped and doped states. This coupled technique allows to identify the current-voltage characteristics of thin films based on imine, as well as to assess layer defects in thermal images. Additional analysis of results provides further information regarding sample parameters, such as resistance, conductivity, thermal resistance, and Joule power heat correlated with increasing temperature. As can be concluded from this review, it is possible not only to study material properties at the supramolecular level, but also to tune macroscopic properties of -conjugated systems. A detailed study of the structure-thermoelectrical properties in a series of eight unsymmetrical and symmetrical imines for the field of optoelectronics and photovoltaics has been undertaken. Apart from this molecular engineering, the imines properties were also tuned by supramolecular engineering via protonation with camphorsulfonic acid and by creation of bulk-heterojunction compositions based on poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl) and/or [6,6]-phenyl-C71-butyric acid methyl ester, poly(3,4-ethylenedioxythiophene) towards the analysed donor or acceptor ability of imines in the active layer. The use of coupled measurement techniques of a thermal imaging camera and chronoamperometry allows obtaining comprehensive data on thermoelectric properties and defects indicating possible molecule rearrangement within the layer.
Go to article

Bibliography

  1. Wang, D. et al. Recent advances in molecular design of organic thermoelectric materials. CCS Chem. 3, 2212–2225 (2021). https://doi.org/10.31635/ccschem.021.202101076
  2. Dong, J. et al. Organic semiconductor nanostructures: Optoelectronic properties, Modification strategy, and photocatalytic applications. J Mater. Sci. Tech. (2021). https://doi.org/10.1016/j.jmst.2021.09.002
  3. Huang, D. et al. Conjugated-backbone effect of organic small molecules for n‑type thermoelectric materials with ZT over 0.2. J. Am. Chem. Soc. 139, 13013–13023 (2017). https://doi.org/10.1021/jacs.7b05344
  4. Mao, L. et al. Patching defects in the active layer of large-area organic solar cells. J. Mater.A 6, 5817–5824 (2018). https://doi.org/10.1039/C7TA11264E
  5. Lindner, S. M. et al. Charge separation at self-assembled nano-structured bulk interface in block copolymers. Chem 45, 3364–3368 (2006). https://doi.org/10.1002/anie.200503958
  6. Han, Y. et al. Calibration and image processing of aerial thermal image for UAV application in crop water stress estimation. J. Sensors 2021, Article ID 5537795 (2021). https://doi.org/10.1155/2021/5537795
  7. Stumper, M., Kraus, J. & Capousek, L. Thermal imaging in aviation. Magazine of Aviation Development 3, 16 (2015). https://doi.org/10.14311/MAD.2015.16.03
  8. Thermal Imaging in the Automotive Industry. Thermascan Ltd https://www.thermascan.co.uk/blog/thermal-imaging-automotive (2021).
  9. Thermography in Chemical Industry. InfraTec GmbH https://www.infratec.eu/thermography/industries-applications/chemical-industry/ (2021).
  10. Kasikowski, R. & Więcek, B. Fringing-effect losses in inductors by thermal modeling and thermographic measurements. IEEE Trans. Power Electron. 36, 9772–9786 (2021). https://doi.org/10.1109/TPEL.2021.3058961
  11. Kucharska, M. & Jaskowska-Lemanska, J. Active thermography in diagnostics of timber elements covered with polychrome. Materials 14, 1134 (2021). https://doi.org/10.3390/ma14051134
  12. Kowalski, M. Ł., Grudzień, A. & Ciurapiński, W. Detection of human faces in thermal infrared images. Meas. Syst. 28, 307–321 (2021). https://doi.org/10.24425/mms.2021.136609
  13. Teubner, J. et al. Comparison of drone-based ir-imaging with module resolved monitoring power data. Energy Procedia 124, 560–566 (2017). https://doi.org/10.1016/j.egypro.2017.09.094
  14. Irshad, Jaffery, Z. A. & Haque, A. Temperature measurement of solar module in outdoor operating conditions using thermal imaging. Infrared Phys. Technol. 92, 134–138 (2018). https://doi.org/10.1016/j.infrared.2018.05.017
  15. Gallardo-Saavedra, S. et al. Infrared thermography for the detection and characterization of photovoltaic defects: comparison between illumination and dark conditions. Sensors 20, 4395 (2020). https://doi.org/10.3390/s20164395
  16. Muttillo, M. et al. On field infrared thermography sensing for pv system efficiency assessment: results and comparison with electrical models. Sensors 20, 1055 (2020). https://doi.org/10.3390/s20041055
  17. Iwan, A. et al. Optical and electrical properties of graphene oxide and reduced graphene oxide films deposited onto glass and Ecoflex® substrates towards organic solar cells. Adv. Mater. Lett 9, 58– 65 (2018). https://doi.org/10.5185/amlett.2018.1870
  18. Fryń, P. et al. Hybrid materials based on l,d-poly(lactic acid) and single-walled carbon nanotubes as flexible substrate for organic devices. Polymers 10, 1271 (2018). https://doi.org/10.3390/polym10111271
  19. Fryń, P. et al. Dielectric, thermal and mechanical properties of L,D-Poly(Lactic Acid) modified by 4′-Pentyl-4-Biphenylcarbonitrile and single walled carbon nanotube. Polymers 11, 1867 (2019). https://doi.org/10.3390/polym11111867
