Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 257
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Peak-to-average power ratio reduction techniques for visible light communication broadcasting systems are designed, simulated, and evaluated in this work. The proposed techniques are based on merging non-linear companding techniques with precoding techniques. This work aims to nominate an optimum novel scheme combining the low peak-to-average power ratio with the acceptable bit error rate performance. Asymmetrically clipped optical orthogonal frequency division multiplexing with the low peak-to-average power ratio performance becomes more attractive to real-life visible light communication applications due to non-linearity elimination. The proposed schemes are compared and an optimum choice is nominated. Comparing the presented work and related literature reviews for peak-to-average power ratio reduction techniques are held to ensure the proposed schemes validity and effectiveness.
Go to article

Bibliography

  1. Mohammed, N. A. & Elkarim, M. A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC. Opt. Express 23, 20297 (2015). https://doi.org/10.1364/oe.23.020297
  2. Grobe, L. et al. High-speed visible light communication systems. IEEE Commun. Mag. 51, 60–66 (2013). https://doi.org/10.1109/MCOM.2013.6685758
  3. Mohammed, N. A. & Mansi, A. H. Performance enhancement and capacity enlargement for a DWDM-PON system utilizing an optimized cross seeding rayleigh backscattering design. Appl. Sci. 9, 4520 (2019). https://doi.org/10.3390/app9214520
  4. Mohammed, A. N., Okasha, M. N. & Aly, M. H. A wideband apodized FBG dispersion compensator in long haul WDM systems. J. Optoelectron. Adv. Mater. 18, 475–479 (2016).
  5. Mohammed, N. A. & El Serafy, H. O. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating. Appl. Opt. 57, 273 (2018). https://doi.org/10.1364/ao.57.000273
  6. Mohammed, N. A. & Okasha, N. M. Single- and dual-band dispersion compensation unit using apodized chirped fiber Bragg grating. J. Comput. Electron. 17, 349–360 (2018). https://doi.org/10.1007/s10825-017-1096-2
  7. Shehata, M. I. & Mohammed, N. A. Design and optimization of novel two inputs optical logic gates (NOT, AND, OR and NOR) based on single commercial TW-SOA operating at 40 Gbit/s. Opt. Quantum Electron. 48, 1–16 (2016). https://doi.org/10.1007/s11082-016-0602-2
  8. Mohammed, N. A., Hamed, M. M., Khalaf, A. A. M., Alsayyari, A. & El-Rabaie, S. High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal. Results Phys. 14, 102478 (2019). https://doi.org/10.1016/j.rinp.2019.102478
  9. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. Performance evaluation and enhancement of 2×2 Ti: LiNbO 3 Mach Zehnder interferometer switch at 1.3 µm and 1.55 µm. Open Electr. Electron. Eng. J. 6, 36–49 (2012). https://doi:10.2174/1874129001206010036
  10. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultra-h igh bit rate all-optical AND/OR logic gates based on photonic crystal with multi-wavelength simultaneous operation. J. Mod. Opt. 66, 1005–1016 (2019). https://doi.org/10.1080/09500340.2019.1598587
  11. Mohammed, N. A., Abo Elnasr, H. S. & Aly, M. H. Analysis and design of an electro-optic 2 × 2 switch using Ti: KNbO3 as a waveguide based on MZI at 1.3 μ m. Opt. Quantum Electron. 46, 295–304 (2014). https://doi.org/10.1007/s11082-013-9760-7
  12. Mostafa, T. S., Mohammed, N. A. & El-Rabaie, E. S. M. Ultracompact ultrafast-switching-speed all-optical 4×2 encoder based on photonic crystal. J. Comput. Electron. 18, 279–292 (2019). https://doi.org/10.1007/s10825-018-1278-6
  13. Jovicic, A., Li, J. & Richardson, T. Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51, 26–32 (2013).
  14. Rehman, S. U., Ullah, S., Chong, P. H. J., Yongchareon, S. & Komosny, D. Visible light communication: A system perspective–Overview and challenges. Sensors 19, 1153 (2019). https://doi.org/10.3390/s19051153
  15. Matheus, L. E. M., Vieira, A. B., Vieira, L. F. M., Vieira, M. A. M. & Gnawali, O. Visible light communication: concepts, applications and challenges. IEEE Commun. Surv. Tutorials 21, 3204 (2019). https://doi.org/10.1109/COMST.2019.2913348
  16. Rust, I. C. & Asada, H. H. A dual-use visible light approach to integrated communication and localization of underwater robots with application to non-destructive nuclear reactor inspection. In IEEE International Conference on Robotics Automation (ICRA2012) 2445–2450 (2012). https://doi.org/10.1109/ICRA.2012.6224718
  17. Mohammed, N. A., Badawi, K. A., Khalaf, A. A. M. & El-Rabaie, S. Dimming control schemes combining IEEE 802.15.7 and SC-LPPM modulation schemes with an adaptive M-QAM OFDM for indoor LOS VLC systems. Opto-Electron. Rev. 28, 203–212 (2020). https://doi.org/10.24425/opelre.2020.135259
  18. Mohammed, N. A. & Badawi, K. A. Design and performance evaluation for a non-line of sight VLC dimmable system based on SC-LPPM. IEEE Access 6, 52393–52405 (2018). https://doi.org/10.1109/ACCESS.2018.2869878
  19. Shoreh, M.H., Fallahpour, A. & Salehi, J.A. Design concepts and performance analysis of multicarrier CDMA for indoor visible light communications. J. Opt. Commun. Netw. 7, 554–562 (2015). https://doi.org/10.1364/JOCN.7.000554
  20. Mossaad, M. S. A., Hranilovic, S. & Lampe, L. Visible light commu¬nications using OFDM and multiple LEDs. IEEE Trans. Commun. 63, 4304–4313 (2015). https://doi.org/10.1109/TCOMM.2015.2469285
  21. Badawi, K. A., Mohammed, N. A. & Aly, M. H. Exploring BER performance of a SC-LPPM based LOS-VLC system with distinc-tive lighting. J. Optoelectron. Adv. Mater. 20, 290–301 (2018)
  22. Mohammed, N. A, Abaza, M. R. & Aly, M. H. Improved perfor-mance of M-ary PPM in different free-space optical channels due to reed solomon code using APD. J. Sci. Eng. Res. 2, 82–85 (2011)
  23. Tsonev, D., Sinanovic, S. & Haas, H. Novel unipolar orthogonal frequency division multiplexing (U-OFDM) for optical wireless. in IEEE Vehicular Technology Conference (2012). https://doi.org/10.1109/VETECS.2012.6240060
  24. Islam, R., Choudhury, P. & Islam, M. A. Analysis of DCO-OFDM and flip-OFDM for IM/DD optical-wireless system. in 8th International Confference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow (ICECE 2014) 32–35 (2015). https://doi.org/10.1109/ICECE.2014.7026929
  25. Hu, W. W. PAPR reduction in DCO-OFDM visible light communication systems using optimized odd and even sequences combination. IEEE Photonics J. 11, 1024 (2019). https://doi.org/10.1109/JPHOT.2019.2892871
  26. Dissanayake, S. D., Panta, K. & Armstrong, J. A novel technique to simultaneously transmit ACO-OFDM and DCO-OFDM in IM/DD systems. in IEEE Globecom Workshops (GC Wkshps 2011) 782–786 (2011). https://doi.org/10.1109/GLOCOMW.2011.6162561
  27. Dissanayake, S. D., Member, S., Armstrong, J. & Member, S. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD Systems. J. Light. Technol. 31, 1063–1072 (2013).
  28. Dang, J., Zhang, Z. & Wu, L. Improving the power efficiency of enhanced unipolar OFDM for optical wireless communication. Electron. Lett. 51, 1681–1683 (2015). https://doi.org/10.1049/el.2015.2024
  29. Lam, E., Wilson, S. K., Elgala, H. & Little, T. D. C. Spectrally and energy efficient OFDM (SEE-OFDM) for intensity modulated optical wireless systems. The Cornell University,1–26 (2015). https://arxiv.org/abs/1510.08172v1
  30. Lowery, A. J. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems. Opt. Express 24, 3950 (2016). https://doi.org/10.1364/oe.24.003950
  31. Elgala, H. & Little, T. Polar-based OFDM and SC-FDE links toward energy-efficient Gbps transmission under IM-DD optical system constraints. J. Opt. Commun. Netw. 7, A277–A284 (2015). https://doi.org/10.1364/JOCN.7.00A277
  32. Zhang, T. et al. A performance improvement and cost-efficient ACO-OFDM scheme for visible light communications. Opt. Commun. 402, 199–205 (2017). https://doi.org/10.1016/j.optcom.2017.06.015
  33. Kubjana, M. D., Shongwe, T. & Ndjiongue, A. R. Hybrid PLC-VLC based on ACO-OFDM. in 2018 IEEE International Conference On Intelligent And Innovative Computing Applications (ICONIC 2018) 364–368 (2018)
  34. Shawky, E., El-Shimy, M. A., Shalaby, H. M. H., Mokhtar, A. & El-Badawy, E.-S. A. Kalman Filtering for VLC Channel Estimation of ACO-OFDM Systems. in 2018 ASIA IEEE Communications And Photonics Conference (ACP) (2018).
  35. Niaz, M. T., Imdad, F., Ejaz, W. & Kim, H. S. Compressed sensing-based channel estimation for ACO-OFDM visible light communica¬tions in 5G systems. Eurasip J. Wirel. Commun. Netw. 2016, 268 (2016). https://doi.org/10.1186/s13638-016-0774-2
  36. Hao, L., Wang, D., Cheng, W., Li, J. & Ma, A. Performance enhancement of ACO-OFDM-based VLC systems using a hybrid autoencoder scheme. Opt. Commun. 442, 110–116 (2019). https://doi.org/10.1016/j.optcom.2019.03.013
  37. Vappangi, S. & Vakamulla, V. M. Channel estimation in ACO-OFDM employing different transforms for VLC. AEU-Int. J. Electron. Commun. 84, 111–122 (2018). https://doi.org/10.1016/j.aeue.2017.11.016
  38. Vappangi, S. & Vakamulla, V. M. A low PAPR multicarrier and multiple access schemes for VLC. Opt. Commun. 425, 121–132 (2018). https://doi.org/10.1016/j.optcom.2018.04.064
  39. Mounir, M., Tarrad, I. F. & Youssef, M. I. Performance evaluation of different precoding matrices for PAPR reduction in OFDM systems. Internet Technol. Lett. 1, e70 (2018). https://doi.org/10.1002/itl2.70
  40. Hu, S., Wu, G., Wen, Q., Xiao, Y. & Li, S. Nonlinearity reduction by tone reservation with null subcarriers for WiMAX system. Wirel. Pers. Commun. 54, 289–305 (2010). https://doi.org/10.1007/s11277-009-9726-z
  41. Zhang, X., Wang, Q., Zhang, R., Chen, S. & Hanzo, L. Performance analysis of layered ACO-OFDM. IEEE Access 5, 18366–18381 (2017). https://doi.org/10.1109/ACCESS.2017.2748057
  42. Anoh, K., Tanriover, C., Adebisi, B. & Hammoudeh, M. A new approach to iterative clipping and filtering papr reduction scheme for ofdm systems. IEEE Access 6, 17533–17544 (2017). https://doi.org/10.1109/ACCESS.2017.2751620
  43. Madhavi, D. & Ramesh Patnaik, M. Implementation of non linear companding technique for reducing PAPR of OFDM. Mater. Today Proc. 5, 870–877 (2018). https://doi.org/10.1016/j.matpr.2017.11.159
  44. Shaheen, I. A. A., Zekry, A., Newagy, F. & Ibrahim, R. Absolute exponential companding to reduced PAPR for FBMC/OQAM. in 2017 Palestinian International Confference on Information and Communication Technology (PICICT 2017) 60–65 (2017). https://doi.org/10.1109/PICICT.2017.17
  45. Yang, Y., Zeng, Z., Feng, S. & Guo, C. A simple OFDM scheme for VLC systems based on μ-law mapping. IEEE Photonics Technol. Lett. 28, 641–644 (2016). https://doi.org/10.1109/LPT.2015.2503481
  46. Yadav, A.K. & Prajapati, Y. K. PAPR minimization of clipped ofdm signals using tangent rooting companding technique. Wirel. Pers. Commun. 105, 1435–1447 (2019). https://doi.org/10.1007/s11277-019-06151-1
  47. Hasan, M. M. VLM precoded SLM technique for PAPR reduction in OFDM systems. Wirel. Pers. Commun. 73, 791–801 (2013). https://doi.org/10.1007/s11277-013-1217-6
  48. Freag, H. et al. PAPR reduction in VLC-OFDM system using CPM combined with PTS method. Int. J. Comput. Digit. Syst. 6, 127–132 (2017). https://doi.org/10.12785/ijcds/060304
  49. Xiao, Y. et al. PAPR reduction based on chaos combined with SLM technique in optical OFDM IM/DD system. Opt. Fiber Technol. 21, 81–86 (2015). https://doi.org/10.1016/j.yofte.2014.08.014
  50. Wang, Z., Wang, Z. & Chen, S. Encrypted image transmission in OFDM-based VLC systems using symbol scrambling and chaotic DFT precoding. Opt. Commun. 431, 229–237 (2019). https://doi.org/10.1016/j.optcom.2018.09.045
  51. Sharifi, A. A. PAPR reduction of optical OFDM signals in visible light communications. ICT Express 5, 202–205 (2019). https://doi.org/10.1016/j.icte.2019.01.001
  52. Ghassemlooy, Z., Ma, C. & Guo, S. PAPR reduction scheme for ACO-OFDM based visible light communication systems. Opt. Commun. 383, 75–80 (2017). https://doi.org/10.1016/j.optcom.2016.07.073
  53. Abd Elkarim, M., Elsherbini, M. M., AbdelKader, H. M. & Aly, M. H. Exploring the effect of LED nonlinearity on the performance of layered ACO-OFDM. Appl. Opt. 59, 7343–7351 (2020). https://doi.org/10.1364/AO.397559
  54. Kumar Singh, V. & Dalal, U. D. Abatement of PAPR for ACO-OFDM deployed in VLC systems by frequency modulation of the baseband signal forming a constant envelope. Opt. Commun. 393, 258–266 (2017). https://doi.org/10.1016/j.optcom.2017.02.065
  55. Wang, Z.-P., Xiao, J.-N., Li, F. & Chen, L. Hadamard precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 7, 363–366 (2011). https://doi.org/10.1007/s11801-011-1044-5
  56. Wang, Z.-P. & Zhang, S.-Z. Grouped DCT precoding for PAPR reduction in optical direct detection OFDM systems. Optoelectron. Lett. 9, 213–216 (2013). https://doi.org/10.1007/s11801-013-3021-7
  57. Ali Sharifi, A. Discrete Hartley matrix transform precoding-based OFDM system to reduce the high PAPR. ICT Express 5, 100–103 (2019). https://doi.org/10.1016/j.icte.2018.07.001
  58. El-Nabawy, M. M., Aboul-Dahab, M. A. & El-Barbary, K. PAPR Reduction of OFDM signal by using combined hadamard and modified meu-law companding techniques. Int. J. Comput. Networks Commun. 6, 71 (2014).
  59. Reddy, Y. S., Reddy, M. V. K., Ayyanna, K. & Ravikumar, G. V. The effect of NCT techniques on SC-FDMA system in presence of HPA. Int. J. Res. Computer Commun. Technol. 3, 844–848 (2014).
  60. Abd El-Rahman, A. F. et al. Companding techniques for SC-FDMA and sensor network applications. Int. J. Electron. Lett. 8, 241–255 (2020). https://doi.org/10.1080/21681724.2019.1600051
  61. Azim, A. W., Le Guennec, Y. & Maury, G. Decision-directed iterative methods for PAPR reduction in optical wireless OFDM systems. Opt. Commun. 389, 318–330 (2017). https://doi.org/10.1016/j.optcom.2016.12.026
  62. Guan, R. et al. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers. Opt. Commun. 402, 600–605 (2017). https://doi.org/10.1016/j.optcom.2017.06.032
  63. Hu, W. W. SLM-based ACO-OFDM VLC system with low-complexity minimum amplitude difference decoder. Electron. Lett. 54, 144–146 (2018). https://doi.org/10.1049/el.2017.3158
  64. Offiong, F. B., Sinanovic, S. & Popoola, W. O. On PAPR reduction in pilot-assisted optical OFDM communication systems. IEEE Access 5, 8916–8929 (2017). https://doi.org/10.1109/ACCESS.2017.2700877
  65. Xu, W., Wu, M., Zhang, H., You, X. & Zhao, C. ACO-OFDM-specified recoverable upper clipping with efficient detection for optical wireless communications. IEEE Photonics J. 6, (2014). https://doi.org/10.1109/JPHOT.2014.2352643
Go to article

Authors and Affiliations

Nazmi A. Mohammed
1
Mohamed M. Elnabawy
2 3
Ashraf A. M. Khalaf
2
ORCID: ORCID

  1. Photonic Research Lab, Electrical Engineering Department, College of Engineering, Shaqra University, Dawadmi 11961, Kingdom of Saudi Arabia
  2. Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt, P.O. Box 61111, Minia, Egypt
  3. Electronics and Communication Department, Modern Academy for Engineering and Technology, Maadi 11585, Cairo, Egypt
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the noise levels present at various points in the FOSREM type fiber optic seismograph. The main aim of this research was to discover magnitudes of noise, introduced by various components of the analog and optical circuits of the device. First, the noise present in the electronic circuit without any optics connected is measured. Further experiments show noise levels including the detector diode not illuminated and illuminated. Additional tests were carried out to prove the necessity of analog circuitry shielding. All measurements were repeated using three powering scenarios which investigated the influence of power supply selection on noise. The results show that the electronic components provide a sufficient margin for the use of an even more precise detector diode. The total noise density of the whole device is lower than 4⋅10−7 rad/(s√Hz). The use of a dedicated Insulating Power Converter as a power supply shows possible advantages, but further experiments should be conducted to provide explicit thermic confirmation of these gains.
Go to article

Bibliography

  1. Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications. (CRC press, 2017).
  2. Sabri, N., Aljunid, S. A., Salim, M. S., Ahmad, R. B. & Kamaruddin, R. Toward optical sensors: Review and applications. J. Phys.: Conf. Ser. 423, 012064 (2014). https://doi.org/10.1088/1742-6596/423/1/012064
  3. Lee, B. et al. Interferometric fiber optic sensors. Sensors 12(3), 2467-2486 (2012). https://doi.org/10.3390/s120302467
  4. Bao, X. & Chen, L. Recent progress in distributed fiber optic sensors. Sensors 12(7), 8601–8639 (2012). https://doi.org/10.3390/s120708601
  5. Liu, G., Han, M. & Hou, W. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express 23(6), 7237–7247 (2015). https://doi.org/10.1364/OE.23.007237
  6. Campanella, C. E., Cuccovillo, A., Campanella, C., Yurt, A. & Passaro, V. Fibre Bragg grating based strain sensors: review of technology and applications. Sensors 18(9), 3115 (2018). https://doi.org/10.3390/s18093115
  7. Ramakrishnan, M., Rajan, G., Semenova, Y. & Farrell, G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 16(1), 99 (2016), https://doi.org/10.3390/s16010099.
  8. Yu, Q. & Zhou, X. (2011) Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 1(1), 72–83 (2011). https://doi.org/10.1007/s13320-010-0017-9
  9. Chang, T. et al. Fiber optic interferometric seismometer with phase feedback control. Opt. Express 28(5), 6102–6122 (2020). https://doi.org/10.1364/OE.385703
  10. Budinski, V. & Donlagic, D. Fiber-optic sensors for measurements of torsion, twist and rotation: a review. Sensors 17(3), 443 (2017). https://doi.org/10.3390/s17030443
  11. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Kowalski, J. K., Kowalski, H. A. & Teisseyre, K. P. Innovative Fibre-Optic Rotational Seismograph. in 7th International Symposium on Sensor Science Proceedings 15, 45 (2019). https://doi.org/10.3390/proceedings2019015045
  12. Lee, W. H. K., Celebi, M., Todorovska, M. & Igel, H. Introduction to the special issue on rotational seismology and engineering applications. Bull. Seismol. Soc. Am. 99, 945–957 (2009). https://doi.org/10.1785/0120080344
  13. Kurzych, A., Kowalski, J. K., Sakowicz, B., Krajewski, Z. & Jaroszewicz, L. R. The laboratory investigation of the innovative sensor for torsional effects in engineering structures’ monitoring. Opto-Electron. Rev. 24(3), 134–143 (2016). http://doi.org/10.1515/oere-2016-0017
  14. Kurzych, A., Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope. Opto-Electron. Rev. 28(2), 69–73 (2020). https://doi.org/10.24425/opelre.2020.132503
  15. Bernauer, F. et al. Rotation, strain, and translation sensors performance tests with active seismic sources. Sensors 21(1), 264 (2021). https://doi.org/10.3390/s21010264
  16. Sagnac, G. The light ether demonstrated by the effect of the relativewind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708–710 (1913).
  17. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967). https://doi.org/10.1103/RevModPhys.39.475
  18. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Dudek, M., Kowalski, J. K. & Teisseyre, K. P. The fiber-optic rotational seismograph - laboratory tests and field application. Sensors 19(12), 2699 (2019). https://doi.org/10.3390/s19122699
  19. Lefevre, H. C., Martin, P., Morisse, J., Simonpietri, P., Vivenot, P. & Arditti, H. J. High-dynamic-range fiber gyro with all-digital signal processing. Proc. SPIE 1367, 72–80 (1991).
  20. LeFevre, H. C. The Fiber Optic Gyroscope. (2nd ed.) 154–196 (Artech House: Norwood, MA, 2008).
  21. Merlo, S., Norgia, M. & Donati, S. Fiber Gyroscope Principles. in Handbook of Fibre Optic Sensing Technology. (ed. Lopez, J. M.) 1–23 (2000).
  22. Bernauer, F., Wassermann, J. & Igel, H. Rotational sensors—A comparison of different sensor types. J. Seismol. 16, 595–602 (2012). https://doi.org/10.1007/s10950-012-9286-7
  23. Heinzel, G., Rüdiger, A. & Schilling, R. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. https://holometer.fnal.gov/GH_FFT.pdf (2021).
  24. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE-SA Standards Board 952, (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  25. Allan Variance: Noise Analysis for Gyroscopes. Application Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc., Eindhoven, Niderlands, (2015).
  26. Konno K. & Ohmachi, T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998).
Go to article

Authors and Affiliations

Sławomir Niespodziany
1
ORCID: ORCID
Anna T. Kurzych
2
ORCID: ORCID
Michał Dudek
2
ORCID: ORCID

  1. Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., Warsaw 00-665, Poland
  2. Institute of Technical Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland
Download PDF Download RIS Download Bibtex