  20. Fryń, P. et al. Research of binary and ternary composites based on selected aliphatic or aliphatic–aromatic polymers, 5CB or SWCN toward biodegradable electrodes. Materials 13, 2480 (2020). https://doi.org/10.3390/ma13112480
  21. Różycka, A. et al. Influence of TiO2 nanoparticles on liquid crystalline, structural and electrochemical properties of (8Z)-N-(4-((Z)-(4-pentylphenylimino)methyl)benzylidene)-4- pentylbenzenamine. Materials 12, 1097 (2019). https://doi.org/10.3390/ma12071097
  22. Gonciarz, A. et al. UV-Vis absorption properties of new aromatic imines and their compositions with poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2- ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}. Materials 12, 4191 (2019). https://doi.org/10.3390/ma12244191
  23. Bogdanowicz, K. A. Selected electrochemical properties of 4,4'-((1E,1'E)-((1,2,4-thiadiazole-3,5- diyl)bis(azaneylylidene))bis-(methaneylylidene))bis(N,N-di-p-tolylaniline) towards perovskite solar cells with 14.4% efficiency. Materials 13, 2440 (2020). https://doi.org/10.3390/ma13112440
  24. Przybył, W. et al. IR thermographic camera as useful and smart tool to analyse defects in organic solar Photonics Lett. Poland 12, 25–27 (2020). https://doi.org/10.4302/plp.v12i2.976
  25. Jewloszewicz, B. et al. A comprehensive optical and electrical study of unsymmetrical imine with four thiophene rings and their binary and ternary compositions with PTB7 and PC70BM towards organic RSC Adv 10, 44958 (2020). https://doi.org/10.1039/D0RA08330E
  26. Bogdanowicz, K. A. et al. Electrochemical and optical studies of new symmetrical and unsymmetrical imines with thiazole and thiophene moieties. Electrochim Acta 332, 135476 (2020). https://doi.org/10.1016/j.electacta.2019.135476
  27. Dylong, A. et al. Crystal structure determination of 4‐[(Di‐p‐tolylamino)‐benzylidene]‐(5‐pyridin‐ 4‐yl‐[1,3,4]thiadiazol‐2‐yl)‐imine along with selected properties of imine in neutral and protonated form with camforosulphonic acid: Theoretical and experimental studies. Materials 14, 1952 (2021). https://doi.org/10.3390/ma14081952
  28. Wang, J. et al. Stimulus responsive fluorescent hyperbranched polymers and their Sci. China Chem. 53, 2409–2428 (2010). https://doi.org/10.1007/s11426-010-4106-9
  29. Albota, A. et al. Design of organic molecules with large two-photon absorption cross Science 281, 1653 (1998). https://doi.org/10.1126/science.281.5383.1653
  30. Reinhardt, B. A. et al. Highly active two-photon dyes:  design, synthesis, and characterization toward Chem. Mater. 10, 1863 (1998). https://doi.org/10.1021/cm980036eIwase, Y. et al. Synthesis and photophysical properties of new two-photon absorption chromophores containing a diacetylene moiety as the central π-bridge. J. Mater. Chem. 13, 1575 (2000). https://doi.org/10.1039/b211268j
  31. Kim, O. K. et al. New class of two-photon-absorbing chromophores based on Chem. Mater. 12, 284 (2000). https://doi.org/10.1021/cm990662r
  32. Liu, Z. Q. et al. Trivalent boron as an acceptor in donor–π–acceptor-type compounds for single- and two-photon excited fluorescence. Chem. Eur. J. 9, 5074 (2003). https://doi.org/10.1002/chem.200304833
  33. Abbotto, A. et al. Novel heterocycle-based two-photon absorbing dyes. Org. Lett. 4, 1495 (2002). https://doi.org/10.1021/ol025703v
  34. Sek, D. et al. Hole transport triphenylamine-azomethine conjugated system: Synthesis and optical, photoluminescence and electrochemical properties. Macromolecules 41, 6653–6663 (2008). https://doi.org/10.1021/ma702637k
  35. Sek, D. et al. Characterization and optical properties of oligoazomethines with triphenylamine moieties exhibiting blue, blue-green and green light. Spectrochim Acta A Mol. Biomol. Spectrosc. 72, 1–10 (2009). https://doi.org/10.1016/j.saa.2008.06.022
  36. Gawlinska, K. et al. Searching of new, cheap, air- and thermally stable hole transporting materials for perovskite solar cells. Opto-Electron. Rev. 25, 274–284, (2017). https://doi.org/10.1016/j.opelre.2017.07.004
  37. Costa, P. M. J. F. et al. Direct imaging of Joule heating dynamics and temperature profiling inside a carbon nanotube interconnect. Nat. Commun. 2, 421 (2011). https://doi.org/10.1038/ncomms1429
  38. McLaren, C. T. et al. Development of highly inhomogeneous temperature profile within electrically heated alkali silicate glasses. Sci. Rep. 9, 2805 (2019). https://doi.org/10.1038/s41598-019-39431-8
  39. Balakrishnan, V.  et al. A generalized analytical model for Joule heating of segmented wires. Heat Transfer 140, (7), 072001 (2018). https://doi.org/10.1115/1.4038829
  40. Thangaraju, S. K. & Munisamy, K. M. Electrical and Joule Heating Relationship Investigation Using Finite Element Method. in 7th International Conference on Cooling & Heating Technologies. 88, 012036 (Selangor, Malaysia, 2015). https://doi.org/10.1088/1757-899X/88/1/012036
  41. Russ, B. et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50
Go to article