Abstract

Solar blind UV cameras are not theoretically supposed to be sensitive to solar light. However, there is practically always some sensitivity to solar light. This limited solar sensitivity can sometimes make it impossible to detect the weak emission of a corona target located on the solar background. Therefore, solar sensitivity is one of the crucial performance parameters of solar blind UV cameras. However, despite its importance, the problem of determining solar sensitivity of solar blind UV cameras has not been analysed and solved in the specialized literature, so far. This paper presents the concept (definition, measurement method, test equipment, interpretation of results) of measuring solar sensitivity of solar blind UV cameras.
Go to article

Bibliography

  1. UViRCO Technologies. https://www.uvirco.com (2020)
  2. OFIL Systems - Daytime Corona Cameras. https://www.ofilsystems.com (2020)
  3. Zhejiang ULIRVISION Technology Co., LTD. https://www.ulirvision.co.uk (2020)
  4. Olip Systems Inc. https://www.olipsystems.com (2020)
  5. Sonel S.A. - Przyrządy pomiarowe, kamery termowizyjne. https://www.sonel.pl (2020)
  6. ICI Infrared Cameras Inc. https://www.infraredcameras.com (2020)
  7. Chrzanowski, K. & Chrzanowski, W. Analysis of a blackbody irradiance method of measurement of solar blind UV cameras’ sensitivity. Opto-Electron. Rev. 27, 378–384 (2019). https://doi.org/10.1016/j.opelre.2019.11.009
  8. Cheng, H. et al. Performance characteristics of solar blind UV image intensifier tube. in Proc. SPIE – International Symposium on Photoelectronic Detection and Imaging 2009: Advances in Imaging Detectors and Applications 7384 (2009). https://doi.org/10.1117/12.834700
  9. Coetzer, C., West, N., Swart, A. & van Tonder, A. An investigation into an appropriate optical calibration source for a corona camera. in IEEE International SAUPEC/RobMech/PRASA Conference 1–5 (2020). https://doi.org/10.1109/saupec/robmech/prasa48453.2020.9041014
  10. Coetzer, C. et al. Status quo and aspects to consider with ultraviolet optical versus high voltage energy relation investigations. in Proc. SPIE – Fifth Conference on Sensors, MEMS, and Electro-Optic Systems 11043, 1104317 (2019). https://doi.org/10.1117/12.2501251
  11. Du Toit, N. S. Calibration of UV-sensitive camera for corona detection. (Stellenbosch University, South Africa, 2007). http://hdl.handle.net/10019.1/2920
  12. Pissulla, D. et al. Comparison of atmospheric spectral radiance measurements from five independently calibrated systems. Photochem. Photobiol. Sci. 8, 516–527 (2009). https://doi.org/10.1039/b817018e
  13. Clack, C. T. M. Modeling solar irradiance and solar PV power output to create a resource assessment using linear multiple multivariate regression. J. Appl. Meteorol. Climatol. 56, 109–125 (2017). https://doi.org/10.1175/JAMC-D-16-0175.1
  14. G03 Committee. Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface. http://www.astm.org/cgi-bin/resolver.cgi?G173-03R20 https://doi.org/10.1520/G0173-03R20
  15. Tohsing, K., Klomkliang, W., Masiri, I. & Janjai, S. An investigation of sky radiance from the measurement at a tropical site. in AIP Conference Proceedings 1810, 080006 (2017). https://doi.org/10.1063/1.4975537
  16. Chen, H.-W. & Cheng, K.-S. A conceptual model of surface reflectance estimation for satellite remote sensing images using in situ reference data. Remote Sens. 4, 934–949 (2012). https://doi.org/10.3390/rs4040934
  17. Gueymard, C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 71, 325–346 (2001). https://doi.org/10.1016/S0038-092X(01)00054-8
  18. Gueymard, C. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Professional Paper FSEC-PF-270-95. (Florida Solar Energy Center, 1995)
  19. Gueymard, C. A. Reference solar spectra: Their evolution, standard- ization issues, and comparison to recent measurements. Adv. Space Res. 37, 323–340 (2006). https://doi.org/10.1016/j.asr.2005.03.104
  20. TOMS Meteor-3 Total Ozone UV-Reflectivity Daily L3 Global 1 deg x 1.25 deg V008, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), TOMS Science Team, https://disc.gsfc.nasa.gov/datacollection/TOMSM3L3_008.html (2021)
  21. SMARTS: Simple Model of the Atmospheric Radiative Transfer of Sunshine. National Renewable Energy Laboratory. https://www.nrel.gov/grid/solar-resource/smarts.html (2020)
  22. Cooper, O. R. et al. Global distribution and trends of tropospheric ozone: An observation-based review. Elem. Sci. Anth. 2, 000029 (2014). https://doi.org/10.12952/journal.elementa.000029
  23. Riordan, C. & Hulstron, R. What is an air mass 1.5 spectrum? (solar cell performance calculations). in IEEE Conference on Photovoltaic Specialists (1990). https://doi.org/10.1109/pvsc.1990.111784
  24. Wikipedia contributors. Air mass (solar energy). Wikipedia. https://en.wikipedia.org/wiki/Air_mass_(solar_energy) (2020)
  25. Ritter, M. E. The Physical Environment: an Introduction to Physical Geography. https://www.thephysicalenvironment.com (2020)
  26. NOAA Research. NOAA Solar Position Calculator. https://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html (2020)
  27. Global Solar Atlas. https://globalsolaratlas.info/download/world (2020)
  28. Blanc, P. et al. Direct normal irradiance related definitions and applications: The circumsolar issue. Sol. Energy 110, 561–577 (2014). https://doi.org/10.1016/j.solener.2014.10.001
  29. Class ABB Small Area Solar Simulators. Newport Corporation. https://www.newport.com/f/small-area-solar-simulators (2020)
  30. Dai, C., Wu, Z., Qi, X., Ye, J. & Chen, B. Traceability of spectro- radiometric measurements of multiport UV solar simulators. in Proc. SPIE - International Symposium on Photoelectronic Detection and Imaging 2013: Imaging Spectrometer Technologies and Appli- cations 8910, 8910-2 (2013). https://doi.org/10.1117/12.2030753
  31. Christiaens, F. & Uhlmann, B. Guidelines for Monitoring UV Radiation Sources. (COLIPA, 2007)
  32. Qualitätsmanagement-Handbuch, Abteilung 7, Physikalisch-Tech- nische Bundesanstalt (PTB), https://www.ptb.de/cms/fileadmin/internet/fachabteilungen/abteilu ng_7/QMH_Abt7_KAP3_1_A16_a.pdf (2020). [in German]
Go to article

Authors and Affiliations

Krzysztof Chrzanowski
1 2
ORCID: ORCID
Bolesław Safiej
2

  1. Military University of Technology, Institute of Optoelectronics, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  2. INFRAMET, Bugaj 29a, Koczargi Nowe, 05-082 Stare Babice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The compositional graded quaternary barriers (GQBs) instead of ternary/conventional quantum barriers (QBs) have been used to numerically enhance the efficiency of AlGaN-based ultraviolet light-emitting diode (LED). The performance of LED with GQBs is examined through carrier concentrations, energy band diagrams, radiative recombination, electron and hole flux, internal quantum efficiency (IQE), and emission spectrum. As a function of the operating current density, a considerable reduction in efficiency droop is observed in the device with composition-graded quaternary barriers as compared to the conventional structure. The efficiency droop in case of a conventional LED is ~77% which decreased to ~33% in case of the proposed structure. Moreover, the concentration of electrons and holes across the active region in case of the proposed structure is increased to ~156% and ~44%, respectively.
Go to article

Bibliography

  1. Würtele, M. et al. Application of GaN-based ultraviolet-C light emitting diodes–UV LEDs–for water disinfection. Water Res. 45, 1481–1489 (2011), https://doi.org/10.1016/j.watres.2010.11.015
  2. Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2, 77–84 (2008), https://doi.org/10.1038/nphoton.2007.293
  3. Usman, M., Malik, S. & Munsif, M. AlGaN-based ultraviolet light-emitting diodes: Challenges and Opportunities. Luminescence 36, 294–305 (2021), https://doi.org/10.1002/bio.3965
  4. Hirayama, H., Maeda, N., Fujikawa, S., Toyoda, S. & Kamata, N. Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 53, 100209 (2014), http://doi.org/10.7567/JJAP.53.100209
  5. Kneissl, M. A brief review of III-nitride UV emitter technologies and their applications. in III-Nitride Ultraviolet Emitters: Technology and Applications. Springer Series in Materials Science, vol 227. (eds. Kneissl, M. & Rass, J.) 1–25 (Springer Cham, 2016). https://doi.org/10.1007/978-3-319-24100-5_1
  6. Usman, M., Malik, S., Khan, M. A. & Hirayama, H. Suppressing the efficiency droop in AlGaN-based UVB LEDs. Nanotechnology 32, 215703 (2021), https://doi.org/10.1088/1361-6528/abe4f9
  7. Heilingloh, C. S. et al. Susceptibility of SARS-CoV-2 to UV irradiation. Am. J. Infect. Control 48, 1273¬1275 (2020), https://doi.org/10.1016/j.ajic.2020.07.031
  8. Khan, M. A., Shatalov, M., Maruska, H., Wang, H. & Kuokstis, E. III–nitride UV devices. Jpn. J. Appl. Phys. 44, 7191 (2005), https://doi.org/10.1143/jjap.44.7191
  9. Kneissl, M. et al. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 26, 014036 (2010), https://doi.org/10.1088/0268-1242/26/1/014036
  10. Shatalov, M. et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 5, 082101 (2012), https://doi.org/10.1143/apex.5.082101
  11. Pernot, C. et al. Development of high efficiency 255–355 nm AlGaN‐based light‐emitting diodes. Phys. Status Solidi A 208, 1594–1596 (2011), https://doi.org/10.1002/pssa.201001037
  12. Huang, C., Zhang, H. & Sun, H. Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system. Nano Energy, 77, 105149 (2020), https://doi.org/10.1016/j.nanoen.2020.105149
  13. Chen, K. et al. Effect of dislocations on electrical and optical properties of n-type Al 0.34 Ga 0.66 N. Appl. Phys. Lett. 93, 192108 (2008), https://doi.org/10.1063/1.3021076
  14. Hirayama, H., Tsukada, Y., Maeda, T. & Kamata, N. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3, 031002 (2010), https://doi.org/10.1143/apex.3.031002
  15. Huang, M.-F. & Lu, T.-H. Optimization of the active-layer structure for the deep-UV AlGaN light-emitting diodes. IEEE J. Quantum Electron. 42, 820–826 (2006), https://doi.org/10.1109/JQE.2006.877217
  16. Lu, L. et al. Improving performance of algan‐based deep‐ultraviolet light‐emitting diodes by inserting a higher Al‐content algan layer within the multiple quantum wells. Phys. Status Solidi A 214, 1700461 (2017), https://doi.org/10.1002/pssa.201700461
  17. Arif, R. A., Ee, Y. K. & Tansu, N. Nanostructure engineering of staggered InGaN quantum wells light emitting diodes emitting at 420–510 nm. Phys. Status Solidi A 205, 96–100 (2008), https://doi.org/10.1002/pssa.200777478
  18. Usman, M. et al. Zigzag-shaped quantum well engineering of green light-emitting diode. Superlattices Microstruct. 132, 106164, (2019) https://doi.org/10.1016/j.spmi.2019.106164
  19. Usman, M. et al. Enhanced internal quantum efficiency of bandgap-engineered green W-shaped quantum well light-emitting diode. Appl. Sci. 9, 77 (2019), https://doi.org/10.3390/app9010077
  20. Yang, G. et al. Design of deep ultraviolet light-emitting diodes with staggered AlGaN quantum wells. Physica E 62, 55–58 (2014), https://doi.org/10.1016/j.physe.2014.04.014
  21. Zhang, Y. et al. The improvement of deep-ultraviolet light-emitting diodes with gradually decreasing Al content in AlGaN electron blocking layers. Superlattices Microstruct. 82, 151–157 (2015), https://doi.org/10.1016/j.spmi.2015.02.004
  22. Li, Y. et al. Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers. IEEE Photonics J. 5, 8200309–8200309 (2013), https://doi.org/10.1109/JPHOT.2013.2271718
  23. Fan, X. et al. Efficiency improvements in AlGaN-based deep ultraviolet light-emitting diodes using inverted-V-shaped graded Al composition electron blocking layer. Superlattices Microstruct. 88, 467–473 (2015), https://doi.org/10.1016/j.spmi.2015.10.003
  24. Huang, J. et al. Study of deep ultraviolet light-emitting diodes with ap-AlInN/AlGaN superlattice electron-blocking layer. J. Electron. Mater. 46, 4527–4531 (2017), https://doi.org/10.1007/s11664-017-5413-0
  25. Usman, M., Jamil, T., Malik, S. & Jamal, H. Designing anti-trapezoidal electron blocking layer for the amelioration of AlGaN-based deep ultraviolet light-emitting diodes internal quantum efficiency. Optik 232, 166528 (2021). https://doi.org/10.1016/j.ijleo.2021.166528
  26. Zhang, X. et al. Efficiency improvements in AlGaN-based deep-ultraviolet light-emitting diodes with graded superlattice last quantum barrier and without electron blocking layer. J. Electron. Mater. 48, 460–466 (2019). https://doi.org/10.1007/s11664-018-6716-5
  27. Li, K., Zeng, N., Liao, F. & Yin, Y. Investigations on deep ultraviolet light-emitting diodes with quaternary AlInGaN streamlined quantum barriers for reducing polarization effect. Superlattices Microstruct. 145, 106601 (2020). https://doi.org/10.1016/j.spmi.2020.106601
  28. Shatalov, M. et al. Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells. IEEE J. Sel. Top. Quantum Electron. 8, 302–309 (2002). https://doi.org/10.1109/2944.999185
  29. Chen, X., Wang, D. & Fan, G. Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with AlInGaN/AlInGaN super-lattice electron blocking layer. J. Electron. Mater. 48, 2572–2576 (2019). https://doi.org/10.1007/s11664-019-07001-3
  30. Kim, S. J. & Kim, T. G. Numerical study of enhanced performance in InGaN light-emitting diodes with graded-composition AlGaInN barriers. J. Opt. Soc. Korea 17, 16-21 (2013) . https://doi.org/10.3807/JOSK.2013.17.1.016
  31. Adivarahan, V. et al. Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells. Appl. Phys. Lett. 79, 4240–4242 (2001). https://doi.org/10.1063/1.1425453
  32. Chen, C. et al. Pulsed metalorganic chemical vapor deposition of quaternary AlInGaN layers and multiple quantum wells for ultraviolet light emission. Jpn. J. Appl. Phys. 41, 1924 (2002). https://doi.org/10.1143/jjap.41.1924
Go to article

Authors and Affiliations

Shahzeb Malik
1
Muhammad Usman
1
ORCID: ORCID
Masroor Hussain
2
Munaza Munsif
1
Sibghatullah Khan
1
Saad Rasheed
1
Shazma Ali
1

  1. Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan
  2. Faculty of Computer Sciences and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, 23460, Khyber Pakhtunkhwa, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

Hybrid pixel radiation detectors with a direct photon-to-charge conversion working in a single photon counting mode have gained increasing attention due to their high dynamic range and noiseless imaging. Since sensors of different materials can be attached to readout electronics, they enable work with a wide range of photon energies. The charge-sharing effect observed in segmented devices, such as hybrid pixel detectors, is a phenomenon that deteriorates both spatial resolution and detection efficiency. Algorithms that allow the detection of a photon irrespective of the charge-sharing effect are proposed to overcome these limitations. However, the spatial resolution of the detector can be further improved beyond the resolution determined by the pixel size if information about the charge proportions collected by neighbouring pixels is used to approximate the interaction position. In the article, an approach to achieve a subpixel resolution in a hybrid pixel detector working in the single photon counting mode is described. Requirements and limitations of digital inter-pixel algorithms which can be implemented on-chip are studied. In the simulations, the factors influencing the detector resolution are evaluated, including size of a charge cloud, number of virtual pixel subdivisions, and detector parameters.
Go to article

Bibliography

  1. Ballabriga, et al. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging. J. Instrum. 11, P01007–P01007 (2016). https://doi.org/10.1088/1748-0221/11/01/P01007
  2. Taguchi, K. & Iwanczyk, J. S. Vision 20/20: Single photon counting X-ray detectors in medical imaging. Med. Phys. 40, 100901 (2013). https://doi.org/10.1118/1.4820371
  3. Bahadur, D. et al. Evolution of structure and dynamics of thermo-reversible nanoparticle gels-A combined XPCS and rheology study. J. Chem. Phys. 151, 10 (2019). https://doi.org/10.1063/1.5111521
  4. Sheyfer, et al.Nanoscale critical phenomena in a complex fluid studied by X-ray photon correlation spectroscopy.Phys. Rev. Lett. 125, 125504 (2020). https://doi.org/10.1103/PhysRevLett.125.125504
  5. Szczygiel, R., Grybos, P., Maj, P. & Zoladz, M. PXD18k - Fast Single Photon Counting Chip with Energy Window for Hybrid Pixel Detector. in 2011 IEEE Nuclear Science Symposium Conference Record. 932–937 (IEEE, Valencia, Spain 2011). https://doi.org/10.1109/NSSMIC.2011.6154126
  6. Nilsson, H. E., Dubari, E., Hjelm, M. & Bertilsson, K. Simulation of photon and charge transport in x-ray imaging semiconductor sensors. Nucl. Instrum. Methods Phys. Res. A. 487, 151–162 (2002). https://doi.org/10.1016/S0168- 9002(02)00959-2
  7. Ballabriga, R. et al. The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. Instrum. 8, C02016–C02016 (2013). https://doi.org/10.1088/1748-0221/8/02/C02016
  8. Krzyzanowska, A. et al. Characterization of the photon counting CHASE Jr., chip built in a 40-nm CMOS process with a charge-sharing correction algorithm using a collimated X-ray beam. IEEE Trans. Nucl. Sci. 64, 2561–2568 (2017). https://doi.org/10.1109/TNS.2017.2734821
  9. Bellazzini, R. et al. PIXIE III: a very large area photon-counting CMOS pixel ASIC for sharp X-ray spectral imaging. J. Instrum. 10, C01032–C01032 (2015). https://doi.org/10.1088/1748-0221/10/01/C01032
  10. Otfinowski, P. et al. Comparison of allocation algorithms for unambiguous registration of hits in presence of charge- sharing in pixel detectors. J. Instrum. 12, C01027–C01027 (2017). http://doi.org/10.1088/1748-0221/12/01/C01027
  11. Otfinowski, P., Deptuch, G. W. & Maj, P. Asynchronous approximation of a center of gravity for pixel detectors’ readout circuits. IEEE Solid-State Circuits 53, 1550–1558 (2018). https://doi.org/10.1109/JSSC.2018.2793530
  12. Cartier, et al. Micron resolution of MÖNCH and GOTTHARD, small pitch charge integrating detectors with single photon sensitivity. J. Instrum. 9, C05027–C05027 (2014). https://doi.org/10.1088/1748-0221/9/05/C05027
  13. Dreier, E. S. et al. Virtual subpixel approach for single-mask phase-contrast imaging using Timepix3. J. Instrum. 14, C01011 (2019). https://doi.org/10.1088/1748-0221/14/01/C01011
  14. Maj, P. et al. Measurements of ultra-fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe J. Instrum. 12, C03064 (2017). https://doi.org/10.1088/1748-0221/12/03/C03064
  15. Krzyzanowska, A., Niedzielska, A. & Szczygieł, R. Charge-sharing simulations for new digital algorithms achieving subpixel resolution in hybrid pixel detectors. J. Instrum. 15, C02047 (2020). https://doi.org/10.1088/1748- 0221/15/02/C02047
  16. Lutz, Semiconductor Radiation Detectors, Device Physics. (Berlin, Heidelberg: Springer Berlin Heidelberg, 2007).
  17. NIST XCOM: Photon Cross Sections Database – Introduction. NIST http://www.physics.nist.gov/PhysRefData/Xcom/Text/intro.html (2017).
  18. Otfinowski, A. et al. Pattern recognition algorithm for charge-sharing compensation in single photon counting pixel detectors. J. Instrum. 14, C01017 (2019). https://doi.org/10.1088/1748-0221/14/01/C01017
Go to article

Authors and Affiliations

Aleksandra Krzyżanowska
1
ORCID: ORCID
Robert Szczygieł
1
ORCID: ORCID

  1. AGH University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Fano resonance is an optical effect that emerges from the coherent coupling and interference (constructive and destructive) between the continuous state (background process) and the Lorentzian state (resonant process) in the plasmonic waveguide-resonator system. This effect has been used in the applications like optical sensors. These sensors are extensively used in sensing biochemicals and gases by the measurement of refractive index changes as they offer high sensitivity and ultra-high figure of merit. Herein, we surveyed several plasmonic Fano sensors with different geometries composed of metal-insulator-metal waveguide(s). First, the resonators are categorized based on different architectures. The materials and methods adopted for these designs are precisely surveyed and presented. The performances are compared depending upon the characterization parameters like sensitivity and figure of merit. Finally, based on the survey of very recent models, the advances and challenges of refractive index sensing deployed on Fano resonances are discussed.
Go to article

Bibliography

  1. De Tommasi, E. et al. Frontiers of light manipulation in natural, metallic, and dielectric nanostructures. Riv. del Nuovo Cim. 44, 1–68 (2021). https://doi.org/10.1007/s40766-021-00015-w
  2. Maier, S. Surface plasmon polaritons at metal /insulator interfaces. in Plasmonics: Fundamentals and Applications:Chapter 2, 1–2 (Springer, New York, 2007). https://doi.org/10.1007/0-387-37825-1_2
  3. Zhang, J., Zhang, L. & Xu, W. Surface plasmon polaritons: Physics and applications. J. Phys. D. Appl. Phys. 45, 113001 (2012).span> https://doi.org/10.1088/0022-3727/45/11/113001
  4. Naik, G. V, Shalaev, V. M. & Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076
  5. Luo, & Yan, L. Surface plasmon polaritons and its applications. IEEE Photon. J. 4, 590–595 (2012). https://doi.org/10.1109/JPHOT.2012.2189436.
  6. Saleh, E. A. & Teich, M. C. Fundamentals of Photonics. 1114–1115 (2nd ed.) (Wiley press, 2007). https://doi.org/10.1063/1.2809878
  7. Gramotnev, K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010). https://doi.org/10.1038/nphoton.2009.282
  8. Kinsey, N., Ferrera, M., Shalaev, V. M. & Boltasseva, A. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. Opt. Soc. Am. B 32, 121–142 (2015). https://doi.org/10.1364/JOSAB.32.000121
  9. Amoosoltani, N., Yasrebi, N., Farmani, A. & Zarifkar, A. A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation IEEE Sens. J. 20, 9097–9104 (2020). https://doi.org/10.1109/JSEN.2020.2987319
  10. Han, Z. & Bozhevolnyi, S. I. Radiation guiding with surface plasmon polaritons. Reports Prog. Phys. 76, 016402 (2013). https://doi.org/10.1088/0034-4885/76/1/016402
  11. Lu, H., Wang, G. X. & Liu, X.M. Manipulation of light in MIM plasmonic waveguide systems. Chin. Sci. Bull. 58, 3607–3616 (2013). https://doi.org/10.1007/s11434-013-5989-6
  12. Onbasli, M. C. & Okyay, A. K. Nanoantenna couplers for metal-insulator-metal waveguide interconnects. Proc. SPIE 7757, 77573R (2010). https://doi.org/10.1117/12.876177
  13. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017). https://doi.org/10.1038/nphoton.2017.142
  14. Luk’Yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010). https://doi.org/10.1038/nmat2810
  15. Wang, J. et al. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Express 21, 2236–2244 (2013). https://doi.org/10.1364/OE.21.002236
  16. Lovera, A., Gallinet, B., Nordlander, P. & Martin, O. J. F. Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7, 4527–4536 (2013). https://doi.org/10.1021/nn401175j
  17. Fan, J. A. et al. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett. 10, 4680–4685 (2010) . https://doi.org/10.1021/nl1029732
  18. Kazanskiy, N. L., Khonina, S. N. & Butt, M. A. Plasmonic sensors based on metal-insulator-metal waveguides for refractive index sensing applications: A brief Phys. E Low Dimens. Syst. Nanostruct. 117, 113798 (2020). https://doi.org/10.1016/j.physe.2019.113798
  19. Verellen, N. et al. Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods. Nano Lett. 14, 2322–2329 (2014). https://doi.org/10.1021/nl404670x
  20. Huang, Y., Min, C., Dastmalchi, P. & Veronis, G. Slow-light enhanced subwavelength plasmonic waveguide refractive index sensors. Opt. Express 23, 14922 (2015) . https://doi.org/10.1364/OE.23.014922
  21. Luo, S., Li, B., Xiong, D., Zuo, D. & Wang, X. A high performance plasmonic sensor based on metal-insulator-metal waveguide coupled with a double-cavity structure. Plasmonics 12, 223–227 (2017). https://doi.org/10.1007/s11468-016-0253-y
  22. Rakhshani, M. R. & Mansouri-Birjandi, M. A. A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin Photonics Nanostruct. 32, 28–34 (2018). https://doi.org/10.1016/j.photonics.2018.08.002
  23. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity. J. Mod. Opt. 66, 1038–1043 (2019). https:/doi.org/10.1080/09500340.2019.1601272
  24. Butt, M. A., Khonina, S. N. & Kazanskiy, N. L. An array of nano-dots loaded MIM square ring resonator with enhanced sensitivity at NIR wavelength range. Optik 202, 163655 (2020). https://doi.org/10.1016/j.ijleo.2019.163655
  25. Economou,  N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969). https://doi.org/10.1103/PhysRev.182.539
  26. Yang, & Lu, Z. Subwavelength plasmonic waveguides and plasmonic materials. Int. J. Opt. 2012 (2012). https://doi.org/10.1155/2012/258013
  27. Han, Z. & Bozhevolnyi, S. I. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Opt. Express 19, 3251 (2011). https://doi.org/10.1364/OE.19.003251
  28. Zhan, S. et al. Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system. J. Phys. D. Appl. Phys. 47, (2014).https:/doi.org/10.1088/0022-3727/47/20/205101
  29. Piao, X., Yu, S., Koo, S., Lee, K. & Park, N. Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures. Opt. Express 19, 10907–10912 (2011). https://doi.org/10.1364/OE.19.010907
  30. Fu, Y. H., Zhang, J. B., Yu, Y. F. & Luk’yanchuk, B. Generating and manipulating higher order Fano resonances in dual-disk. ACS Nano 6, 5130–5137 (2012). https://doi.org/10.1021/nn3007898
  31. Fang, J., Zhang, M., Zhang, F. & Yu, H. Plasmonic sensor based on Fano resonance. Guangdian Gongcheng/Opto-Electron. Eng. 44, 221–225 (2017). https://doi.org/10.3969/j.issn.1003-501X.2017.02.012
  32. Yu, Y. et al. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry. Laser Photonics Rev. 9, 241–247 (2015). https://doi.org/10.1002/lpor.201400207
  33. Chen, Z. & Yu, L. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system. IEEE Photonics J. 6, 1–8 (2014). https://doi.org/ 1109/JPHOT.2014.2368779
  34. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010). https://doi.org/10.1103/RevModPhys.82.2257
  35. Chen, Z. et al. A refractive index nanosensor based on Fano resonance in the plasmonic waveguide system. IEEE Photon. Technol. Lett. 27, 1695–1698 (2015). https://doi.org/ 1109/LPT.2015.2437850
  36. Wei, W., Yan, X., Shen, B. & Zhang, X. Plasmon-induced transparency in an asymmetric bowtie structure. Nanoscale Res. Lett. 14, 246 (2019). https://doi.org/10.1186/s11671-019-3081-0
  37. Song, H., Singh, R., Cong, L. & Yang, H. Engineering the Fano resonance and electromagnetically induced transparency in near-field coupled bright and dark J. Phys. D. Appl. Phys. 48, 035104 (2015). https://doi.org/10.1088/0022-3727/48/3/035104
  38. Yu, S., Piao, X., Hong, J. & Park, N. Progress toward high-Q perfect absorption : A Fano anti-laser. Phys. Rev. A 92, 011802R (2015). https://doi.org/10.1103/PhysRevA.92.011802
  39. Yan, X. et al. High sensitivity nanoplasmonic sensor based on plasmon-induced transparency in a graphene nanoribbon waveguide coupled with detuned graphene square-nanoring Plasmonics 12, 1449–1455 (2016). https://doi.org/10.1007/s11468-016-0405-0
  40. Chen, J., Gan, F., Wang, Y. & Li, G. Plasmonic sensing and modulation based on Fano resonances. Adv. Opt. Mater. 6, 1701152 (2018). https://doi.org/10.1002/adom.201701152
  41. Deng, Y., Cao, G. & Yang, H. Tunable Fano resonance and high-sensitivity sensor with high figure of merit in plasmonic coupled cavities. Photonics Nanostruct. 28, 45–51 (2018). https://doi.org/10.1016/j.photonics.2017.11.008
  42. Hayashi, S., Nesterenko, D. V. & Sekkat, Z. Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors. Appl. Express 8, 022201 (2015). https://doi.org/10.7567/apex.8.022201
  43. Heuck, M., Kristensen, P. T., Elesin, Y. & Mørk, J. Improved switching using Fano resonances in photonic crystal structures. Opt. Lett. 38, 2466 (2013). https://doi.org/10.1364/OL.38.002466
  44. Chen, Z. et al. Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 320, 6–11 (2014). https://doi.org/10.1016/j.optcom.2013.12.079
  45. Qi, J. et al. Independently tunable double Fano resonances in asymmetric MIM waveguide structure. Opt. Express 22, 14688–14695 (2014). https://doi.org/10.1364/OE.22.014688
  46. Chen, Z.-Q. et al. Fano resonance based on multimode interference in symmetric plasmonic structures and its applications in plasmonic nanosensors. Chin. Lett. 30, 057301 (2013). https://doi.org/10.1088/0256-307x/30/5/057301
  47. Gu, P., Birch, D. J. S. & Chen, Y. Dye-doped polystyrene-coated gold nanorods: Towards wavelength tuneable SPASER. Methods Appl. Fluoresc. 2, 024004 (2014). https://doi.org/10.1088/2050-6120/2/2/024004
  48. Zafar, R. & Salim, M. Enhanced Figure of Merit in Fano resonance-based plasmonic refractive index sensor. IEEE Sens. J. 15, 6313–6317 (2015). https://doi.org/10.1109/JSEN.2015.2455534
  49. Zhang, Y. et al. Evolution of Fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor. Opt. Commun. 370, 203–208 (2016). https://doi.org/10.1016/j.optcom.2016.03.001
  50. Zhang, Y. et al. Ultra-high Sensitivity plasmonic nanosensor based on multiple Fano resonance in the MDM side-coupled cavities. Plasmonics 12, 1099– 1105 (2017). https://doi.org/10.1007/s11468-016-0363-6
  51. Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Transmission line and equivalent circuit models for plasmonic waveguide components. EEE J. Sel. Top. Quantum 14, 1462–1472 (2008). https://doi.org/10.1109/JSTQE.2008.924431
  52. Han, Z., Van, V., Herman, W. N. & Ho, P.-T. Aperture-coupled MIM plasmonic ring resonators with sub-diffraction modal volumes. Opt. Express 17, 12678– 12684 (2009). https://doi.org/10.1364/OE.17.012678
  53. Li, Q., Wang, T., Su, Y., Yan, M. & Qiu, M. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367 (2010). https://doi.org/10.1364/OE.18.008367
  54. Achanta, V.G. Surface waves at metal-dielectric interfaces: Material science perspective. Rev. Phys. 5, 100041 (2020). https://doi.org/10.1016/j.revip.2020.100041
  55. Niu, L., Zhang, J. B., Fu, Y. H., Kulkarni, S. & Luky`anchuk, B. Fano resonance in dual-disk ring plasmonic nanostructures. Opt. Express 19, 22974–22981 (2011). https://doi.org/10.1364/OE.19.022974
  56. Kolwas, K. & Derkachova, A. Impact of the Interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials 10, 1411 (2020). https://doi.org/10.3390/nano10071411
  57. Thomas, A. Plasmonics. in Narrow Plasmon Resonances in Hybrid Systems 7–27 (Springer, 2018). https://doi.org/10.1007/978-3-319-97526-9
  58. Noah, N. M. Design and synthesis of nanostructured materials for sensor applications. J. Nanomater. 2020, 8855321 (2020). https://doi.org/10.1155/2020/8855321
  59. Chen, F. & Yao, D. Realizing of plasmon Fano resonance with a metal nanowall moving along MIM waveguide. Opt. Commun. 369, 72–78 (2016). https://doi.org/10.1016/j.optcom.2016.02.024
  60. Zhang, Y. et al. High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth Appl. Phys. A 125, 13 (2019). https://doi.org/10.1007/s00339-018-2283-0
  61. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019). https://doi.org/10.1016/j.rinp.2019.102420
  62. Naik, G. V., Kim, J. & Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt. Mater. Express 1, 1090–1099 (2011). https://doi.org/10.1364/OME.1.001090
  63. West, R. et al. Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010). https://doi.org/10.1002/lpor.200900055
  64. Deng, Y. et al. Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Sci. Rep. 7, 10639 (2017). https://doi.org/10.1038/s41598-017-10626-1
  65. Zhang, Z. et al. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 18, 116 (2018). https://doi.org/10.3390/s18010116
  66. Chauhan, D., Adhikari, R., Saini, R. K., Chang, S. H. & Dwivedi, R. P. Subwavelength plasmonic liquid sensor using Fano resonance in a ring resonator structure. Optik 223, 165545 (2020). https://doi.org/10.1016/j.ijleo.2020.165545
  67. Zhang, Z., Luo, L., Xue, C., Zhang, W. & Yan, S. Fano resonance based on metal-insulator-metal waveguide-coupled double rectan-gular cavities for plasmonic Sensors 16, 22–24 (2016). https://doi.org/10.3390/s16050642
  68. Chen, Z., Cui, L., Song, X., Yu, L. & Xiao, J. High sensitivity plasmonic sensing based on Fano interference in a rectangular ring waveguide. Opt. Commun. 340, 1–4 (2015). https://doi.org/10.1016/j.optcom.2014.11.081
  69. Tian, J., Wei, G., Yang, R. & Pei, W. Fano resonance and its application using a defective disk resonator coupled to an MDM plasmon waveguide with a nano-wall. Optik 208, 164136 (2020). https://doi.org/10.1016/j.ijleo.2019.164136
  70. Chou Chao, C.-T., Chou Chau, Y.-F & Chiang, H.-P. Multiple Fano resonance modes in an ultra-compact plasmonic waveguide-cavity system for sensing applications. Results 27, 104527 (2021). https://doi.org/10.1016/j.rinp.2021.104527
  71. Rakhshani, M. R. Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups. Photonics 39, 100768 (2020). https://doi.org/10.1016/j.photonics.2020.100768
  72. Chen, Y., Xu, Y. & Cao, J. Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle. Results Phys. 14, 102420 (2019). https://doi.org/10.1016/j.rinp.2019.102420
  73. Ren, X., Ren, K. & Cai, Y. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Appl. Opt. 56, H1–H9 (2017). https://doi.org/10.1364/AO.56.0000H1
  74. Tang, Y. et al. Refractive index sensor based on Fano resonances in metal-insulator-metal waveguides coupled with resonators. Sensors 17, 784 (2017). https://doi.org/10.3390/s17040784
  75. Yang, X., Hua, E., Su, H., Guo, J. & Yan, S. A nanostructure with defect based on Fano resonance for application on refractive-index and temperature sensing. Sensors 20, 4125 (2020). https://doi.org/10.3390/s20154125
  76. Chen, Y. et al. Sensing performance analysis on Fano resonance of metallic double-baffle contained MDM waveguide coupled ring resonator. Opt. Laser Technol. 101, 273–278 (2018). https://doi.org/10.1016/j.optlastec.2017.11.022
  77. Binfeng, Y., Ruohu, Z., Guohua, H. & Yiping, C. Ultra-sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics 11, 1157–1162 (2016). https://doi.org/10.1007/s11468-015-0154-5
  78. Zhang, Q., Huang, X.-G., Lin, X.-S., Tao, J. & Jin, X.-P. A subwavelength coupler-type MIM optical filter. Opt. Express 17, 7549–7554(2009). https://doi.org/10.1364/OE.17.007549
  79. Rakhshani, M. R. Fano resonances based on plasmonic square resonator with high figure of merits and its application in glucose concentrations sensing. Opt. Quantum 51, 287 (2019). https://doi.org/10.1007/s11082-019-2007-5
  80. Chen, F., Zhang, H., Sun, L., Li, J. & Yu, C. Temperature tunable Fano resonance based on ring resonator side coupled with a MIM waveguide. Opt. Laser Technol. 116, 293–299 (2019). https://doi.org/10.1016/j.optlastec.2019.03.044
  81. He, Y. et al. Convert from Fano resonance to electromagnetically induced transparency effect using anti-symmetric H-typed metamaterial resonator. Opt. Quantum Electron. 52, 391 (2020). https://doi.org/10.1007/s11082-020-02513-3
  82. Dionne, J. et al. A. Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quantum Electron. 16, 295–306 (2010). https://doi.org/10.1109/JSTQE.2009.2034983
  83. Zhan, S. et al. Tunable nanoplasmonic sensor based on the asymmetric degree of Fano resonance in MDM waveguide. Sci. Rep. 6, 22428 (2016). https://doi.org/10.1038/srep22428
  84. Guo, Z. et al. Plasmonic multichannel refractive index sensor based on subwavelength tangent-ring metal–insulator–metal waveguide. Sensors 18, 1348 (2018). https://doi.org/10.3390/s18051348
  85. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Multiple Fano resonances in a coupled plasmonic resonator system. J. Appl. Phys. 126, 083102 (2019). https://doi.org/10.1063/1.5105358
  86. Chen, Z., Song, X., Duan, G., Wang, L. & Yu, L. Multiple Fano resonances control in MIM side-coupled cavities systems. IEEE Photonics J. 7, 1–10 (2015). https://doi.org/10.1109/JPHOT.2015.2433012
  87. Zhang, X. et al. Refractive Index Sensor based on Fano resonances in plasmonic waveguide with dual side-coupled ring resonators. Photonic Sens. 8, 367– 374 (2018). https://doi.org/10.1007/s13320-018-0509-6
  88. Yang, X. et al. Fano resonance in a MIM waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application. Sensors 19, 4972 (2019). https://doi.org/10.3390/s19224972
  89. Wang, W.-D., Zheng, L. & Qi, J.-G. High Q-factor multiple Fano resonances for high-sensitivity sensing in all-dielectric nanocylinder dimer metamaterials. Appl. Express 12, 075002 (2019). https://doi.org/10.7567/1882-0786/ab206a
  90. Špačková, B., Wrobel, P., Bocková, M. & Homola, J. Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104, 2380–2408 (2016). https://doi.org/10.1109/JPROC.2016.2624340
  91. Li, S. et al. Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system. Opt. Express 25, 3525–3533 (2017). https://doi.org/10.1364/OE.25.003525
  92. Butt, M. A., Kazanskiy, N. L. & Khonina, S. N. Nanodots decorated asymmetric metal-insulator-metal waveguide resonator structure based on Fano resonances for refractive index sensing Laser Phys. 30, (2020). https://doi.org/10.1088/1555-6611/ab9090
  93. Chen, Z., Cao, X. & Song, X. Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11, 307– 313 (2016). https://doi.org/10.1007/s11468-015-0035-y
  94. Wang, Y., Li, S., Zhang, Y. & Yu, L. Independently formed multiple Fano resonances for ultra-high sensitivity plasmonic nanosensor. Plasmonics 13, 107– 113 (2018). https://doi.org/10.1007/s11468-016-0489-6
  95. Chen, J. et al. Fano resonance in a MIM waveguide with double symmetric rectangular stubs and its sensing characteristics. Opt. Commun. 482, 126563 (2021). https://doi.org/10.1016/j.optcom.2020.126563
  96. Chen, J. et al. Coupled-resonator-induced Fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8, 1627–1631 (2013). https://doi.org/10.1007/s11468-013-9580-4
  97. Wen, K. et al. Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10, 27–32 (2015). https://doi.org/10.1007/s11468-014-9772-6
  98. Yang, J. et al. Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor. Plasmonics 12, 1665–1672 (2017). https://doi.org/10.1007/s11468-016-0432-x
  99. Wen, K., Chen, L., Zhou, J., Lei, L. & Fang, Y. A Plasmonic chip-scale refractive index sensor design based on multiple Fano reso-nances. Sensors 18, 3181 (2018). https://doi.org/10.3390/s18103181
  100. Liu, Y. et al. Theoretical design of plasmonic refractive index sensor based on the fixed band detection. IEEE J. Sel. Top. Quantum Electron. 25, 1–6 (2019). https://doi.org/10.1109/JSTQE.2018.2827661
  101. Qiao, L., Zhang, G., Wang, Z., Fan, G. & Yan, Y. Study on the Fano resonance of coupling M-type cavity based on surface plasmon polaritons. Opt. Commun. 433, 144–149 (2019). https://doi.org/10.1016/j.optcom.2018.09.055
  102. Xiao, G. et al. High sensitivity plasmonic sensor based on Fano resonance with inverted u-shaped resonator. Sensors 21, 1–12 (2021). https://doi.org/10.3390/s21041164
  103. Li, C. et al. Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor. IEEE Photonics J. 9, 1– 9 (2017). https://doi.org/10.1109/JPHOT.2017.2763781
  104. Shi, X. et al. Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system. Opt. Commun. 427, 326–330 (2018). https://doi.org/10.1016/j.optcom.2018.06.042
  105. Chen, Z. et al. Sensing characteristics based on Fano resonance in rectangular ring waveguide. Opt. Commun. 356, 373–377 (2015). https://doi.org/10.1016/j.optcom.2015.08.020
  106. Wang, M., Zhang, M., Wang, Y., Zhao, R. & Yan, S. Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19, 791 (2019). https://doi.org/10.3390/s19040791
  107. Yu, S., Zhao, T., Yu, J. & Pan, D. Tuning multiple fano resonances for on-chip sensors in a plasmonic system. Sensors 19, 1559 (2019). https://doi.org/10.3390/s19071559
  108. Rahmatiyar, M., Danaie, M. & Afsahi, M. Employment of cascaded coupled resonators for resolution enhancement in plasmonic refractive index sensors. Opt. Quantum 52, 153 (2020). https://doi.org/10.1007/s11082-020-02266-z
  109. Li, Z. et al. Manipulation of multiple Fano resonances based on a novel chip-scale MDM structure. IEEE Access 8, 32914–32921 (2020). https://doi.org/10.1109/ACCESS.2020.2973417
  110. Fang, Y. et al. Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photon. J. 11, 1–8 (2019). https://doi.org/1109/JPHOT.2019.2914483
  111. Wang, Q., Ouyang, Z., Sun, Y., Lin, M. & Liu, Q. Linearly tunable Fano resonance modes in a plasmonic nanostructure with a waveguide loaded with two rectangular cavities coupled by a circular Nanomaterials 9, 678 (2019). https://doi.org/10.3390/nano9050678
  112. Su, H. et al. Sensing features of the Fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity. Appl. Sci. 10, 5096 (2020). https://doi.org/10.3390/app10155096
  113. Wang, S., Zhao, T., Yu, S. & Ma, W. High-performance nano-sensing and slow-light applications based on tunable multiple Fano resonances and EIT-like effects in coupled plasmonic resonator IEEE Access 8, 40599–40611 (2020). https://doi.org/10.1109/ACCESS.2020.2974491
  114. Li, Z. et al. Control of multiple Fano resonances based on a subwavelength MIM coupled cavities system. IEEE Access 7, 59369–59375 (2019). https://doi.org/10.1109/ACCESS.2019.2914466
  115. El Haffar, R., Farkhsi, A. & Mahboub, O. Optical properties of MIM plasmonic waveguide with an elliptical cavity resonator. Appl. Phys. A 126, 486 (2020). https://doi.org/10.1007/s00339-020-03660-w
  116. Hassan, M. F., Hasan, M. M., Ahmed, M. I. & Sagor, R.H. Numerical investigation of a plasmonic refractive index sensor based on rectangular MIM topology. in 2020 International Seminar on Intelligent Technology and its Applications ISITIA 2020, 77–82 (IEEE, 2020). https://doi.org/10.1109/ISITIA49792.2020.9163755
  117. Wang, Y. et al. Design of sub wavelength-grating-coupled Fano resonance sensor in mid-infrared. Plasmonics 16, 463–469 (2021). https://doi.org/10.1007/s11468-020-01313-5
  118. Chen, Y., Chen, L., Wen, K., Hu, Y. & Lin, W. Double Fano resonances based on different mechanisms in a MIM plasmonic system. Photonics Nanostruct. 36, 100714 (2019). https://doi.org/10.1016/j.photonics.2019.100714
  119. Chen, Z., Chen, J., Yu, L. & Xiao, J. Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator. Plasmonics 10, 131–137 (2015). https://doi.org/10.1007/s11468-014-9786-0
  120. Pang, S. et al. The sensing characteristics based on electro-magnetically-induced transparency-like response in double-sided stub and a nano-disk waveguide Mod. Phys. Lett. B 31, 1–9 (2017). https://doi.org/10.1142/S0217984917501019
  121. Zhang, Z. D. et al. Electromagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics 12, 1007–1013 (2017). https://doi.org/10.1007/s11468-016-0352-9
  122. Akhavan, A., Ghafoorifard, H., Abdolhosseini, S. & Habibiyan, H. Metal-insulator-metal waveguide-coupled asymmetric resonators for sensing and slow light IET Optoelectron. 12, 220–227 (2018). https://doi.org/10.1049/iet-opt.2018.0028
  123. Shi, H. et al. A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator. Micromachines 12, 495 (2021). https://doi.org/10.3390/mi12050495
  124. Meng, Z.-M. & Qin, F. Realizing prominent Fano resonances in metal-insulator-metal plasmonic Bragg gratings side-coupled with plasmonic nanocavities. Plasmonics 13, 2329–2336 (2018). https://doi.org/10.1007/s11468-018-0756-9
  125. Tathfif, I., Rashid, K.S., Yaseer, A. A. & Sagor, R.H. Alternative material titanium nitride based refractive index sensor embedded with defects: An emerging solution in sensing Results Phys. 29, 104795 (2021). https://doi.org/10.1016/j.rinp.2021.104795
  126. Li, Q. et al. Active control of asymmetric Fano resonances with graphene–silicon-integrated terahertz metamaterials. Adv. Mater. Technol. 5, 1–7 (2020). https://doi.org/10.1002/admt.201900840
  127. Ge, J. et al. Tunable dual plasmon-induced transparency based on a monolayer graphene metamaterial and its terahertz sensing performance. Opt. Express 28, 31781–31795 (2020). https://doi.org/10.1364/OE.405348
Go to article