Authors and Affiliations

Krzysztof. A. Bogdanowicz
1
ORCID: ORCID
Agnieszka Iwan
1
ORCID: ORCID

  1. Military Institute of Engineer Technology, 136 Obornicka St., 50-961 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The solar photovoltaic technology is one of the renewable technologies with the potential to shape a future-proof, reliable, scalable and affordable electricity system. It is important to provide better resources for any upcoming technology. CdS/CdTe thin films have long been considered as one enticing option for reliable and cost-effective solar cells to be developed. N-type CdS as a transparent window layer in heterojunction structures is one of the best choices for CdTe cells. In a solar cell structure, window layer material plays a very crucial role to improve its performance. For this reason, this review focuses on the basic and significant aspects such as importance of the window layer thickness, degradation effect, use of nano-wire arrays, and an ammonia-free process to deposit the window layer. Also, an attempt has been made to analyze various processes improving window layer properties. Necessary discussions have been included to review the impact of solar cell parameters on the above aspects. It is anticipated that this review article will fulfill the requirement of knowledge to be used in the fabrication of CdS/CdTe solar cells.

Go to article

Authors and Affiliations

D. Lilhare
A. Khare
Download PDF Download RIS Download Bibtex

Abstract

In recent years, metal halide perovskites have gained significant attention due to their unique optical and electronic properties of semiconductor materials, which make them ideal for use in sustainable and energy-efficient devices. These devices include solar cells, lasers, and light-emitting diodes. Therefore, this review aims initially to provide an overview of the most important characteristics of metal halide perovskites, including their engineering development in various types, such as those based on lead or lead-free materials, like tin or germanium. Additionally, perovskites made from purely inorganic compounds like caesium bromide, chloride, or iodide, as well as hybrids mixed with organic compounds like formamidinium and methylammonium halides will be discussed. The goal is to improve their stability and efficiency. Secondly, some of the studies have proposed technologies combining electronic and mechanical characteristics of flexibility or rigidity as required, promoting their synthesis with different materials such as polymers (poly methyl methacrylate, polyvinylidene fluoride), biopolymers (starch, cyclodextrin, polylactic acid, and polylysines), among others. Finally, the subject of this work is to establish the main purpose of the research carried out so far, which is to develop simpler and more scalable processes at industrial level to achieve greater efficiency and duration in storage, exposure to visible light, critical environments, humid or high temperatures.
Go to article