Authors and Affiliations

Rammani Adhikari
1 2
Diksha Chauhan
1
Genene T. Mola
3
Ram P. Dwivedi
1

  1. Faculty of Engineering and Technology, Shoolini University, Bajhol, (HP) 173229, India
  2. School of Engineering, Pokhara University, Pokhara Metropolitan City 30, Kaski, Nepal
  3. School of Chemistry and Physics, University of Kwazulu Natal, Scottsville, South Africa
Download PDF Download RIS Download Bibtex

Abstract

This research paper discusses an analytical approach to designing the active region of light emitting diodes to enhance its performance. The layers in the active region were modified and the effects of changing the width of quantum well and barrier layers in a multi-quantum light emitting diode on the output power and efficiency have been investigated. Also, the ratio of the quantum well width to the B layer width was calculated and proposed in this research paper. The study is carried out on two different LED structures. In the first case, the width of the quantum well layers is kept constant while the width of the B layers is varied. In the second case, both the quantum well and B layer widths are varied. Based on the simulation results, it has been observed that the LED power efficiency increases considerably for a given quantum well to B layers width ratio without increasing the production complexity. It is also seen that for a desired power efficiency the width of quantum well should be between 0.003 µm and 0.006 µm, and the range of B width (height) should be 2.2 to 6 times the quantum well width. The proposed study is carried out on the GaN-AlGaN-based multi-quantum well LED structure, but this study can be extended to multiple combinations of the semiconductor structures.
Go to article

Bibliography

  1. Lenk, R. & Lenk, C. Practical Lighting Design with LEDs. (2nd. ed.) (John Wiley & Sons, Ltd., 2017).
  2. , S. M. & Kwok, K. Ng, Physics of Semiconductor Devices. (4th ed.) (Wiley-Interscience, 2006).
  3. Van Zeghbroeck, B. Principles Of Semiconductor Devices. (Prentice-Hall, 2006).
  4. Schulte-Römer, N., Meier, J., Söding, M. & Dannemann, E. The LED paradox: how light pollution challenges experts to reconsider sustainable lighting. Sustainability 11, 6160 (2019). https://doi.org/10.3390/su11216160
  5. Sharma, L, & Sharma, R. Optimized design of narrow spectral linewidth nonpolar m-plane InGaN/GaN micro-scale light-emitting diode. J. Opt. 49, 397–402 (2020). https://doi.org/10.1007/s12596-020-00632-4
  6. Rashidi, A. et al. High-speed nonpolar InGaN/GaN LEDs for visible-light communication. IEEE Photonics Technol. Lett. 29, 381–384 (2017). https://doi.org/10.1109/LPT.2017.2650681
  7. Shi, J. et al. III-Nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communicatio. IEEE Electron. Device Lett. 37, 894–897 (2016). https://doi.org/10.1109/LED.2016.2573265
  8. Gong, M. et al. Semi-polar (20–21) InGaN/GaN multiple quantum wells grown on patterned sapphire substrate with internal quantum efficiency up to 52 percent. Appl. Phys. Express. 13, 091002 (2020). https://doi.org/10.35848/1882-0786/abac91
  9. Rouet-Leduc, B., Barros, K., Lookman, T. & Humphreys, C. J. Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning. Sci. Rep. 6, 24862 (2016). https://doi.org/10.1038/srep24862
  10. Piprek, J. Simulation-based machine learning for optoelectronic device design: perspectives, problems, and prospects. Opt. Quantum Electron. 53, 175 (2021). https://doi.org/10.1007/s11082-021-02837-8
  11. Usman, M., Munsif, M. & Abdur-Rehman, A., High internal quantum efficiency of green GaN-based light-emitting diodes by thickness-graded last well/last B and composition-graded electron blocking layer Opt. Quantum Electron. 52, 320 (2020). https://doi.org/10.1007/s11082-020-02436-z
  12. Song, K., Mohseni, M. & Taghipour, F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection. Water Res. 94, 341–349 (2016). https://doi.org/10.1016/j.watres.2016.03.003
  13. Liao, Ch.-L. et al. High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer. IEEE Electron. Device Lett. 34, 611–613 (2013). https://doi.org/10.1109/LED.2013.2252457
  14. Quan, Z. et al. High bandwidth freestanding semipolar (11–22) InGaN/GaN light-emitting diodes. IEEE Photon. J. 8, (2016). https://doi.org/10.1109/JPHOT.2016.2596245
  15. Shi, J.-W. et al. III-nitride-based cyan light-emitting diodes with GHz bandwidth for high-speed visible light communication. IEEE Electron. Device Lett. 37, 894–897 (2016). https://doi.org/10.1109/LED.2016.2573265
Go to article

Authors and Affiliations

Lokesh Sharma
1
Ritu Sharma
1

  1. Department of Electronics and Communication Engineering, Malaviya, National Institute of Technology, Jaipur, Rajasthan 302017, India
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the effect of an indoor visible light communication channel is studied. Moreover, the analysis of the received power distribution of the photodiode in the line of sight and the first reflection of the channel without line of sight with several parameters is simulated. Two different waveforms are explained in detail. Orthogonal frequency division multiplexing has been widely adopted in radio frequency and optical communication systems. One of the most important disadvantages of the orthogonal frequency division multiplexing signal is the high peak-to-average power ratio. Therefore, it is important to minimize the peak-to-average power ratio in the visible light communication systems more than in radio-frequency wireless applications. In the visible light communication systems, the high peak-to-average power ratio produces a high DC bias which reduces power efficiency of the system. A discrete Fourier transform spread orthogonal frequency division multiplexing is proposed to be used in wireless communication systems; its ability to minimize peak-to-average power ratio has been tested. The analysis of two different subcarrier allocation methods for the discrete Fourier transform-spread subcarriers, as well as the examination of two distinct subcarrier allocation strategies, distributed and localized mapping, are investigated and studied. The effects of an accurate new sub-band mapping for the localized discrete Fourier transform spread orthogonal frequency division multiplexing scheme are presented in this paper. The light-fidelity system performance of the orthogonal frequency division multiplexing and discrete Fourier transform spread orthogonal frequency division multiplexing with different sub-mapping techniques are simulated with Matlab™. A system performance size of bit error rate and peak-to-average power ratio are obtained, as well.
Go to article

Bibliography

  1. Armstrong, OFDM for optical communications. J. Light. Technol. 27, 189–204 (2009). https://doi.org/10.1109/JLT.2008.2010061
  2. Noé, Essentials of Modern Optical Fiber Communication. (Springer International Publishing, 2010). https://doi.org/10.1007/978-3-642-04872-2
  3. Sufyan Islim, M. & Haas, H. Modulation techniques for Li⁃ ZTE Commun. 14, 29–40 (2016).
  4. DoCoMo, NTT, NEC, SHARP, R1-050702: DFT-spread OFDM with pulse shaping filter in frequency domain in evolved UTRA uplink (2005).
  5. Myung, H. G., Lim, J. & Goodman, D. J. (2006). Peak-to-average power ratio of single carrier fdma signals with pulse shaping. in IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications 1–5 (IEEE, Helsinki, Finland 2006). https://doi.org/10.1109/PIMRC.2006.254407
  6. Lomba, C., Valades, R. & Duarte, A. Efficient simulation of the impulse response of the indoor wireless optical channel. Int. J. Commun. Syst. 13, 537–549 (2000). https://doi.org/10.1002/1099-1131(200011/12)13:7/8%3C537::AID-DAC455%3E3.0.CO;2-6
  7. Haas, H. et al. Introduction to indoor networking concepts and challenges in Li-Fi., J. Opt. Commun. Netw. 12, A190–A203 (2020). https://doi.org/10.1364/JOCN.12.00A190
  8. Alonso-Gonzales, I. et al. Discrete indoor three-dimensional locali-zation system based on neural networks using visible light communi-cation. Sensors 18, 1040 (2018). https://doi.org/10.3390/s18041040
  9. Wu, X., Safari, M. & Haas, H. Access point selection for hybrid li-fi and Wi-Fi networks. IEEE Trans. Commun. 65, 5375–5385 (2017). https://doi.org/10.1109/TCOMM.2017.2740211
  10. Barry, J. R. et al. Simulation of multipath impulse response for indoor wireless optical channels. IEEE J. Sel. Areas Commun. 11, 367–379 (1993). https://doi.org/10.1109/49.219552
  11. Zeng, L. et al. improvement of date rate by using equalization in an indoor visible light communication system. in 4th IEEE Inter-national Conference on Circuits and Systems for 678–682 (IEEE, Shanghai, China 2008). https://doi.org/10.1109/ICCSC.2008.149
  12. Kahn, J. & Barry, J. R. Wireless infrared communications. Proc. IEEE 85, 265–298 (1997). https://doi.org/10.1109/5.554222
  13. Jungnickel, V. et al. A physical model of the wireless infrared communication channel. IEEE J. Sel. Areas Commun. 20, 631–640 (2002). https://doi.org/10.1109/49.995522
  14. Zhan, X. et al. Comparison and analysis of DCO-OFDM, ACO-OFDM and ADO-OFDM in IM/DD systems. Appl. Mech. Mater. 701-702, 1059–1062 (2015). https://doi.org/10.4028/www.scientific.net/AMM.701-702.1059
  15. Zhang, M. & Zhang, Z. An optimum DC-biasing for DCO-OFDM system. IEEE Commun. Lett. 18, 1351–1354 (2014) https:/doi.org/10.1109/LCOMM.2014.2331068
  16. Carruthers, J. B. & Kahn, J. Multiple subcarrier modulation for nondirected wireless infrared communication. IEEE J. Sel. Areas Commun. 14, 538–546 (1996). https://doi.org/10.1109/49.490239
  17. Lee, S. H., Jung, S.-Y. & Kwon, J. K. Modulation and coding for dimmable visible light communication. IEEE Commun. Mag. 53, 136–143 (2015). https://doi.org/10.1109/MCOM.2015.7045402
  18. Acolatse , Bar-Ness, Y. & Wilson, S. K. Novel techniques of single carrier frequency domain equalization for optical wireless communications. EURASIP J.Adv. Signal Process. 2011, 393768 (2011). https://doi.org/10.1155/2011/393768
  19. Myung, H. G., Lim, J. & Goodman, D. J. Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Mag. 1, 30–38 (2006). https://doi.org/10.1109/MVT.2006.307304
  20. Sorger, U., De Broeck, I. & Schnell, M. Interleaved FDMA-a new spread-spectrum multiple-access scheme. in 1998 IEEE International Conference on Communications. Conference Record (ICC). Affiliated with SUPERCOMM'98. 2, 1013–1017 (IEEE, Atlanta, USA 1998). https://doi.org/10.1109/ICC.1998.685165
  21. Wu, Z.-Y. et al. Optimized DFT-spread OFDM based visible light communications with multiple lighting sources. Opt. Express 25, 26468–26482 (2017). https:/doi.org/10.1364/OE.25.026468
  22. Ch., Zhang, H. & Xu, W. On visible light communication using led array with DFT-spread OFDM. in 2014 IEEE International Conference on Communications (ICC) 3325–33302014 (IEEE, Sydney, Australia 2014). https://doi.org/10.1109/ICC.2014.6883834
  23. Puntsri, K. & Ekkaphol, K. Experimental comparison of OFDM SC-FDM and PAM for low speed optical wireless communication systems. In 7th International Electrical Engineering Congress (iEECON) 1–4 (IEEE, Hua Hin, Thailand 2019). https://doi.org/10.1109/iEECON45304.2019.8938969
Go to article

Authors and Affiliations

Saleh Hussin
1
Eslam M. Shalaby
2

  1. Electronics and Communication Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, 44519 Egypt
  2. Electronics and Communication Engineering Department, Higher Technological institute, 10th of Ramadan City, Megawra 1, 44629 Egyp
Download PDF Download RIS Download Bibtex

Abstract

In perovskite solar cells, series of symmetrical and asymmetrical imino-naphthalimides were tested as hole-transporting materials. The compounds exhibited high thermal stability at the temperature of the beginning of thermal decomposition above 300 °C. Obtained imino-naphthalimides were electrochemically active and their adequate energy levels confirm the application possibility in the perovskite solar cells. Imino-naphthalimides were absorbed with the maximum wavelength in the range from 331 nm to 411 nm and emitted light from the blue spectral region in a chloroform solution. The presented materials were tested in the perovskite solar cells devices with a construction of FTO/b-TiO2/m-TiO2/perovskite/ HTM/Au. For comparison, the reference perovskite cells were also performed (without hole-transporting materials layer). Of all the proposed materials tested as hole-transporting materials, the bis-(imino-naphthalimide) containing in core the triphenylamine structure showed a power conversion efficiency at 1.10% with a short-circuit current at 1.86 mA and an open-circuit voltage at 581 mV.
Go to article

Bibliography

  1. Gopikrishna, P., Meher, N. & Iyer P. K. Functional 1,8-naphthalimide AIE/AIEEgens: recent advances and prospects. ACS Appl. Mater. Interfaces 10, 12081–12111 (2018). https://doi.org/10.1021/acsami.7b14473
  2. Banerjee, S. et al. Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chem. Soc. Rev. 42, 1601–1618 (2013). https://doi.org/10.1039/C2CS35467E
  3. Poddar, M., Sivakumar, G. & Misra, R. Donor-acceptor substituted 1,8-naphthalimides: design, synthesis, and structure–property relationship J. Mater. Chem. C 7, 14798–14815 (2019). https://doi.org/10.1039/C9TC02634G
  4. Tomczyk, M. D. & Walczak K. Z. 1,8-Naphthalimide based DNA intercalators and anticancer agents. A systematic review from 2007 to 2017. Eur. J. Med. Chem. 159, 393–422 (2018). https://doi.org/10.1016/j.ejmech.2018.09.055
  5. Gan, J.-A. et al. 1,8-naphthalimides for non-doping OLEDs: the tunable emission color from blue, green to red. J. Photochem. Photobiol. 162, 399–406 (2004). https://doi.org/10.1016/S1010- 6030(03)00381-2
  6. Luo, S. et al. Novel 1,8-naphthalimide derivatives for standard-red organic light-emitting device applications. J. Mater. Chem. C 3, 525–5267 (2015). https://doi.org/10.1039/C5TC00409H
  7. Zhang, X. et al. A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage, J. Mater. Chem. C 3, 6979–6985 (2015). https://doi.org/10.1039/C5TC01148E
  8. Do, T. T. et al. Molecular engineering strategy for high efficiency fullerene-free organic solar cells using conjugated 1,8-naphthal-imide and fluorenone building blocks. ACS Appl. Mater. Interfaces 9, 16967–16976 (2017). https://doi.org/10.1021/acsami.6b16395
  9. Yadagiri, B. et al. An all-small-molecule organic solar cell derived from naphthalimide for solution- processed high-efficiency non-fullerene acceptors. J. Mater. Chem. C 7, 709–717 (2019). https://doi.org/10.1039/C8TC05692G
  10. Torres-Moya, I. et al. Synthesis of D-π-A high-emissive 6-arylalkynyl-1,8-naphthalimides for application in organic field-effect transistors and optical waveguides Dyes and Pigm. 191, 109358 (2021). https://doi.org/10.1016/j.dyepig.2021.109358
  11. Gudeika, D. A review of investigation on 4-substituted 1,8-naphthalimide derivatives. Synth. Met. 262, 116328 (2020). https://doi.org/10.1016/j.synthmet.2020.116328
  12. Xie, L. et al. 5-Non-amino aromatic substituted naphthalimides as potential antitumor agents: Synthesis via Suzuki reaction, antiproliferative activity, and DNA-binding behavior. Bioorg. Med. Chem. 19, 961–967 (2011). https://doi.org/10.1016/j.bmc.2010.11.055
  13. Rykowski, S. et al. Design, synthesis, and evaluation of novel 3-carboranyl-1,8-naphthalimide derivatives as potential anticancer agents. Int. J. Mol. Sci. 22, 2772 (2021). https://doi.org/10.3390/ijms22052772
  14. Sivakumar, G. et al. Design, synthesis and characterization of 1,8-naphthalimide based fullerene derivative as electron transport material for inverted perovskite solar cells. Synth. Met. 249, 25–30 (2019). https://doi.org/10.1016/j.synthmet.2019.01.014
  15. Li, L. et al. Self-assembled naphthalimide derivatives as an efficient and low-cost electron extraction layer for n-i-p perovskite solar cells. Chem. Commun. 55, 13239–13242 (2019). https://doi.org/10.1039/C9CC06345E
  16. Agarwala, P. & Kabra, D. A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A 5, 1348–1373 (2017). https://doi.org/10.1039/C6TA08449D
  17. Duan, L. et al. Facile synthesis of triphenylamine-based hole-trans-porting materials for planar perovskite solar cells. J. Power Sources 435, 226767 (2019). https://doi.org/10.1016/j.jpowsour.2019.226767
  18. Wu, G. et al. Triphenylamine-based hole transporting materials with thiophene-derived bridges for perovskite solar cells. Synth. Met. 261, 116323 (2020). https://doi.org/10.1016/j.synthmet.2020.116323
  19. Rezaei, F. & Mohajeri, A. Molecular designing of triphenylamine-based hole-transporting materials for perovskite solar cells Sol. Energy 221, 536–544 (2021). https://doi.org/10.1016/j.solener.2021.04.055
  20. Li, M. et al. Facile donor (D)-π-D triphenylamine-based hole transporting materials with different π-linker for perovskite solar cells. Sol. Energy 195, 618–625 (2020). https://doi.org/10.1016/j.solener.2019.11.071
  21. Bogdanowicz, K. A. et al. Selected electrochemical properties of 4,4’-((1E,1’E)-((1,2,4- Thiadiazole-3,5-diyl)bis(azaneylylidene))-bis(methaneylylidene))bis(N,N-di-p-tolylaniline) towards perovskite solar cells with 14.4% efficiency. Materials 13, 2440 (2020). https://doi.org/10.3390/ma13112440
  22. Ma, B.-B. et al. Visualized acid–base discoloration and optoelectronic investigations of azines and azomethines having double 4-[N,N-di(4-methoxyphenyl)amino]phenyl terminals. J. Mater. Chem. C 3, 7748–7755 (2015). https://doi.org/10.1039/C5TC00909J
  23. Korzec, M. et al. Synthesis and thermal, photophysical, electrochemical properties of 3,3-di[3- arylcarbazol-9-ulmethyl]oxetane derivatives. Materials 14, 5569 (2021). https://doi.org/10.3390/ma14195569
  24. Pająk, A. K. et al. New thiophene imines acting as hole transporting materials in photovoltaic devices. Energy Fuels 34, 10160–10169 (2020). https://doi.org/10.1021/acs.energyfuels.0c01698
  25. Kula, S. et al. 9,9’-bifluorenylidene derivatives as novel hole-transporting materials for potential photovoltaic applications. Dyes Pigm. 174, 108031 (2020). https://doi.org/10.1016/j.dyepig.2019.108031
  26. Derkowska-Zielinska, B. et al. Photovoltaic cells with various azo dyes as components of the active layer. Sol. Energy 203, 19–24 (2020). https://doi.org/10.1016/j.solener.2020.04.022
  27. Nitschke, P. et al. Spectroscopic and electrochemical properties of thiophene-phenylene based Schiff-bases with alkoxy side groups, towards photovoltaic applications. Spectrochim. Acta A 248, 119242 (2021). https://doi.org/10.1016/j.saa.2020.119242
  28. Sęk, D. et al. Polycyclic aromatic hydrocarbons connected with Schiff base linkers: Experimental and theoretical photophysical characterization and electrochemical properties Spectrochim. Acta A, 175, 168–176 (2017). https://doi.org/10.1016/j.saa.2016.12.029
  29. Korzec, M. et al. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. Spectrochim. Acta A 238, 118442 (2020). https://doi.org/10.1016/j.saa.2020.118442
  30. Kotowicz, S. et al. Novel 1,8-naphthalimides substituted at 3-C position: Synthesis and evaluation of thermal, electrochemical and luminescent properties. Dyes Pigm. 158, 65–78 (2018). https://doi.org/10.1016/j.dyepig.2018.05.017
  31. Korzec, M. et al. Novel b-ketoenamines versus azomethines for organic electronics: characterization of optical and electrochemical properties supported by theoretical studies. J Mater Sci, 55, 3812–3832 (2020). https://doi.org/10.1007/s10853-019-04210-3
  32. Kotowicz, S. et al. New acceptor–donor–acceptor systems based on bis-(imino-1,8- naphthalimide). Materials 14, 2714 (2021). https://doi.org/10.3390/ma14112714
  33. Costa, J. S. C. et al. Optical band gaps of organic semiconductor materials Opt. Mater. 58, 51–60 (2016). https://doi.org/10.1016/j.optmat.2016.03.041
  34. Nitschke, P. et al. The effect of alkyl substitution of novel imines on their supramolecular organization, towards photovoltaic applications, Sol. Energy 221, 536–544.https://doi.org/10.1016/j.solener.2021.04.055
  35. Misra, A. et al. Electrochemical and optical studies of conjugated polymers for three primary colours. Indian J. Pure Appl. Phys. 43, 921–925 (2005).
  36. Kim, K. et al. Direct p-doping of Li-TFSI for efficient hole injection: Role of polaronic level in molecular doping. Appl. Surf. Sci. 480, 565–571 (2019).https://doi.org/10.1016/j.apsusc.2019.02.248
  37. Singh, R. & Parashar, M. Origin of Hysteresis in Perovskite Solar Cells in Soft-Matter Thin Film Solar Cells: Physical Processes and Device Simulation (AIP Publishing, on-line) (New York, 2020). https://doi.org/10.1063/9780735422414_001
  38. Li, B. et al. Insights into the hole transport properties of LiTFSI-doped spiro-OMeTAD films through impedance spectroscopy. J. Appl. Phys.128, 085501 (2020).https://doi.org/10.1063/5.0011868
  39. Abate, A. et al. Lithium salts “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Phys. Chem. Chem. Phys., 15, 2572–2579 (2013). https://doi.org/10.1039/C2CP44397J
  40. Wang, S., Yan, W. & Meng, Y. S., Spectrum-dependent spiro- OMeTAD oxidization mechanism in perovskite solar cells. Appl. Mater. Interfaces 7, 24791–24798 (2015).https://doi.org/10.1021/acsami.5b07703
Go to article

Authors and Affiliations

Mateusz Korzec
1
ORCID: ORCID
Sonia Kotowicz
1
ORCID: ORCID
Agnieszka K. Pająk
1 2
ORCID: ORCID
Ewa Schab-Balcerzak
1 3
ORCID: ORCID

  1. Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 9 Szkolna St., 40-007 Katowice, Poland
  2. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymont St., 30-059 Krakow, Poland
  3. Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowska St., 41-819 Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

The technology of manufacturing silicon solar cells is complex and consists of several stages. The final steps in succession are the deposition of antireflection layer and discharge contacts. Metallic contacts are usually deposited by the screen printing method and then, fired at high temperature. Therefore, this article presents the results of a research on the effect of heat treatment on the properties of the Al2O3 thin film previously deposited by the atomic layer deposition method. It works well as both passivating and antireflection coating. Moreover, heat treatment affects the value of the cell short-circuit current and, thus, its efficiency. The surface morphology, optical and electrical properties were investigated, describing the influence of heat treatment on the properties of the deposited layers and the manufactured solar cells.
Go to article

Bibliography

  1. Marks-Bielska, R. et al. The importance of renewable energy sources in Poland’s energy Energies 13, 1–23 (2020). https://doi.org/10.3390/en13184624
  2. Asfar, Y. et al. Evaluating Photovoltaic Performance Indoors. in 2012 38th IEEE Photovoltaic Specialists Conference (PVSC). 1948–1951 (IEEE, Austin, USA 2012).
  3. Ranjan, S. et al. Silicon solar cell production. Comput. Chem. Eng. 35, 1439–1453 (2011). https://doi.org/10.1016/j.compchemeng.2011.04.017
  4. Drygala, A. et al. Influence of laser texturization surface and atomic layer deposition on optical properties of polycrystalline silicon. Int. J. Hydrog. Energy 41, 7563–7567 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.180
  5. Hou, G., Garcia, I. & Rey-Stolle, I. High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Sol. Energy 217, 29–39 (2021). https://doi.org/10.1016/j.solener.2021.01.060
  6. Dobrzański, L. A., Szindler, M., Drygała, A. & Szindler, M.M., Silicon solar cells with Al2O3 antireflection coating. Cen. Eur. J. Phys. 12, 666–670 (2014). https://doi.org/10.2478/s11534-014-0500-9
  7. Sarkar, S. & Pradhan, S. K. Silica-based antireflection coating by glancing angle deposition. Surf. Eng. 35, 982–985. (2019). https://doi.org/10.1080/02670844.2019.1596578
  8. Szindler, M. Szindler, M. M., Boryło, P. & Jung, T. Structure and optical properties of TiO2 thin films deposited by ALD Open Phys. 15, 1067–1071 (2017). https://doi.org/10.1515/phys-2017-0137
  9. Król, K. et al. Influence of atomic layer deposition temperature on the electrical properties of Al/ZrO2/SiO2/4H-SiC metal-oxide semiconductor structures. Phys. Status Solidi (A) 215, 1–7 (2018). https://doi.org/10.1002/pssa.201700882
  10. Boryło, P. et al. Structure and properties of Al2O3 thin films deposited by ALD proces. Vacuum 131, 319–326 (2016). https://doi.org/10.1016/j.vacuum.2016.07.013
  11. Drabczyk, K. et al. Comparison of diffused layer prepared using liquid dopant solutions and pastes for solar cell with screen printed electrodes. Microelectron. Int. 33, 167–171 (2016). https://doi.org/10.1108/MI-03-2016-0031
  12. Öğütman, K. et al. Spatial atomic layer deposition of aluminum oxide as a passivating hole contact for silicon solar Phys. Status Solidi (A) 217, 1–6 (2020). https://doi.org/10.1002/pssa.202000348
  13. Drabczyk, K. et al. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts. Sol. Energy 126, 14–21 (2016). https://doi.org/10.1016/j.solener.2015.12.029
  14. Park, H. H. Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials 11, 1–22 (2021). https://doi.org/10.3390/nano11010088
  15. Hossain, A. et al. Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Materials 2, 204–226 (2020). https://doi.org/10.1016/j.nanoms.2019.10.001
  16. Werner, F. et al. High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Procedia 8, 301–306 (2011). https://doi.org/10.1016/j.egypro.2011.06.140
  17. Werner, F., Cosceev, A. & Schmidt, J. Silicon surface passivation by Al2O3: Recombination parameters and inversion layer solar cells. Energy Procedia 27, 319–324 (2012). https://doi.org/10.1016/j.egypro.2012.07.070
  18. Swatowska, B. Antireflective and passivation properties of the photovoltaic structure with Al2O3 layer of different thickness. Microelectron. Int. 35, 177–180 (2018). https://doi.org/10.1108/MI-04-2018-0020
Go to article

Authors and Affiliations

Marek Szindler
1
ORCID: ORCID
Magdalena M. Szindler
2
ORCID: ORCID

  1. Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 7 Towarowa St., 44-100 Gliwice, Poland
  2. Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego St., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The research and analysis of the bactericidal properties of the spacer knitted fabric with the UV-C system are presented in this paper. The disintegration factor affecting the bacteria in the knitted fabric is the UV-C radiation in the range of 265–270 nm distributed via woven optical fibres. The way of integrating elements of the system generating the UV-C radiation in the structure of the spacer knitted fabric was designed, as well as various configurations of optical fibres arrangement, fibre density, number of radiation sources, and diode types were tested. The material was contaminated with selected microorganisms indicative of sanitary contamination and important in terms of nosocomial infections. The scope of the research included microbiological (quantitative and qualitative) analyses of selected taxonomic groups of microorganisms (mesophilic bacteria, fungi, actinomycetes) before and after the irradiation process. The analysis of the research results and the applied modification of the knitted fabric turned out to be effective in reducing the amount of potentially pathogenic microorganisms.
Go to article

Bibliography

  1. Gniotek, K. & Krucinska, I. The basic problems of textronics. Fibres Text. East. Eur.12, 13–16 (2004).
  2. Łada-Tondyra, E. & Jakubas, A. Modern applications of textronic systems. Przegląd Elektrotechniczny 94, 198–201 (2018). [in Polish]. https://doi.org/10.15199/48.2018.12.44
  3. Strus, M. Mechanisms of action of physical factors on micro-organisms. Roczniki Państwowego Zakładu Higieny 3, 263–268 (1997). [in Polish]
  4. Diston, D., Ebdon, J. E. & Taylor, H. D. The effect of UV-C radiation (254 nm) on candidate microbial source tracking phages infecting a human-specific strain of Bacteroides fragilis (GB-124). Water Health 10, 262–270 (2012). https://doi.org/10.2166/wh.2012.173
  5. Wolska, A., Wisełka, M. & Pawlak. A. Reducing the risk of COVID-19 through the use of ultraviolet https://m.ciop.pl/CIOPPortalWAR/file/89579/202003206928&Covid-PROMIENIOWANIE- UV-Komunikat-3.pdf (2020). [in Polish]
  6. Statement on the CIE position on ultraviolet (UV) radiation as a measure to reduce the risk of the spread of COVID-19. https://cie.co.at/files/CIE%20Position%20Statement%20-%20UV%20radiation%20(2020)_PL_0.pdf (2020). [in Polish]
  7. Kowalski, W. J., Petraitis, V. & Walsh, T. J. 2020 COVID-19 Corona-virus Ultraviolet Susceptibility. (PurpleSun, Inc, New York, 2020).
  8. Beretsou, V. G. et al. A chemical, microbiological and (eco) toxicological scheme to understand the efficiency of UV-C/H2O2 oxidation on antibiotic-related microcontaminants in treated urban wastewater. Total Environ. 744, 140835 (2020). https://doi.org/10.1016/j.scitotenv.2020.140835
  9. Woo, H. et al. Efficacy of inactivation of human enteroviruses by dual-wavelength germicidal ultraviolet (UV-C) light emitting diodes (LEDs). Water 11, 1131 (2019). https://doi.org/10.3390/w11061131
  10. Phattarapattamawong, S., Chareewan, N. & Polprasert, C. Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. Sci. Total Environ. 755, 142696 (2021). https://doi.org/10.1016/j.scitotenv.2020.142696
  11. Lada-Tondyra, E. & Jakubas, A. The Concept of a Textronic System Limiting Bacterial Growth. in 2018 Progress in Applied Electrical Engineering (PAEE) 1–4 (IEEE, Koscielisko, Poland, 2018). https://ieeexplore.ieee.org/document/8441107
  12. Cysewska-Sobusiak, A., Prokop, D.& Jukiewicz, M. Development Trends and Application Areas Fibre Optic Techniques. In Poznan University of Technology Academic Journals. Electrical Engineering 89, 205–217 (2017). [in Polish]
  13. Brochure of transparent polymer-TPXTM, Mitsui Chemicals America, Inc. mitsuichemicals.com/tpx_proc.htm
  14. Armakan, D. M. & Roye, A. A study on the compression behavior of spacer fabrics designed for concrete applications. Fibres Polym. 10, 116–123 (2009). https://doi.org/10.1007/s12221-009-0116-7
  15. ProLight PB2D-1CLA-TC 1W UV Power LED Technical Datasheet. ProLight Opto https://www.tme.eu/Document/5559cb9280c8f6735ea54eeee3067a39/PB2D-1CLA-TC.pdf (2021).
  16. ISO 18593:2018 Microbiology of the food chain — Horizontal methods for surface sampling. (2018).
  17. European Pharmacopoeia, 10th Edition. https://www.edqm.eu/en/work-programme-bsp (2021).
  18. Hardjawinata, K., Setiawati, R. & Dewi,W. Bactericidal efficacy of ultraviolet irradiation on Staphylococcus ureus. Asian J. Oral Maxillofac. Surg. 17, 157–161 (2005). https://doi.org/10.1016/S0915-6992(05)80043-3
  19. Xu, Z.et al. First report of class 2 integron in clinical Enterococcus faecalis and class 1 integron in Enterococcus faecium in South China. Diagn. Microbiol. Infec. Dis. 68, 315–317 (2010). https://doi.org/10.1016/j.diagmicrobio.2010.05.014
  20. Stańczyk-Mazanek, E., Pasoń, Ł. & Kępa, U. Effect of mesophilic fermentation of sewage sludge on drug-resistant bacterial count of the Enterococcus genus. Desalination Water Treat. 134, 86–91 (2018). https://doi.org/10.5004/dwt.2018.22672
  21. Stępniak, L., Pasoń, Ł., Stańczyk-Mazanek, E. & Lach, J. Analysis of the presence and drug resistance of bacteria from the Enterobacteriaceae family and the genus of Enterococcus in treated wastewater from a selected wastewater treatment plant. Desalination Water Treat. 134, 23–29 (2018). https://doi.org/10.5004/dwt.2018.22592
  22. Jarząb, A., Górska-Frączek, S., Rybka, J. & Witkowska, D. Enterobacteriaceae infection-diagnosis, antibiotic resistance and prevention. Postepy Hig. Med. Dosw. 65, 55–72 (2011). [in Polish] https://doi.org/10.5604/17322693.933273
Go to article

Authors and Affiliations

Ewa Łada-Tondyra
1
ORCID: ORCID
Adam Jakubas
1
ORCID: ORCID
Beata Jabłońska
2
ORCID: ORCID
Ewa Stańczyk-Mazanek
2
ORCID: ORCID

  1. Częstochowa University of Technology, Faculty of Electrical Engineering, Częstochowa, Poland
  2. Częstochowa University of Technology, Faculty of Infrastructure and Environment, Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Universal filtered multi-carrier (UFMC) is being studied as the favourable waveforms supporting the visible light communication broadcasting systems. However, the UFMC system faces a serious performance degradation on the transmitter side due to its high peak-to-average power ratio (PAPR). High PAPR of the signal is an analytical intention parameter for mobile networks, and it is necessary to minimize it as much as possible. This paper focuses on the PAPR reduction of the UFMC scheme. An efficient hybrid method of the PAPR reduction has been proposed and analysed through the Matlab™ simulation. The proposed hybrid scheme consists of a mixture of the selected-mapping method and the discrete Hartley transform precoding for a UFMC system (SLM-DHT-P-UFMC). The simulation results show that the proposed hybrid system has a better PAPR reduction performance compared to traditional SLM-UFMC and DHT-P-UFMC systems. Hence, SLM-DHT-P-UFMC is considered to be the suggested scheme in visible light communication broadcasting systems.
Go to article

Bibliography

  1. Mohammed, N. A. & Elkarim, M. A. Exploring the effect of diffuse reflection on indoor localization systems based on RSSI-VLC. Opt. Express 23, 20297–20313 (2015). https://doi.org/10.1364/OE.23.020297
  2. Gerzaguet, R. et al. The 5G candidate waveform race: a comparison of complexity and performance. EURASIP J. Wirel. Commun. Netw. 2017, 13 (2017). https://doi.org/10.1186/s13638-016-0792-0
  3. Ambatali, C. D. M. & Marciano, J. J. S. Performance evaluation of the UFMC scheme under various transmission impairments. in 2016 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT) 24–28 (2017). https://doi.org/10.1109/COMNETSAT.2016.7907410
  4. Vakilian, V., Wild, T., Schaich, F., Ten Brink, S. & Frigon, J. F. Universal-filtered multi-carrier technique for wireless systems beyond LTE. in 2013 IEEE Globecom Workshops (GC Wkshps) 223–228 (2013). https://doi.org/10.1109/GLOCOMW.2013.6824990
  5. Naga Rani, P. & Santhi Rani, C. H. UFMC: The 5G modulation technique. in 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC) (2016). https://doi.org/10.1109/ICCIC.2016.7919714
  6. Jebbar, H., El Hassani, S. & El Abbassi, A. Performance study of 5G multicarrier waveforms. in 2017 International Conference on Wireless Networks and Mobile Communications (WINCOM) (2017). https://doi.org/10.1109/WINCOM.2017.8238183
  7. 5G Waveform Candidates: Rohde & Schwarz White Paper - GSA. https://gsacom.com/paper/5g-waveform-candidates-rohde-schwarz- white-paper/
  8. Wild, T., Schaich, F. & Chen, Y. 5G air interface design based on universal filtered (UF-)OFDM. in 2014 19th International Conference on Digital Signal Processing, 699–704 (2014). https://doi.org/10.1109/ICDSP.2014.6900754
  9. Schaich, F., Wild, T. & Chen, Y. Waveform contenders for 5G - Suitability for short packet and low latency transmissions. in 2014 IEEE 79th Vehicular Technology Conference (VTC Spring) (2014). https://doi.org/10.1109/VTCSpring.2014.7023145
  10. Baig, I. et al. A low PAPR DHT precoding based UFMC scheme for 5G communication systems. in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT) 425−428 (2019). https://doi.org/10.1109/CoDIT.2019.8820502
  11. Baig, I. et al. A Low PAPR universal filtered multi-carrier system for 5G machine type communications. in 2019 Wireless Days (WD) 1–4 (2019). https://doi.org/10.1109/WD.2019.8734188
  12. Misra, J. & Mandal, R. Comparative analysis of PAPR reduction techniques in OFDM using precoding techniques. Int. J. Sci. Res. Dev. 3, 1041–1043 (2015).
  13. Sandoval, F., Poitau, G. & Gagnon, F. Hybrid peak-to-average power ratio reduction techniques: review and performance comparison. IEEE Access 5, 27145–27161 (2017). https://doi.org/10.1109/ACCESS.2017.2775859
  14. Zhang, Y., Liu, K. & Liu, Y. A Novel PAPR reduction algorithm based on SLM technique in UFMC systems. in 2018 IEEE/CIC International Conference on Communications in China (ICCC Workshops) 178–183 (2018). https://doi.org/10.1109/ICCChinaW.2018.8674491
Go to article

Authors and Affiliations

Eslam M. Shalaby
1
E. Dessouky
2
Saleh Hussin
2

  1. Electronics and Communication Engineering Department, Higher Technological Institute, 10th of Ramadan City, Sharqia, 44629 Egypt
  2. Electronics and Communication Engineering Department, Faculty of Engineering Menoufia University, Menoufia, 32511 Egypt
Download PDF Download RIS Download Bibtex

Abstract

Advances in photonic technologies, with new processes and scopes of photonic integrated circuits, have generated a lot of interest as the field allows to obtain sensors with reduced size and cost and build systems with high interconnectivity and information density. In this work, answering the needs of photonic sensors that must be portable, more energy-efficient, and more accurate than their electrical counterparts, also with a view to the emerging field of neuromorphic photonics, a versatile device is presented. The proposed device makes use of the well-known advantages provided by optical bistability. By combining two distributed feedback-multi quantum well semiconductor laser structures, this new optical multiple inputs - digital output device offers various essential purposes (such as logic gates, wavelength detector and monitoring) with no need for specific manufacturing for each of them. Through a commercial computer-aided design tool, VPIphotonics™, the necessary characterization of proposed device is also described.
Go to article

Bibliography

  1. Lasher, G. J. Analysis of a proposed bistable injection laser. Solid State Electron. 7, 707–716 (1964). https://doi.org/10.1016/0038-1101(64)90027-9
  2. Gibbs, H. M. Optical bistability: Controlling light with light. Orlando, Fl: Academic (Academic Press, INC., 1985). https://doi.org/10.1063/1.2820150
  3. Kawaguchi, H. & Iwane, G. Bistable operation in semiconductor lasers with inhomogeneous excitation. Electron. Lett. 17, 167–168 (1981). https://doi.org/10.1049/el:19810117
  4. Lattes, A., Haus, H. A., Leonberger, F. J. & Ippen, E. P. An ultrafast all-optical gate. IEEE J. Quantum Electron. 19, 1718–1723 (1983). https://doi.org/10.1109/jqe.1983.1071766
  5. Wang, S. W., Wang, C. & Ling, S. Stability analysis of semicon-ductor bistable lasers. IEEE J. Quantum Electron. 23, 1033–1038 (1987). https://doi.org/10.1109/jqe.1987.1073447
  6. Hui, R. Static and dynamical properties of dispersive optical bistability in semiconductor lasers. J. Light. Technol. 13, 42–48 (1995). https://doi.org/10.1109/50.350648
  7. Li, L. Optical frequency bistability and power bistability in semicon-ductors lasers. IEEE J. of Quantum Electron. 31, 233–239 (1995). https://doi.org/10.1109/3.348050
  8. Midwinter, J. E. 'Light' electronics, myth or reality? IEE Proc., J. Optoelectron. 132, 371–383 (1985). https://doi.org/10.1049/ip-j.1985.0070
  9. Sharfin, W. F. & Dagenaisa, M. Room-temperature optical bistability in InGaAsP/InP amplifiers and implications for passive devices. Appl. Phys. Lett. 46, 819–821 (1985). https://doi.org/10.1063/1.95895
  10. Inoue, K. High-speed all-optical gate switching experiment in a Fabry-Perot semiconductor laser amplifier. Electron. Lett. 23, 921–922 (1987). https://doi.org/10.1049/el:19870649
  11. González-Marcos, A. P. & Martín-Pereda, J. A. Method to analyze the influence of hysteresis in optical arithmetic units. Opt. Eng. 40, 2371–2385 (2001). https://doi.org/10.1117/1.1413747
  12. González-Marcos, A. P. & Martín-Pereda, J. A. Analysis of irregular behaviour on an optical computing logic cell. Opt. Laser Technol. 32, 457–466 (2000). https://doi.org/10.1016/s0030-3992(00)00099-2
  13. González-Marcos, A. P. & Martín-Pereda, J. A. Coder/decoder with an optical programmable logic cell. Proc. Photonic Devices and Algorithms for Computing IV (SPIE) 4788, 126–134 (2002). https://doi.otg/10.1117/12.451553
  14. Martín-Pereda, J. A. & González-Marcos, A. P. Logic cells as basic structures to add/drop WDM information signals. Proc. Photonic Devices and Algorithms for Computing IV (SPIE) 4788, 73–82 (2002). https://doi.org/10.1117/12.451587
  15. Martín-Pereda, J. A. & González-Marcos, A. P. An approach to visual cortex operation: optical neuron model. in IEEE Conference on Lasers and Electro-Opt. Europe 355–356 (1994). https://doi.org/10.1109/CLEOE.1994.636629
  16. Peng, H. T. et al. Neuromorphic photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24, 8364605 (2018). https://doi.org/10.1109/JSTQE.2018.2840448
  17. Kim, M., Kim, S. & Kim, S. Resonator-free optical bistability based on epsilon-near-zero mode. Sci. Rep. 9, (2019). https://doi.org/10.1038/s41598-019-43067-z
  18. Kawaguchi, H., Magari, K., Yasaka, H., M. Fukuda & Oe, K. Tunable optical-wavelength conversion using an optically triggerable multielectrode distributed feedback laser diode. IEEE J. Quantum Electron. 24, 2153–2159 (1988). https://doi.org/10.1109/3.8558
  19. Kawaguchi, H. Bistable operation of semiconductor lasers by optical injection. Electron. Lett. 17, 741–742 (1981). https://doi.org/10.1049/el:19810521
  20. Kawaguchi, H. Absorptive and dispersive bistability in semicon-ductor injection lasers. Opt. and Quantum Electron. 19, S1–S36 (1987). https://doi.org/10.1007/bf02034349
  21. Otsuka, K. & Iwamura, H. Analysis of a multistable semiconductor light amplifier. IEEE J. Quantum Electron. 19, 1184–1186 (1983). https://doi.org/10.1109/jqe.1983.1072006
  22. Nakai, T., Ogasawara, N. & Ito, R. Optical bistability in a semicon-ductor laser amplifier. Jpn. J. Appl. Phys. 22, L310–L312 (1983). https://doi.org/10.1143/jjap.22.l310
  23. Adams, M. J., Westlake, H. J., O’Mahony, M. J. & Henning, I. D. A comparison of active and passive optical bistability in semicon-ductors. IEEE J. Quantum Electron. 21, 1498–1504 (1985). https://doi.org/10.1109/jqe.1985.1072818
  24. Westlake, H. J., Adams, M. J. & O’Mahony, M. J. Measurement of optical bistability in an InGaAsP laser amplifier at 1.5 µm. Electron. Lett. 21, 992–993 (1985). https://doi.org/10.1049/el:19850701
  25. Hurtado-Villavieja, A. Bistable photonic structures for computing and switching. (ETSIT, UPM, Polytechnic University of Madrid, 2006).
  26. Vivero-Palmer, T. R. Analysis of Photonic Structures for Optical Networks. (ETSIT, UPM, Polytechnic University of Madrid, 2010).
  27. Carroll, J., Whiteaway, J. & Plumb, D. Distributed Feedback Semiconductor Lasers. (The Institution of Electrical Engineers and SPIE - The International Society for Optical Engineering, 1998). https://doi.org/10.1049/pbcs010e
  28. Ghafouri-Shiraz, H. Distributed Feedback Laser and Optical Tunable Filters. (John Wiley & Sons Ltd., 2003).
  29. Morrison, G. B. et al. High Power single mode photonic integration. in IEEE High Power Diode Lasers and Systems Conference HPD 47, 48 (2019). https://doi.org/10.1109/HPD48113.2019.8938603
  30. Liu, Y. et al. High-power AlGaInAs/InP DFB lasers with low divergence angle. in Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference CLEO/Europe-EQEC (Germany, 2019). https://doi.org/10.1109/cleoe-eqec.2019.8872502
  31. Liu, S. et al. High-power single-longitudinal-mode dfb semiconductor laser based on sampled Moiré grating. IEEE Photonics Technol. Lett. 31, 751–754 (2019). https://doi.org/10.1109/LPT.2019.2906562
  32. Guo, K. et al. Symmetric step-apodized distributed feedback fiber laser with improved efficiency. IEEE Photonics J. 11, (2019). https://doi.org/10.1109/JPHOT.2019.2921628
  33. Wang, B., Zhou, Y., Guo, Z. & Wu, X. Design for distributed feedback laser biosensors based on the active grating model. Sensors 19, 2569 (2019). https://doi.org/10.3390/s19112569
  34. Dhoore, S., Köninger, A., Meyer, R., Roelkens, G. & Morthier, G. Electronically Tunable distributed feedback (DFB) laser on silicon. Laser Photonics Rev. 13, 1800287 (2019). https://doi.org/10.1002/lpor.201800287
  35. Wanga, J. et al. Near-infrared methane sensor based on a distributed feedback laser. Spectrosc. Lett. 52, 1–8 (2019). https://doi.org/0.1080/00387010.2019.1569063
  36. Guoa, Y. et al. A portable laser-based sensor for detecting h2s in domestic natural gas. Infrared Phys. Technol. 105, 103153 (2020). https://doi.org/10.1016/j.infrared.2019.103153
  37. Hatori, N. et al. First demonstration of a hybrid integrated light source on a si platform using a quantum dot laser under wide temperature range. in IEEE Photonics Conference (Bellevue, USA, 2013). https://doi.org/10.1109/IPCon.2013.6656422
  38. Kozlov, V. G., Bulovic, V. & Forrest, S. R. Temperature independent performance of organic semiconductor lasers. App. Phys. Lett. 71, 2575–2577 (1997). https://doi.org/10.1063/1.120186
  39. Asryan, L. V. & Luryi, S. Semiconductor laser with reduced tem-perature sensitivity. US Patent no. 6,870,178 B2 (2005).
  40. Miller, D. A. B. et al. The quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation. IEEE J. Quantum Electron. 21, 1462–1476 (1985). https://doi.org/10.1109/jqe.1985.1072821
  41. Vivero-Palmer, T. R., Rivas-Moscoso, J. M., González-Marcos, A. P. & Martín-Pereda, J. A. Dispersive optical bistability in Quantum Wells with logarithmic gain. IEEE J. Quantum Electron. 46, 1184–1190 (2010). https://doi.org/0.1109/jqe.2010.2044974
  42. Vivero-Palmer, T. R., Rivas-Moscoso, J. M., González-Marcos, A. P. & Pereda, J. A. M. Dispersive optical bistability in bulk InGaAsP Fabry-Pérot lasers. Reunión Esp. de Optoelectrón. (OPTOEL) OPTOEL’09, Libro de Actas, 209–214 (2009) [in Spanish].
  43. VPIcomponentMakerTM Photonic Circuits User’s Manual (Module Reference). (VPIphotonicsTM: 2019).
  44. González-Marcos, A. P., Campoy-Fernández, J., Alaíz-Gudín, A. M., Pacheco-Ordóñez, F. & Pedro-Carracedo, J. de Fotónica y Defensa en el Año de la Luz. Congreso Nacional de I+D en Def. y Segur. (DESEi+D) DESEi+D 2015, 705–714 (2015) [in Spanish].
Go to article