Authors and Affiliations

Hariana I. Farfan
1
ORCID: ORCID
Karol L. Roa
1 2
ORCID: ORCID
Hugo F. Castro
1
ORCID: ORCID

  1.  Universidad Pedagógica y Tecnológica de Colombia, Sogamoso, Boyacá, Colombia
  2. National Polytechnic Institute, Ciudad de México, Mexico
Download PDF Download RIS Download Bibtex

Abstract

The review includes results of analyses and research aimed at standardizing the concepts and measurement procedures associated with photodetector parameters. Photodetectors are key components that ensure the conversion of incoming optical radiation into an electrical signal in a wide variety of sophisticated optoelectronic systems and everyday devices, such as smartwatches and systems that measure the composition of the Martian atmosphere. Semiconductor detectors are presented, and they play a major role due to their excellent optical and electrical parameters as well as physical parameters, stability, and long mean time to failure. As their performance depends on the manufacturing technology and internal architecture, different types of photodetectors are described first. The following parts of the article concern metrological aspects related to their characterization. All the basic parameters have been defined, which are useful both for their users and their developers. This allows for the verification of photodetectors’ workmanship quality, the capabilities of a given technology, and, above all, suitability for a specific application and the performance of the final optoelectronic system. Experimentally validated meteorological models and equivalent diagrams, which are necessary for the correct analysis of parameter measurements, are also presented. The current state of knowledge presented in recognized scientific papers and the results of the authors’ works are described as well.
Go to article

Authors and Affiliations

Zbigniew Bielecki
1
ORCID: ORCID
Krzysztof Achtenberg
1
ORCID: ORCID
Małgorzata Kopytko
2
ORCID: ORCID
Janusz Mikołajczyk
1
ORCID: ORCID
Jacek Wojtas
1
ORCID: ORCID
Antoni Rogalski
2
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  2. Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The electrical network is a man-made complex network that makes it difficult to monitor and control the power system with traditional monitoring devices. Traditional devices have some limitations in real-time synchronization monitoring which leads to unwanted behavior and causes new challenges in the operation and control of the power systems. A Phasor measurement unit (PMU) is an advanced metering device that provides an accurate real-time and synchronized measurement of the voltage and current waveforms of the buses in which the PMU devices are directly connected in the grid station. The device is connected to the busbars of the power grid in the electrical distribution and transmission systems and provides time-synchronized measurement with the help of the Global Positioning System (GPS). However, the implementation and maintenance cost of the device is not bearable for the electrical utilities. Therefore, in recent work, many optimization approaches have been developed to overcome optimal placement of PMU problems to reduce the overall cost by providing complete electrical network observability with a minimal number of PMUs. This research paper reviews the importance of PMU for the modern electrical power system, the architecture of PMU, the differences between PMU, micro-PMU, SCADA, and smart grid (SG) relation with PMU, the sinusoidal waveform, and its phasor representation, and finally a list of PMU applications. The applications of PMU are widely involved in the operation of power systems ranging from power system control and monitor, distribution grid control, load shedding control and analyses, and state estimation which shows the importance of PMU for the modern world.
Go to article

Authors and Affiliations

Maveeya Baba
1
ORCID: ORCID
Nursyarizal B.M. Nor
1
Aman Sheikh
2
Grzegorz Nowakowski
3
ORCID: ORCID
Faisal Masood
1
Masood Rehman
1
Muhammad Irfan
4
ORCID: ORCID
Ahmed Amirul Arefin
Rahul Kumar
5
Baba Momin
6

  1. Department of Electrical and Electronics Engineering Universiti Teknologi Petronas, Malaysia
  2. Department of Electronics and Computer Systems Engineering (ECSE), Cardiff School of Technologies, Cardiff Metropolitan University, United Kingdom
  3. Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
  4. College of Engineering, Electrical Engineering Department, Najran University, Saudi Arabia
  5. Laboratorio di Macchine e Azionamenti Elettrici, Dipartmento di Ingegneria Elettrica, Universita Degli Studi di Roma, 00185 Rome, Italy
  6. Department of Electrical Engineering CECOS University of Information Technology and Emerging Sciences, Pakistan

This page uses 'cookies'. Learn more