Authors and Affiliations

Antonio M. Alaíz-Gudín
1
ORCID: ORCID
Ana P. González-Marcos
1
ORCID: ORCID

  1. Photonic Technology and Bioengineering Department, Universidad Politécnica de Madrid (UPM), Madrid, 28040 Spain
Download PDF Download RIS Download Bibtex

Abstract

Adopting mode division multiplex (MDM) technology as the next frontier for optical fiber communication and on-chip optical interconnection systems is becoming very promising because of those remarkable experimental results based on MDM technology to enhance capacity of optical transmission and, hence, making MDM technology an attractive research field. Consequently, in recent years the large number of new optical devices used to control modes, for example, mode converters, mode filters, mode (de)multiplexers, and mode-selective switches, have been developed for MDM applications. This paper presents a review on the recent advances on mode converters, a key component usually used to convert a fundamental mode into a selected high-order mode, and vice versa, at the transmitting and receiving ends in the MDM transmission system. This review focuses on the mode converters based on planar lightwave circuit (PLC) technology and various PLC-based mode converters applied to the above two systems and realized with different materials, structures, and technologies. The basic principles and performances of these mode converters are summarized.
Go to article

Bibliography

  1. Essiambre, R. -J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662–701 (2010). https://doi.org/10.1109/JLT.2009.2039464
  2. CISCO: Cisco Visual Netwroking Index: Forecast and Trends, 2017–2022 White Paper.
  3. [Online]. Available at: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. (Accessed: 19th September 2020)
  4. Agrell, E. et al. Roadmap of optical communications. J. Opt. 18, 063002 (2016). http://dx.doi.org/10.1088/2040-8978/18/6/063002
  5. Tkach, R. W. Scaling optical communications for the next decade and beyond. Bell Labs Tech. J. 14, 3–10 (2010). https://doi.org/10.1002/bltj.20400
  6. Yu, J. & Zhang, J. Recent progress on high-speed optical transmission. Digit. Commun. Netw. 2, 65–76 (2016). http://doi.org/10.1016/j.dcan.2016.03.002
  7. Abbas, H. S. & Gregory, M. A. The next generation of passive optical networks: A review. J. Netw. Comput. Appl. 67, 53–74 (2016). http://dx.doi.org/10.1016/j.jnca.2016.02.015
  8. Sillard, P. Next-generation fibers for space-division-multiplexed transmissions. J. Lightwave Technol. 33, 1092–1099 (2015). https://doi.org/10.1109/JLT.2014.2371134
  9. Richardson, D., Fini, J. & Nelson, L. E. Space-division multiplexing in optical fibres. Nat. Photonics 7, 354–362 (2013). https://doi.org/10.1038/nphoton.2013.94
  10. Klaus, W. et al. Advanced space division multiplexing technologies for optical networks. J. Opt. Commun. Netw. 9, C1–C11 (2017). https://doi.org/10.1364/JOCN.9.0000C1
  11. Nakazawa, M. Exabit optical communication explored using 3M scheme. Jap. J. Appl. Phys. 53, , 08MA01 (2014). http://dx.doi.org/10.7567/JJAP.53.08MA01
  12. Winzer, P. J. Optical networking beyond WDM. IEEE Photonics J. 4, 647–651 (2012). https://doi.org/10.1109/JPHOT.2012.2189379
  13. Chiang, K. S. Polymer optical waveguide devices for mode-division-multiplexing applications. Proc. SPIE 10242, Integrated Optics: Physics and Simulations III, 102420R (2017). https://doi.org/10.1117/12.2265275
  14. Sabitu, R., Khan, N. & Malekmohammadi, A. Recent progress in optical devices for mode division multiplex transmission system. Opto-Electron. Review 27, 252–267 (2019). https://doi.org/10.1016/j.opelre.2019.07.001
  15. Ryf, R., Fontaine, N. K., Guan, B., Huang, B. & Tkach, R. W. 305-km combined wavelength and mode-multiplexed transmission over conventional graded-index multimode fibre. in The European Conference on Optical Communication (ECOC), 1–3 (2014).
  16. Hayashi, T. et al. Six-mode 19-core fiber with 114 spatial modes for weakly-coupled mode-division-multiplexed transmission. J. Lightwave Technol. 35, 748–754 (2017). https://doi.org/10.1109/JLT.2016.2617894
  17. Soma, D. et al. 10.16-Peta-B/s dense SDM/WDM transmission over 6-mode 19-core fiber across the C+ L band. J. Lightwave Technol. 36, 1362–1368 (2018). https://doi.org/10.1364/JLT.36.001362
  18. Van Uden, R. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat. Photon. 8, 865–870 (2014). https://doi.org/10.1038/nphoton.2014.243
  19. Dai, D. X. & Bowers, J. E. Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects. Nanophotonics 3, 283–311 (2014). https://doi.org/10.1515/nanoph-2013-0021
  20. Luo, L. -W. et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 5, 1–7 (2014). https://doi.org/10.1038/ncomms4069
  21. Hsu, Y. et al. 2.6 Tbit/s on-chip optical interconnect supporting mode-division-multiplexing and PAM-4 signal. IEEE Photonics Technol. Lett. 30, 1052–1055 (2018). https://doi.org/10.1109/LPT.2018.2829508
  22. Zhang, W., Ghorbani, H., Shao, T. & Yao, J. On-Chip 4×10 GBaud/s Mode-Division Multiplexed PAM-4 Signal Transmission. IEEE J. Sel. Top. Quantum Electron. 26, 1–8 (2020). https://doi.org/10.1109/JSTQE.2020.2964388
  23. Huang, Y., Xu, G. & Ho, S. -T. An ultracompact optical mode order converter. IEEE Photonics Technol. Lett. 18, 2281–2283 (2006). https://doi.org/10.1109/LPT.2006.884886
  24. Oner, B., Üstün, K., Kurt, H., Okyay, A. K. & Turhan-Sayan, G. Large bandwidth mode order converter by differential waveguides. Opt. Express 23, 3186–3195 (2015). https://doi.org/10.1364/OE.23.003186
  25. Uematsu, T., Ishizaka, Y., Kawaguchi, Y., Saitoh, K. & Koshiba, M. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J. Lightwave Technol. 30, 2421–2426 (2012). https://doi.org/10.1109/JLT.2012.2199961
  26. Han, L., Liang, S., Zhu, H., Qiao, L., Xu, J. & Wang, W. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter. Opt. Lett. 40, 518-521 (2015). http://dx.doi.org/10.1364/OL.40.000518
  27. Guo, F. et al. An MMI-based mode (DE) MUX by varying the waveguide thickness of the phase shifter. IEEE Photonics Technol. Lett. 28, 2443–2446 (2016). https://doi.org/10.1109/LPT.2016.2599934
  28. Chack, D., Hassan, S. & Qasim, M. Broadband and low crosstalk silicon on-chip mode converter and demultiplexer for mode division multiplexing. Appl. Opt. 59, 3652–3659 (2020). https://doi.org/10.1364/AO.390085
  29. Linh, H. D. T., Dung, T. C., Tanizawa, K., Thang, D. D. & Hung, N. T. Arbitrary TE0/TE1/TE2/TE3 Mode Converter Using 1× 4 Y-Junction and 4× 4 MMI Couplers. IEEE J. Sel. Top. Quantum Electron. 26, 1–8 (2019). https://doi.org/10.1109/JSTQE.2019.2937169
  30. González-Andrade, D. et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures. IEEE Photonics J. 10, 1–10 (2018). https://doi.org/10.1109/JPHOT.2018.2819364
  31. Leuthold, J., Eckner, J., Gamper, E., Besse, P. A. & Melchior, H. Multimode interference couplers for the conversion and combining of Zero- and First-Order modes. J. Lightwave Technol. 16, 1228–1239 (1998). https://doi.org/10.1109/50.701401
  32. Guo, F. et al.Two-mode converters at 1.3 μm based on multimode interference couplers on InP substrates. Chin. Phys. Lett. 33, 024203 (2016). http://dx.doi.org/10.1088/0256-307X/33/2/024203
  33. Chen, H. -T. & Webb, K. J. Silicon-on-insulator irregular waveguide mode converters. Opt. Lett. 31, 2145–2147 (2006). https://doi.org/10.1364/OL.31.002145
  34. Chen, D. et al. Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers. Opt. Express 23, 11152–11159 (2015). https://doi.org/10.1364/OE.23.011152
  35. Chen, Z. Y. Bridged coupler and oval mode converter based silicon mode division (de)multiplexer and Terabit WDM-MDM system demonstration. J. Lightwave Technol. 36, 2757–2766 (2018). https://dx.doi.org/10.1109/JLT.2018.2818793
  36. Zhu, D. et al. Design of compact TE-polarized mode-order converter in silicon waveguide with high refractive index material. IEEE Photonics J. 10, 1–7 (2018). https://doi.org/10.1109/JPHOT.2018.2883209
  37. Abu-Elmaaty, B. E., Sayed, M. S., Pokharel, R. K. & Shalaby, H. M. General silicon-on-insulator higher-order mode converter based on substrip dielectric waveguides. Appl. Opt. 58, 1763–1771 (2019). https://doi.org/10.1364/AO.58.001763
  38. Cheng, Z. et al. Sub-wavelength grating assisted mode order converter on the SOI substrate. Opt. Express 27, 34434–34441 (2019). https://doi.org/10.1364/OE.27.034434
  39. Ye, W., Yuan, X., Gao, Y. & Liu, J. Design of broadband silicon-waveguide mode-order converter and polarization rotator with small footprints. Opt. Express 25, 33176–33183 (2017). https://doi.org/10.1364/OE.25.033176
  40. Liu, L. et al. Design of a compact silicon-based TM-polarized mode-order converter based on shallowly etched structures. Appl. Opt. 58, 9075–9081 (2019). https://doi.org/10.1364/AO.58.009075
  41. Hao, L. et al. Efficient TE-polarized mode-order converter based on high-index-contrast polygonal slot in a silicon-on-insulator waveguide. IEEE Photonics J. 11, 1–10 (2019). https://doi.org/10.1109/JPHOT.2019.2907640
  42. Zhao, Y. et al. Ultra-compact silicon mode-order converters based on dielectric slots. Opt. Lett. 45, 3797–3800 (2020). https://doi.org/10.1364/OL.391748
  43. Jia, H. et al. Ultra-compact dual-polarization silicon mode-order converter. Opt. Lett. 44, 4179–4182 (2019). https://doi.org/10.1364/OL.44.004179
  44. Zhang, M. R., Chen, K. X., Jin, W. & Chiang, K. S. Electro-optic mode switch based on lithium-niobate Mach–Zehnder interferometer. Appl. Opt. 55, 4418–4422 (2016). https://doi.org/10.1364/AO.55.004418
  45. Hanzawa, N. et al. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission. Opt. Express 21, 25752–25760 (2013). https://doi.org/10.1364/OE.21.025752
  46. Saitoh, K. et al. PLC-based LP11 mode rotator for mode-division multiplexing transmission. Opt. Express 22, 19117–19130 (2014). https://doi.org/10.1364/OE.22.019117
  47. Hanzawa, N. et al. Mode multi/demultiplexing with parallel waveguide for mode division multiplexed transmission. Opt. Express 22, 29321–29329 (2014). https://doi.org/10.1364/OE.22.029321
  48. Hanzawa, N. et al. PLC-based four-mode multi/demultiplexer with LP11 mode rotator on one chip. J. Lightwave Technol. 33, 1161–1165 (2015). https://doi.org/10.1109/JLT.2014.2378281
  49. Saitoh, K. et al. PLC-based mode multi/demultiplexers for mode division multiplexing. Opt. Fiber Technol. 35, 80–92 (2017). https://doi.org/10.1016/j.yofte.2016.08.002
  50. Riesen, N., Gross, S., Love, J. D. & Withford, M. J. Femtosecond direct-written integrated mode couplers. Opt. Express 22, 29855–29861 (2014). https://doi.org/10.1364/OE.22.029855
  51. Dong, J. L., Chiang, K. S. & Jin, W. Compact three-dimensional polymer waveguide mode multiplexer. J. Lightwave Technol. 33, 4580–4588 (2015). https://doi.org/10.1109/JLT.2015.2478961
  52. Wei, F. K., Chen, K. X. & Chiang, K. S. Mode conversion with vertical polymer-waveguide directional coupler. in Asia Communication and Photonics Conference, AF1G.3 (2016). https://doi.org/10.1364/ACPC.2016.AF1G.3
  53. Huang, Q. D., Wu, Y. F., Jin, W. & Chiang, K. S. Mode multiplexer with cascaded vertical asymmetric waveguide directional couplers. J. Lightwave Technol. 36, 2903–2911 (2018). https://dx.doi.org/10.1109/JLT.2018.2829143
  54. Zhao, W. K., Chen, K. X., Wu, J. Y. & Chiang, K. S. Horizontal directional coupler formed with waveguides of different heights for mode-division multiplexing. IEEE Photonics J. 9, 1–9 (2017). https://doi.org/10.1109/JPHOT.2017.2731046
  55. Zhao, W. K., Chen, K. X. & Wu, J. Y. Broadband mode multiplexer formed with non-planar tapered directional couplers. IEEE Photonics Technol. Lett. 31, 169–172 (2018). https://doi.org/10.1109/LPT.2018.2887352
  56. Yin, M., Deng, Q., Li, Y., Wang, X. & Li, H. Compact and broadband mode multiplexer and demultiplexer based on asymmetric plasmonic–dielectric coupling. Appl. Opt. 53, 6175–6180 (2014). https://doi.org/10.1364/AO.53.006175
  57. Wang, J., Chen, P., Chen, S., Shi, Y. & Dai, D. X. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt. Express 22, 12799–12807 (2014). https://doi.org/10.1364/OE.22.012799
  58. Garcia-Rodriguez, D., Corral, J. L. Griol, A. & Llorente, R. Dimensional variation tolerant mode converter/multiplexer fabricated in SOI technology for two-mode transmission at 1550 nm. Opt. Lett. 42, 1221–1224 (2017). https://doi.org/10.1364/OL.42.001221
  59. Luo, L. -W., Gabrielli, L. H. & Lipson, M. On-chip mode-division multiplexer. in Conference on Lasers and Electro-Optics (CLEO 2013) CTh1C.6. (2013). https://doi.org/10.1364/CLEO_SI.2013. CTh1C.6
  60. Yu, Y., Ye, M. & Fu, S. On-chip polarization controlled mode converter with capability of WDM operation. IEEE Photonics Technol. Lett. 27, 1957–1960 (2015). https://doi.org/10.1109/LPT.2015.2448076
  61. Yang, Y., Chen, K. X., Jin, W. & Chiang, K. S. Widely wavelength-tunable mode converter based on polymer waveguide grating. IEEE Photonics Technol. Lett. 27, 1985–1988 (2015). https://doi.org/10.1109/LPT.2015.2448793
  62. Jin, W. & Chiang, K. S. Mode converter with sidewall-corrugated polymer waveguide grating. in Opto-Electronics Communication Conference (OECC2015), 1–3 (2015). https://doi.org/10.1109/OECC.2015.7340081
  63. Jin, W. & Chiang, K. S. Mode converters based on cascaded long-period waveguide gratings. Opt. Lett. 41, 3130–3133 (2016). https://doi.org/10.1364/OL.41.003130
  64. Wang, W., Wu, J. Y., Chen, K. X., Jin, W. & Chiang, K. S. Ultra-broadband mode converters based on length-apodized long-period waveguide gratings. Opt. Express 25, 14341–14350 (2017). https://doi.org/10.1364/OE.25.014341
  65. Zhao, W. K., Chen, K. X. & Wu, J. Y. Ultra-short embedded long-period waveguide grating for broadband mode conversion. App. Phys. B 125, 177 (2019). https://doi.org/10.1007/s00340-019-7290-0
  66. Jin, W. & Chiang, K. S. Three-dimensional long-period waveguide gratings for mode-division-multiplexing applications. Opt. Express 26, 15289–15299 (2018). https://doi.org/10.1364/OE.26.015289
  67. Castro, J. M. et al. Demonstration of mode conversion using anti-symmetric waveguide Bragg gratings. Opt. Express 13, 4180–4184 (2005). https://doi.org/10.1364/OPEX.13.004180
  68. Xiao, R. et al. On-chip mode converter based on two cascaded Bragg gratings. Opt. Express 27, 1941–1957 (2019). https://doi.org/10.1364/OE.27.001941
  69. Wang, H. et al. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Opt. Mater. 7, 1801191 (2019). https://doi.org/10.1002/adom.201801191
  70. Ohana, D. & Levy, U. Mode conversion based on dielectric metamaterial in silicon. Opt. Express 22, 27617–27631 (2014). https://doi.org/10.1364/OE.22.027617
  71. Ohana, D., Desiatov, B., Mazurski, N. & Levy, U. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett. 16, 7956–7961 (2016). https://doi.org/10.1021/acs.nanolett.6b04264
  72. Qiu, H. et al. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Opt. Express 21, 17904–17911 (2013). https://doi.org/10.1364/OE.21.017904
  73. Zhao, W. K., Feng, J., Chen, K. X. & Chiang, K. S. Reconfigurable broadband mode (de) multiplexer based on an integrated thermally induced long-period grating and asymmetric Y-junction. Opt. Lett. 43, 2082–2085 (2018). https://doi.org/10.1364/OL.43.002082
  74. Zi, X. Z., Wang, L. F., Chen, K. X. & Chiang, K. S. Mode-selective switch based on thermo-optic asymmetric directional coupler. IEEE Photonics Technol. Lett. 30, 618–621 (2018). https://doi.org/10.1109/LPT.2018.2808466
  75. Jin, W. & Chiang, K. S. Mode switch based on electro-optic long-period waveguide grating in lithium niobate. Opt. Lett. 40, 237–240 (2015). https://doi.org/10.1364/OL.40.000237
  76. Jin, W. & Chiang, K. S. Reconfigurable three-mode converter based on cascaded electro-optic long-period gratings. IEEE J. Sel. Top. Quantum Electron. 26, 1–6 (2020). https://doi.org/10.1109/JSTQE.2020.2969568
  77. Zhang, M. R., Ai, W., Chen, K. X., Jin, W. & Chiang, K. S. A lithium-niobate waveguide directional coupler for switchable mode multiplexing. IEEE Photonics Technol. Lett. 30, 1764–1767 (2018). https://doi.org/10.1109/LPT.2018.2868834
  78. Lee, B. -T. & Shin, S. -Y. Mode-order converter in a multimode waveguide. Opt. Lett. 28, 1660–1662 (2003). https://doi.org/10.1364/OL.28.001660
  79. Low, A. L., Yong, Y. S., You, A. H., Chien, S. F. & Teo, C. F. A five-order mode converter for multimode waveguide. IEEE Photonics Technol. Lett. 16, 1673–1675 (2004). https://doi.org/10.1109/LPT.2004.828512
  80. Riesen, N. & Love, J. D. Design of mode-sorting asymmetric Y-junctions. App. Opt. 51, 2778–2783 (2012). https://doi.org/10.1364/AO.51.002778
  81. Driscoll, J. B. et al. .Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt. Lett. 38, 1854–1856 (2013). https://doi.org/10.1364/OL.38.001854
  82. Feng, J., Chen, K. X., Ren, K. Y. & Chiang, K. S. Mode (de) multiplexer based on polymer-waveguide asymmetric Y-junction. in Asia Communication and Photonics Conference AF1G.5 (2016). https://doi.org/10.1364/ACPC.2016.AF1G.5
  83. Chen, W. W. et al. Silicon three-mode (de)multiplexer based on cascaded asymmetric Y junctions. Opt. Lett. 41, 2851–2854 (2016). https://doi.org/10.1364/OL.41.002851
  84. Fujisawa, T. et al. Scrambling-type three-mode PLC multiplexer based on cascaded Y-branch waveguide with integrated mode rotator. J. Lightwave Technol. 36, 1985–1992 (2018). https://doi.org/10.1109/JLT.2018.2798619
  85. Gao, Y. et al. Compact six-mode (de) multiplexer based on cascaded asymmetric Y-junctions with mode rotators. Opt. Commun. 451, 41–45 (2019). https://dx.doi.org/10.1016/j.optcom.2019.06.010
  86. Watanabe, T. & Kokubun, Y. Demonstration of mode-evolutional multiplexer for few-mode fibers using stacked polymer waveguide. IEEE Photonics J. 7, 1–11 (2015). https://doi.org/10.1109/JPHOT.2015.2497234
  87. Dai, D. X., Tang, Y. B. & Bowers, J. E. Mode conversion in tapered submicron silicon ridge optical waveguides. Opt. Express 20, 13425–13439 (2012). https://doi.org/10.1364/OE.20.013425
  88. Dai, D. X. & Mao, M. Mode converter based on an inverse taper for multimode silicon Nanophotonicsic integrated circuits Opt. Express 23, 28376–28388 (2015). https://doi.org/10.1364/OE.23.028376
Go to article

Authors and Affiliations

Areez K. Memon
1
Kai X. Chen
1

  1. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a theoretical design of a novel passive optical line protection device for fiber to the home networks is presented and discussed. Such a device has been designed to overcome several issues of the conventional optical line protection which is based on a switching mechanism controlled electronically. The proposed design is suitable for multiplexed passive optical networks, especially, the dense wavelength division multiplexing technology. This unit is installed at both ends of the network and is composed of a 1×2 splitter to deliver the transmitted multiplexed signal to 2 optical paths and a 2×1 (99.9/0.1) coupler allowing an automatic control when a problem appears. Two optical line protection units exchange optical data through 2 dual fibers. In the case where the primary link suffers from a transmission problem, it automatically switches without any electronic control whatsoever to the backup link through a passive (99.9/0.1) coupler with an average total loss estimated to be of 3.2 dB.
Go to article

Bibliography

  • Al-Quzwini, M. Design and Implementation of a Fiber to the Home FTTH Access Network based on GPON. Int. J. Comput. Appl. 92(6), 30-42 (2014). https://doi.org/10.5120/16015-5050
  • El-Ghazali Hamza, M. & Bashir Bugaje, K. Enhancement of Gigabit Passive Optical Highspeed Network using Fiber-To-The-Home. in 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 1-4 (2018). https://doi.org/10.1109/ICCCEEE.2018.8515851
  • Naeem, A. et al. Fiber to the Home (FTTH) Automation Planning, Its Impact on Customer Satisfaction & Cost-Effectiveness. Wireless Pers. Commun. 117, 503–524 (2021). https://doi.org/10.1007/s11277-020-07880-4
  • FTTH PON types, 2015 Available at: https://www.thefoa.org/ tech/ref/appln/FTTH-PON.html (Accessed: 14th May 2020).
  • Shiu, R. K. et al. Hybrid transmission of unicast and broadcast signals without optical filter for WDM systems. Opt. Fiber Technol. 47, 172-177 (2019). https://doi.org/10.1016/j.yofte.2018.12.009
  • Gupta, H. et al. Passive Optical Networks: Review and Road Ahead. in TENCON 2018 - 2018 IEEE Region 10 Conference, Jeju, Korea (South), 0919-0924 (2018). https://doi.org/10.1109/TENCON.2018.8650204
  • OLP 1+1 Optical Line Protection, Guangzhou Visint Comm-unication Technology Co., 2019. Available at: http://www.visint-telecom.com/goods/details/index/id/104/cid/12.html (Accessed: 20th May 2020).
  • Gartia, A., Gulati, A. & Kumar, C. Microcontroller Based Line Differential Protection Using Fiber Optic Communication. in 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Bangalore, India, 1–4 (2013) https://doi.org/10.1109/ISGT-Asia.2013.6698741
  • Optical Line Protection Switch, Fiberroad Technology, Available at:https://fiberroad.com.cn/products/optical-line-protection/ (Accessed: 5th August 2020).
  • Optical Line Protection interface card, ShenZhen Sharetop Technology Co, 2015. Available at: http://www.xyt-tech.com/en/goods/160#pro_5 (Accessed: 21th May 2020).
  • Newman, J. Fiber Optic Splitter Insertion Loss Table Reference for FBT and PLC types, Teleweaver Technologies, 2018. Available at: https://fibrefibre.com/tutorial/fiber-optic-splitter-insertion-loss-reference/ (Accessed: 8th August 2020).
  • Lee, B. Passive Optical Splitter. Senko, 2015, Available at: https://www.senko.com/ (Accessed: 5th August 2020).
  • Passive optical components. DieMount GmbH, 2017. Available at: https://www.diemount.com/?page_id=102 (Accessed: 5th August 2020).
  • Son, G., Jung, Y. & Yu, K. Tapered Optical Fiber Couplers Fabricated by Droplet-Based Chemical Etching. IEEE Photonics J. 9, 1-8, (2017). https://doi.org/10.1109/JPHOT.2017.2738661
  • 1550 nm, 2×2 Single Mode Fused Fiber Optic Couplers/Taps. Thorlabs, Available at: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=9152 (Accessed: 16th May 2020).
  • International Telecommunication Union Telecommunication Standardization Sector (2008). Gigabit-capable passive optical networks (GPON): General characteristics (G.984.1), Available at: http://www.itu.int/rec/T-REC-G.984.1 (Accessed: 20th May 2020).
  • Go to article

    Authors and Affiliations

    Imene Hacene
    1
    Fethallah Karim
    1

    1. Laboratory of Telecommunication (LTT), Universityof Tlemcen, BP 230 -13000 Chetouane, Tlemcen, Algeria
    Download PDF Download RIS Download Bibtex

    Abstract

    Numerical analysis of the dark current (Jd) in the type-II superlattice (T2SL) barrier (nBn) detector operated at high temperatures was presented. Theoretical calculations were compared with the experimental results for the nBn detector with the absorber and contact layers in an InAs/InAsSb superlattice separated AlAsSb barrier. Detector structure was grown using MBE technique on a GaAs substrate. The k p model was used to determine the first electron band and the first heavy and light hole bands in T2SL, as well as to calculate the absorption coefficient. The paper presents the effect of the additional hole barrier on electrical and optical parameters of the nBn structure. According to the principle of the nBn detector operation, the electrons barrier is to prevent the current flow from the contact layer to the absorber, while the holes barrier should be low enough to ensure the flow of optically generated carriers. The barrier height in the valence band (VB) was adjusted by changing the electron affinity of a ternary AlAsSb material. Results of numerical calculations similar to the experimental data were obtained, assuming the presence of a high barrier in VB which, at the same time, lowered the detector current responsivity.

    Go to article

    Bibliography

    1. Aytac, Y. et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infra-red InAs/InAsSb superlattices. Appl. Phys. Lett. 105, 022107 (2014). https://doi.org/10.1063/1.4890578
    2. Olson, B. et al. Identification of dominant recombination mecha-nisms in narrow-bandgap InAs/InAsSb type-II superlattices and InAsSb alloys. Appl. Phys. Lett. 103, 052106 (2013). https://doi.org/10.1063/1.4817400
    3. White, M., 1983. Infrared Detectors. U.S. Patent 4,679,063.
    4. Klipstein, P., 2003. Depletionless photodiode with suppressed dark current and method for producing the same. U.S. Patent 7,795,640.
    5. Maimon, S. & Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
    6. Ting, D. Z.-Y. et al. Chapter 1 - Type-II Superlattice Infrared Detectors. in Advances in Infrared Photodetectors (eds. Gunapala, S. D., Rhiger, D. R. & Jagadish, C.) vol. 84 1–57 (Elsevier, 2011). https://doi.org/10.1016/B978-0-12-381337-4.00001-2
    7. Benyahia, D. et al. Low-temperature growth of GaSb epilayers on GaAs (001) by molecular beam epitaxy. Opto-Electron. Rev. 24, 40–45 (2016).https://doi.org/10.1515/oere-2016-0007
    8. Benyahia, D. et al. Molecular beam epitaxial growth and characterization of InAs layers on GaAs (001) substrate. Opt. Quant. Electron. 48, 428 (2016). https://doi.org/10.1007/s11082-016-0698-4
    9. Vurgaftman, I., Meyer, J. & Ram-Mohan, L. Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). https://doi.org/10.1063/1.1368156
    10. Birner, S. Modelling of semiconductor nanostruc¬tures and semiconductor-electrolyte interfaces. Ph.D. dissertation (Universität München, Germany, 2011).
    11. Chuang, Sh. L. Physics of optoelectronic devices. (Wiley, New York, 1995).
    12. Van de Walle, C. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989). https://doi.org/10.1103/PhysRevB.39.1871
    13. Kopytko, M. et al. Numerical Analysis of Dark Currents in T2SL nBn Detector Grown by MBE on GaAs Substrate. Proceedings 27, 37 (2019), https://doi.org/10.3390/proceedings2019027037
    14. Hazbun, R. et al. Theoretical study of the effects of strain balancing on the bandgap of dilute nitride InGaSbN/InAs superlattices on GaSb substrates. Infrared Phys. Technol. 69, 211–217 (2015). https://doi.org/10.1016/j.infrared.2015.01.023
    15. Livneh, Y. et al. k-p model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices. Phys. Rev. B 86, 235311 (2012). https://doi.org/10.1103/PhysRevB.86.235311
    16. Yu, P. & Cardona, M. Fundamentals of semicon-ductors: Physics and materials properties, 4th edn. (Springer, Heidelberg, 2010).
    17. Adachi, S. Properties of group – IV, III-V and II-VI Semicon-ductors. (Wiley, London, 2005).
    18. Manyk, T. et al. Method of electron affinity evalua¬tion for the type-2 InAs/InAs1-xSbx superlattice. J. Mater. Sci. 55, 5135–5144 (2020). https://doi.org/10.1007/s10853-020-04347-6
    Go to article

    Authors and Affiliations

    Małgorzata Kopytko
    1
    ORCID: ORCID
    Emilia Gomółka
    1
    ORCID: ORCID
    Tetiana Manyk
    1
    ORCID: ORCID
    Krystian Michalczewski
    2
    ORCID: ORCID
    Łukasz Kubiszyn
    2
    ORCID: ORCID
    Jarosław Rutkowski
    1
    ORCID: ORCID
    Piotr Martyniuk
    1
    ORCID: ORCID

    1. Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
    2. Vigo System S.A., Poznańska 129/133, 05-850 Ożarów Mazowiecki, Poland
    Download PDF Download RIS Download Bibtex

    Abstract

    Thermal-imaging systems respond to infrared radiation that is naturally emitted by objects. Various multispectral and hyperspectral devices are available for measuring radiation in discrete sub-bands and thus enable a detection of differences in a spectral emissivity or transmission. For example, such devices can be used to detect hazardous gases. However, their operation principle is based on the fact that radiation is considered a scalar property. Consequently, all the radiation vector properties, such as polarization, are neglected. Analysing radiation in terms of the polarization state and the spatial distribution of thereof across a scene can provide additional information regarding the imaged objects. Various methods can be used to extract polarimetric information from an observed scene. We briefly review architectures of polarimetric imagers used in different wavebands. First, the state-of-the-art polarimeters are presented, and, then, a classification of polarimetric-measurement devices is described in detail. Additionally, the data processing in Stokes polarimeters is given. Emphasis is laid on the methods for obtaining the Stokes parameters. Some predictions in terms of LWIR polarimeters are presented in the conclusion.
    Go to article

    Bibliography

    1. Tyo, S. J., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453–5469 (2006). https://doi.org/10.1364/AO.45.005453
    2. Kudenov, M. W., Pezzaniti, J. L. & Gerhart, G. R. Microbolo-meter-infrared imaging Stokes polarimeter. Opt. Eng. 48, 063201 (2009). https://doi.org/10.1117/1.3156844
    3. Harchanko, J. S., Pezzaniti, L., Chenault, D. & Eades, G. Comparing a MWIR and LWIR polarimetric imager for surface swimmer detection. Proc. SPIE 6945, 69450X (2008). https://doi.org/10.1117/12.778061
    4. Kudenov, M. W., Dereniak, E. L., Pezzaniti, L. & Gerhart, G. R. 2-Cam LWIR imaging Stokes polarimeter. Proc. SPIE 6972, 69720K (2008). https://doi.org/10.1117/12.784796
    5. Rodenhuis, M., Canovas, H., Jeffers, S. V. & Keller, C. U. The Extreme Polarimeter (ExPo): design of a sensitive imaging polarimeter. Proc. SPIE 7014, 70146T (2008). https://doi.org/10.1117/12.788439
    6. van Holstein, R. et al. Combining angular differential imaging and accurate polarimetry with SPHERE/IRDIS to characterize young giant exoplanets. Proc. SPIE 10400, 1040015 (2017). https://doi.org/10.1117/12.2272554
    7. Rotbøll, J., Søbjærg, S. & Skou, N. A novel L-Band polarimetric radiometer featuring subharmonic sampling. Radio Sci. 38, 1–7 (2003). https://doi.org/10.1029/2002RS002666
    8. Yueh, S. H. Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans. Geosci. Remote Sensing 35, 1400–1418 (1997). https://doi.org/10.1109/36.649793
    9. Laymon, C. et al. MAPIR: An airborne polarimetric imaging radiometer in support of hydrologic satellite observations. in IEEE Geoscience and Remote Sensing Symposium 26–30 (2010).
    10. Coulson, K. L., Gray, E. L. & Bouricius, G. M. A study of the reflection and polarization characteristics of selected natural and artificial surfaces. Tech. Informat. Series Rep. R64SD74. (General Electric Co., Missile and Space Div., Space Sciences Lab., 1964)
    11. Lafrance, B. & Herman, M. Correction of the Stratospheric Aerosol Radiative Influence in the POLDER Measurements. IEEE Trans. Geosci. Remote Sensing 36, 1599–1608 (1998). https://doi.org/10.1109/36.718863
    12. Hooper, B. A., Baxter, B., Piotrowski, C., Williams, J. Z. & Dugan, J. An airborne imaging multispectral polarimeter (AROSS-MSP). in Oceans 2009, 1-10 (2009). https://doi.org/10.23919/OCEANS.2009.5422152
    13. Giakos, G. C. et al. Near infrared light interaction with lung cancer cells. in 2011 IEEE International Instrumentation and Measurement Technology Conference 1–6 (2011). https://doi.org/10.1109/IMTC.2011.5944333
    14. Sobczak, M., Kurzynowski, P., Woźniak, W., Owczarek, M. & Drobczyński, S. Polarimeter for measuring the properties of birefringent media in reflective mode. Opt. Express 28, 249–257 (2020). https://doi.org/10.1364/OE.380998
    15. Sadjadi, F. Electro-Optical Systems for Image Recognition. LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242) vol. 2 550–551 (2001). https://doi.org/10.1109/LEOS.2001.968933
    16. Bieszczad, G., Gogler, S. & Krupiński, M. Polarization state imaging in long-wave infrared for object detection. Proc. SPIE 8897, 88970R (2013). https://doi.org/10.1117/12.2028858
    17. Gurton, K. P. & Felton, M. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging. Opt. Express 20, 22344–22359 (2012). https://doi.org/10.1364/OE.20.022344
    18. Więcek, B. & De Mey, G. Termowizja w podczerwieni. Podstawy i zastosowania. (Warszawa: Wydawnictwo Pomiary Automatyka Kontrola, 2011). [in Polish]
    19. Rogalski, A. Infrared detectors. (Amsterdam: Gordon and Breach Science Publishers, 2000).
    20. Chenault, D., Foster, J., Pezzaniti, L., Harchanko, J. & Aycock, T. Polarimetric sensor systems for airborne ISR. Proc. SPIE 9076, 90760K (2014). https://doi.org/10.1117/12.2053918
    21. Holtsberry, B. L. & Voelz, D. G. Material identification from remote sensing of polarized self-emission. Proc. SPIE 11132, 1113203 (2019). https://doi.org/10.1117/12.2528282
    22. Madura, H., Pomiary termowizyjne w praktyce : praca zbiorowa. (Agenda Wydawnicza PAKu, 2004). [in Polish]
    23. Baas, M., Handbook of Optics. (New York: McGraw-Hill, 1995).
    24. Eriksson, J., Bergström, D. & Renhorn, I. Characterization and performance of an LWIR polarimetric imager. Proc. SPIE 10434, 1043407 (2017). https://doi.org/10.1117/12.2278502
    25. Gogler, S., Bieszczad, G. & Swiderski, J. Method of signal processing in a time-division LWIR image polarimetric sensor. Appl. Opt. 59, 7268–7278 (2020). https://doi.org/10.1364/AO.396675
    26. Cremer, F., de Jongm, W. & Schutte, K. Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines. Opt. Eng. 41, 1021–1032 (2002). https://doi.org/10.1117/1.1467362
    27. Pezzaniti, L. J. & Chenault, D. B. A divison of aperture MWIR imaging polarimeter. Proc. SPIE 5888, 58880 (2005). https://doi.org/10.1117/12.623543
    28. Chun, C. S. L., Fleming, D. L., Harvey, W. A. & Torok, E. J. Target discrimination using a polarization sensitive thermal imaging sensor. Proc. SPIE 3062, 60–67 (1997). https://doi.org/10.1117/12.327165
    29. https://moxtek.com/ (2020).
    30. Stokes, R. J., Normand, E. L., Carrie, I. D., Foulger, B. & Lewis, C. Develepment of a QCL based IR polarimetric system for the stand-off detection and location of IEDs. Proc. SPIE 7486, 748609 (2009). https://doi.org/10.1117/12.830076
    31. Chenault D. B., Vaden, J. P., Mitchell, D. A. & Demicco, E. D. New IR polarimeter for improved detection of oil on water. SPIE Newsroom (2017). https://doi.org/10.1117/2.1201610.006717
    32. Tyo, S. J. & Turner, T. S. Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing. Appl. Opt. 40, 1450–1458 (2001). https://doi.org/10.1364/AO.40.001450
    33. Craven-Jones, J., Way, B. M., Hunt, J., Kudenov, M. W. & Mercier, J. A. Thermally stable imaging channeled spectropolari-metry. Proc. SPIE 8873, 88730J (2013). https://doi.org/10.1117/12.2024112
    34. Smith, M. H., Woodruff, J. B. & Howe, J. D. Beam wander considerations in imaging polarimetry. Proc. SPIE 3754, 50–54 (1999). https://doi.org/10.1117/12.366359
    Go to article

    Authors and Affiliations

    Grzegorz Bieszczad
    1
    ORCID: ORCID
    Sławomir Gogler
    1
    ORCID: ORCID
    Jacek Świderski
    1
    ORCID: ORCID

    1. Institute of Optoelectronics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
    Download PDF Download RIS Download Bibtex

    Abstract

    The present review is mainly focused on the extended analysis of the results obtained from coupled measurement techniques of a thermal imaging camera and chronoamperometry for imines in undoped and doped states. This coupled technique allows to identify the current-voltage characteristics of thin films based on imine, as well as to assess layer defects in thermal images. Additional analysis of results provides further information regarding sample parameters, such as resistance, conductivity, thermal resistance, and Joule power heat correlated with increasing temperature. As can be concluded from this review, it is possible not only to study material properties at the supramolecular level, but also to tune macroscopic properties of -conjugated systems. A detailed study of the structure-thermoelectrical properties in a series of eight unsymmetrical and symmetrical imines for the field of optoelectronics and photovoltaics has been undertaken. Apart from this molecular engineering, the imines properties were also tuned by supramolecular engineering via protonation with camphorsulfonic acid and by creation of bulk-heterojunction compositions based on poly(4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl) and/or [6,6]-phenyl-C71-butyric acid methyl ester, poly(3,4-ethylenedioxythiophene) towards the analysed donor or acceptor ability of imines in the active layer. The use of coupled measurement techniques of a thermal imaging camera and chronoamperometry allows obtaining comprehensive data on thermoelectric properties and defects indicating possible molecule rearrangement within the layer.
    Go to article

    Bibliography

    1. Wang, D. et al. Recent advances in molecular design of organic thermoelectric materials. CCS Chem. 3, 2212–2225 (2021). https://doi.org/10.31635/ccschem.021.202101076
    2. Dong, J. et al. Organic semiconductor nanostructures: Optoelectronic properties, Modification strategy, and photocatalytic applications. J Mater. Sci. Tech. (2021). https://doi.org/10.1016/j.jmst.2021.09.002
    3. Huang, D. et al. Conjugated-backbone effect of organic small molecules for n‑type thermoelectric materials with ZT over 0.2. J. Am. Chem. Soc. 139, 13013–13023 (2017). https://doi.org/10.1021/jacs.7b05344
    4. Mao, L. et al. Patching defects in the active layer of large-area organic solar cells. J. Mater.A 6, 5817–5824 (2018). https://doi.org/10.1039/C7TA11264E
    5. Lindner, S. M. et al. Charge separation at self-assembled nano-structured bulk interface in block copolymers. Chem 45, 3364–3368 (2006). https://doi.org/10.1002/anie.200503958
    6. Han, Y. et al. Calibration and image processing of aerial thermal image for UAV application in crop water stress estimation. J. Sensors 2021, Article ID 5537795 (2021). https://doi.org/10.1155/2021/5537795
    7. Stumper, M., Kraus, J. & Capousek, L. Thermal imaging in aviation. Magazine of Aviation Development 3, 16 (2015). https://doi.org/10.14311/MAD.2015.16.03
    8. Thermal Imaging in the Automotive Industry. Thermascan Ltd https://www.thermascan.co.uk/blog/thermal-imaging-automotive (2021).
    9. Thermography in Chemical Industry. InfraTec GmbH https://www.infratec.eu/thermography/industries-applications/chemical-industry/ (2021).
    10. Kasikowski, R. & Więcek, B. Fringing-effect losses in inductors by thermal modeling and thermographic measurements. IEEE Trans. Power Electron. 36, 9772–9786 (2021). https://doi.org/10.1109/TPEL.2021.3058961
    11. Kucharska, M. & Jaskowska-Lemanska, J. Active thermography in diagnostics of timber elements covered with polychrome. Materials 14, 1134 (2021). https://doi.org/10.3390/ma14051134
    12. Kowalski, M. Ł., Grudzień, A. & Ciurapiński, W. Detection of human faces in thermal infrared images. Meas. Syst. 28, 307–321 (2021). https://doi.org/10.24425/mms.2021.136609
    13. Teubner, J. et al. Comparison of drone-based ir-imaging with module resolved monitoring power data. Energy Procedia 124, 560–566 (2017). https://doi.org/10.1016/j.egypro.2017.09.094
    14. Irshad, Jaffery, Z. A. & Haque, A. Temperature measurement of solar module in outdoor operating conditions using thermal imaging. Infrared Phys. Technol. 92, 134–138 (2018). https://doi.org/10.1016/j.infrared.2018.05.017
    15. Gallardo-Saavedra, S. et al. Infrared thermography for the detection and characterization of photovoltaic defects: comparison between illumination and dark conditions. Sensors 20, 4395 (2020). https://doi.org/10.3390/s20164395
    16. Muttillo, M. et al. On field infrared thermography sensing for pv system efficiency assessment: results and comparison with electrical models. Sensors 20, 1055 (2020). https://doi.org/10.3390/s20041055
    17. Iwan, A. et al. Optical and electrical properties of graphene oxide and reduced graphene oxide films deposited onto glass and Ecoflex® substrates towards organic solar cells. Adv. Mater. Lett 9, 58– 65 (2018). https://doi.org/10.5185/amlett.2018.1870
    18. Fryń, P. et al. Hybrid materials based on l,d-poly(lactic acid) and single-walled carbon nanotubes as flexible substrate for organic devices. Polymers 10, 1271 (2018). https://doi.org/10.3390/polym10111271
    19. Fryń, P. et al. Dielectric, thermal and mechanical properties of L,D-Poly(Lactic Acid) modified by 4′-Pentyl-4-Biphenylcarbonitrile and single walled carbon nanotube. Polymers 11, 1867 (2019). https://doi.org/10.3390/polym11111867
    20. Fryń, P. et al. Research of binary and ternary composites based on selected aliphatic or aliphatic–aromatic polymers, 5CB or SWCN toward biodegradable electrodes. Materials 13, 2480 (2020). https://doi.org/10.3390/ma13112480
    21. Różycka, A. et al. Influence of TiO2 nanoparticles on liquid crystalline, structural and electrochemical properties of (8Z)-N-(4-((Z)-(4-pentylphenylimino)methyl)benzylidene)-4- pentylbenzenamine. Materials 12, 1097 (2019). https://doi.org/10.3390/ma12071097
    22. Gonciarz, A. et al. UV-Vis absorption properties of new aromatic imines and their compositions with poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2- ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}. Materials 12, 4191 (2019). https://doi.org/10.3390/ma12244191
    23. Bogdanowicz, K. A. Selected electrochemical properties of 4,4'-((1E,1'E)-((1,2,4-thiadiazole-3,5- diyl)bis(azaneylylidene))bis-(methaneylylidene))bis(N,N-di-p-tolylaniline) towards perovskite solar cells with 14.4% efficiency. Materials 13, 2440 (2020). https://doi.org/10.3390/ma13112440
    24. Przybył, W. et al. IR thermographic camera as useful and smart tool to analyse defects in organic solar Photonics Lett. Poland 12, 25–27 (2020). https://doi.org/10.4302/plp.v12i2.976
    25. Jewloszewicz, B. et al. A comprehensive optical and electrical study of unsymmetrical imine with four thiophene rings and their binary and ternary compositions with PTB7 and PC70BM towards organic RSC Adv 10, 44958 (2020). https://doi.org/10.1039/D0RA08330E
    26. Bogdanowicz, K. A. et al. Electrochemical and optical studies of new symmetrical and unsymmetrical imines with thiazole and thiophene moieties. Electrochim Acta 332, 135476 (2020). https://doi.org/10.1016/j.electacta.2019.135476
    27. Dylong, A. et al. Crystal structure determination of 4‐[(Di‐p‐tolylamino)‐benzylidene]‐(5‐pyridin‐ 4‐yl‐[1,3,4]thiadiazol‐2‐yl)‐imine along with selected properties of imine in neutral and protonated form with camforosulphonic acid: Theoretical and experimental studies. Materials 14, 1952 (2021). https://doi.org/10.3390/ma14081952
    28. Wang, J. et al. Stimulus responsive fluorescent hyperbranched polymers and their Sci. China Chem. 53, 2409–2428 (2010). https://doi.org/10.1007/s11426-010-4106-9
    29. Albota, A. et al. Design of organic molecules with large two-photon absorption cross Science 281, 1653 (1998). https://doi.org/10.1126/science.281.5383.1653
    30. Reinhardt, B. A. et al. Highly active two-photon dyes:  design, synthesis, and characterization toward Chem. Mater. 10, 1863 (1998). https://doi.org/10.1021/cm980036eIwase, Y. et al. Synthesis and photophysical properties of new two-photon absorption chromophores containing a diacetylene moiety as the central π-bridge. J. Mater. Chem. 13, 1575 (2000). https://doi.org/10.1039/b211268j
    31. Kim, O. K. et al. New class of two-photon-absorbing chromophores based on Chem. Mater. 12, 284 (2000). https://doi.org/10.1021/cm990662r
    32. Liu, Z. Q. et al. Trivalent boron as an acceptor in donor–π–acceptor-type compounds for single- and two-photon excited fluorescence. Chem. Eur. J. 9, 5074 (2003). https://doi.org/10.1002/chem.200304833
    33. Abbotto, A. et al. Novel heterocycle-based two-photon absorbing dyes. Org. Lett. 4, 1495 (2002). https://doi.org/10.1021/ol025703v
    34. Sek, D. et al. Hole transport triphenylamine-azomethine conjugated system: Synthesis and optical, photoluminescence and electrochemical properties. Macromolecules 41, 6653–6663 (2008). https://doi.org/10.1021/ma702637k
    35. Sek, D. et al. Characterization and optical properties of oligoazomethines with triphenylamine moieties exhibiting blue, blue-green and green light. Spectrochim Acta A Mol. Biomol. Spectrosc. 72, 1–10 (2009). https://doi.org/10.1016/j.saa.2008.06.022
    36. Gawlinska, K. et al. Searching of new, cheap, air- and thermally stable hole transporting materials for perovskite solar cells. Opto-Electron. Rev. 25, 274–284, (2017). https://doi.org/10.1016/j.opelre.2017.07.004
    37. Costa, P. M. J. F. et al. Direct imaging of Joule heating dynamics and temperature profiling inside a carbon nanotube interconnect. Nat. Commun. 2, 421 (2011). https://doi.org/10.1038/ncomms1429
    38. McLaren, C. T. et al. Development of highly inhomogeneous temperature profile within electrically heated alkali silicate glasses. Sci. Rep. 9, 2805 (2019). https://doi.org/10.1038/s41598-019-39431-8
    39. Balakrishnan, V.  et al. A generalized analytical model for Joule heating of segmented wires. Heat Transfer 140, (7), 072001 (2018). https://doi.org/10.1115/1.4038829
    40. Thangaraju, S. K. & Munisamy, K. M. Electrical and Joule Heating Relationship Investigation Using Finite Element Method. in 7th International Conference on Cooling & Heating Technologies. 88, 012036 (Selangor, Malaysia, 2015). https://doi.org/10.1088/1757-899X/88/1/012036
    41. Russ, B. et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016). https://doi.org/10.1038/natrevmats.2016.50
    Go to article

    Authors and Affiliations

    Krzysztof. A. Bogdanowicz
    1
    ORCID: ORCID
    Agnieszka Iwan
    1
    ORCID: ORCID

    1. Military Institute of Engineer Technology, 136 Obornicka St., 50-961 Wroclaw, Poland
    Download PDF Download RIS Download Bibtex

    Abstract

    Accurate determination of material parameters, such as carrier lifetimes and defect activation energy, is a significant problem in the technology of infrared detectors. Among many different techniques, using the time resolved photoluminescence spectroscopy allows to determine the narrow energy gap materials, as well as their time dynamics. In this technique, it is possible to observe time dynamics of all processes in the measured sample as in a streak camera. In this article, the signal processing for the above technique for Hg(1-x)CdxTe with a composition x of about 0.3 which plays an extremely important role in the mid-infrared is presented. Machine learning algorithms based on the independent components analysis were used to determine components of the analyzed data series. Two different filtering techniques were investigated. In the article, it is shown how to reduce noise using the independent components analysis and what are the advantages, as well as disadvantages, of selected methods of the independent components analysis filtering. The proposed method might allow to distinguish, based on the analysis of photoluminescence spectra, the location of typical defect levels in HgCdTe described in the literature.
    Go to article

    Bibliography

    1. Kopytko, M. et al. High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD. Opto-Electron. Rev. 21, 402–405 (2013). https://doi.org/10.2478/s11772-013-0101-y
    2. Kopytko, M., Kebłowski, A., Gawron, W. & Madejczyk, P. Different cap-barrier design for MOCVD grown HOT HgCdTe barrier detectors. Opto-Electron. Rev. 23, 143–148 (2015). https://doi.org/10.1515/oere-2015-0017
    3. Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005). https://doi.org/10.1088/0034-4885/68/10/R01
    4. Bhan, R. K. & Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infra-red focal plane arrays and their characterization. Opto-Electron. Rev. 27, 174–193 (2019). https://doi.org/10.1016/j.opelre.2019.04.004
    5. Izhnin, I. et al. Photoluminescence of HgCdTe nanostructures grown by molecular beam epitaxy on GaAs. Opto-Electron. Rev. 21, 390–394 (2013). https://doi.org/10.2478/s11772-013-0103-9
    6. Madejczyk, P. et al. Control of acceptor doping in MOCVD HgCdTe epilayers. Opto-Electron. Rev. 18, 271–276 (2010). https://doi.org/10.2478/s11772-010-1023-x
    7. Martyniuk, P., Koźniewski, A., Kebłowski, A., Gawron, W. & Rogalski, A. MOCVD grown MWIR HgCdTe detectors for high operation temperature conditions. Opto-Electron. Rev. 22, 118–126 (2014). https://doi.org/10.2478/s11772-014-0186-y
    8. Piotrowski, J. et al. Uncooled MWIR and LWIR photodetectors in Poland. Opto-Electron. Rev. 18, 318–327 (2010). https://doi.org/10.2478/s11772-010-1022-y
    9. Wang, H., Hong, J., Yue, F., Jing, C. & Chu, J. Optical homogeneity analysis of Hg1−xCdxTe epitaxial layers: How to circumvent the influence of impurity absorption bands? Infrared Phys. Technol. 82, 1–7 (2017). https://doi.org/10.1016/j.infrared.2017.02.007
    10. Yue, F., Wu, J. & Chu, J. Deep/shallow levels in arsenic-doped HgCdTe determined by modulated photoluminescence spectra. Appl. Phys. Lett. 93, 131909 (2008). https://doi.org/10.1063/1.2983655
    11. Yue, F. Y. et al. Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications. Chin. Phys. B 28, 17104 (2019). https://doi.org/10.1088/1674-1056/28/1/017104
    12. Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 13, 411–430 (2000). https://doi.org/10.1016/S0893-6080(00)00026-5
    13. Grodecki, K. et al. Enhanced Raman spectra of hydrogen-intercalated quasi-free-standing monolayer graphene on 4H-SiC(0001). Physica E 117, 113746 (2020). https://doi.org/10.1016/j.physe.2019.113746
    14. Grodecki, K. & Murawski, K. New data analysis method for time-resolved infrared photoluminescence spectroscopy. Appl. Spectrosc. 75, 596-599 (2020). https://doi.org/10.1177/0003702820969700
    15. Hong-Yan, L., Zhao, Q. H., Ren, G. L. & Xiao, B. J. Speech enhancement algorithm based on independent component analysis. in 5th Int. Conf. on Natural Computation (ICNC 2009) 2, 598–602 (2009). https://doi.org/10.1109/ICNC.2009.76
    16. Wen, S. & Ding, D. FASTICA-based firefighters speech noise reduction. in Proc. 2015 of 8th Int. Congress on Image and Signal Processing (CISP 2015) 1423–1426 (2016). https://doi.org/10.1109/CISP.2015.7408106
    17. Yue, F. Y. et al. Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications. Chin. Phys. B 28, 17104–017104 (2019). https://doi.org/10.1088/1674-1056/28/1/017104
    18. Zhang, X. et al. Infrared photoluminescence of arsenic-doped HgCdTe in a wide temperature range of up to 290 K. J. Appl. Phys. 110, 043503 (2011). https://doi.org/10.1063/1.3622588
    Go to article

    Authors and Affiliations

    Kacper Grodecki
    1
    ORCID: ORCID
    Krzysztof Murawski
    1
    ORCID: ORCID
    Jarosław Rutkowski
    1
    ORCID: ORCID
    Andrzej Kowalewski
    1
    ORCID: ORCID
    Jan Sobieski
    1
    ORCID: ORCID

    1. Military University of Technology, 2 Kaliskiego St., Warsaw 00-908, Poland
    Download PDF Download RIS Download Bibtex

    Abstract

    A compact temperature measuring device using a weakly coupled multi-core fibre in the Michelson interferometer structure is proposed and experimentally demonstrated. The device is manufactured by an easy and simple splicing approach which consists of a multi-core fibre segment and an in-fibre coupler. In-fibre coupler is made of a cascaded single-mode fibre and multi-core fibre balls. It enhances the interference phenomenon of light energy between the central core and the outer cores of a multi-core fibre. The sensor shows a high quality fringe visibility of about 14–18 dB in the wavelength spectrum. Multi-core structure presents multi-path interferences and exhibits a maximum temperature sensitivity of 70.6 pm/°C in the range of 20–90°C with an insensitive response to the refractive index in the range of 1.334 to 1.354. The device has the advantages of compact size, easy manufacturing, and it solves cross-sensitivity between temperature and refractive index making it an authentic real-time temperature monitoring solution.
    Go to article

    Bibliography

    1. Yu, J. et al.Multi-parameter sensor based on the fibre Bragg grating combined with triangular-lattice four-core fibre. Optik 208, 164094 (2020). https://doi.org/10.1016/j.ijleo.2019.164094
    2. Cao, Y. et al. Simultaneous measurement of temperature and refractive index based on microfibre Bragg Grating in Sagnac loop. Opt. Fibre Technol. 47, 147–151 (2019). https://doi.org/10.1016/j.yofte.2018.11.028
    3. Zhao, C.-L., Demokan, M., Jin, W. & Xiao, L. A cheap and practical FBG temperature sensor utilizing a long-period grating in a photonic crystal fibre. Opt. Commun. 276, 242–245 (2007). https://doi.org/10.1016/j.optcom.2007.04.037
    4. Fu, X. et al. Refractive index insensitive temperature sensor based on specialty triple-clad fibre. Opt. Express 23, 2320–2327 (2015). https://doi.org/10.1364/OE.23.002320
    5. Liu, Q. et al. Refractive index insensitive temperature sensor based on waist-enlarged few mode fibre bitapers. Optoelectron. Lett. 13, 25–28 (2017). https://doi.org/10.1007/s11801-017-6200-0
    6. H. &. Shu, X. Miniature all-fibre high temperature sensor based on Michelson interferometer formed with a novel core-mismatching fibre joint. IEEE Sens. J. 17, 3341–3345 (2017). https://doi.org/10.1109/JSEN.2017.2693386
    7. Bao, L., Dong, X., Shum, P. P. & Shen, Ch. Compact temperature sensor with highly germania-doped fibre-based Michelson interferometer. IEEE Sens. J. 18, 8017–8021 (2018). https://doi.org/10.1109/JSEN.2018.2864799
    8. Qi, K., Zhang, Y., Sun, J. & Yi, G. All-fibre high temperature and refractive index sensor based on three microspheres array Michelson interferometer. Opt. Laser Technol. 129, 106300 (2020). https://doi.org/10.1016/j.optlastec.2020.106300
    9. Wang, J. et al. A novel fibre in-line Michelson interferometer based on end face packaging for temperature and refractive index measurement. Optik 194, 163094 (2019) . https://doi.org/10.1016/j.ijleo.2019.163094
    10. Duan, L. et al. Heterogeneous all-solid multicore fibre based multipath Michelson interferometer for high temperature sensing. Opt. Express 24, 20210–20218 (2016). https://doi.org/10.1364/OE.24.020210
    11. Zhao, Y. et al. An integrated fibre Michelson interferometer based on twin-core and side-hole fibres for multiparameter sensing. J. Light. Technol. 36, 993–997 (2017). https://doi.org/10.1109/JLT.2017.2753256
    12. Rugeland, P. & Margulis, W. Revisiting twin-core fibre sensors for high-temperature measurements. Appl. Opt. 51, 6227–6232 (2012). https://doi.org/10.1364/AO.51.006227
    13. Dang, Y. et al. Towards large dynamic range and ultrahigh measurement resolution in distributed fibre sensing based on multicore fibre. Opt. Express 25, 20183–20193 (2017). https://doi.org/10.1364/OE.25.020183
    14. Hu, W. et al. Etched multicore fibre Bragg gratings for refractive index sensing with temperature in-line compensation. OSA Continuum 3, 1058–1067 (2020). https://doi.org/10.1364/OSAC.387019
    15. Chunxia, Y. et al. Weakly-coupled multicore optical fibre taper-based high-temperature sensor. Sens. Actuator A Physi. 280, 139–144 (2018). https://doi.org/10.1016/j.sna.2018.07.016
    16. Cheng, P. et al. Refractive index interferometer based on SMF-MMF-TMCF-SMF structure with low temperature sensitivity. Opt. Fibre Technol. 57, 102233 (2020). https://doi.org/10.1016/j.yofte.2020.102233
    17. Guo, D. et al. Tapered multicore fibre interferometer for refractive index sensing with graphene enhancement. Appl. Opt. 59, 3927–3932 (2020). https://doi.org/10.1364/AO.385324
    18. Zhang, C. et al. Refractive index sensor based on tapered multicore fibre. Opt. Fibre Technol. 33, 71–76 (2017). https://doi.org/10.1016/j.yofte.2016.11.008
    19. Antonio-Lopez, J. E. et al. Multicore fibre sensor for high-temperature applications up to 1000°C. Opt. Lett. 39, 4309–4312 (2014). https://doi.org/10.1364/OL.39.004309
    20. Qi, Y. et al. A novel high sensitivity refractive index sensor based on multi-core micro/nano fibre. Photonic Sens. 9, 197–204 (2019). https://doi.org/10.1007/s13320-019-0554-9
    21. Mumtaz, F., Dai, Y. & Ashraf, M. A. Inter-cross de-modulated refractive index and temperature sensor by an etched multi-core fibre of a MZI structure. J. Light. Technol. 38, 6948–6953 (2020). https://doi.org/10.1109/JLT.2020.3014857
    22. Mumtaz, F. et al. A design of taper-like etched multicore fibre refractive index-insensitive a temperature highly sensitive Mach-Zehnder interferometer. IEEE Sens. J. 20, 7074–7081 (2020). https://doi.org/10.1109/jsen.2020.2978533
    23. Zhao, Z. et al. All-solid multi-core fibre-based multipath Mach–Zehnder interferometer for temperature sensing. Appl. Phys. B 112, 491–497 (2013). https://doi.org/10.1007/s00340-013-5634-8
    24. Zhou, S., Huang, B. & Shu, X. A multi-core fibre based interferometer for high temperature sensing. Meas. Sci. Technol. 28, 045107 (2017). https://doi.org/10.1088/1361-6501/AA5E82
    25. Kilic, S. G. et al. Refractometer with etched chirped fibre Bragg grating Fabry–Perot interferometer in multicore fibre. IEEE Photonics Technol. Lett. 31, 575–578 (2019). https://doi.org/10.1109/LPT.2019.2900621
    26. Barrera, D., Madrigal, J. & Sales S. Long period gratings in multicore optical fibres for directional curvature sensor implementation. J. Light. Technol. 36, 1063–1068 (2018). https://doi.org/10.1109/JLT.2017.2764951
    27. Madrigal, J., Barrera, D. & Sales, S. Refractive index and temperature sensing using inter-core crosstalk in multicore fibres. J. Light. Technol. 37, 4703–4709 (2019). https://doi.org/10.1109/JLT.2019.2917629
    28. Mumtaz, F. et al. Thermo-coupled temperature sensors by seven-core MCF structures. in 2020 IEEE Sensors 1–4 (IEEE Rotterdam, Netherlands, 2020). https://doi.org/10.1109/SENSORS47125.2020.9278856
    Go to article

    Authors and Affiliations

    Farhan Mumtaz
    1 2
    ORCID: ORCID
    Yutang Dai
    3
    ORCID: ORCID
    Hu Wenbin
    3
    Lashari G. Abbas
    3 1
    Rashda Parveen
    2
    Muhammad A. Ashraf 
    2

    1. School of Information and Communication Engineering, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070, China
    2. Communications Lab., Department of Electronics, Quaid-i-Azam University, Islamabad 45320, Pakistan
    3. National Engineering Laboratory for Fibre Optic Sensing Technology, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070, China
    Download PDF Download RIS Download Bibtex

    Abstract

    High power fibre lasers need to be cooled efficiently to avoid their thermal damage. Temperature distribution in fibre should be estimated during the fibre laser design process. The steady-state heat equation in a cylindrical geometry is solved to derive a practical formula for temperature radial distribution in multi-layered optical fibres with arbitrary number of the layers. The heat source is located in one or more cylindrical domains. The validity of the analytical formula is tested by comparison with static heat transfer simulations of typical application examples including octagonal double clad fibre, air-clad fibre, fibre with nonuniform, microstructured core. The accuracy sufficient for practical use is reported even for cases with not exactly cylindrical domains.
    Go to article

    Bibliography

    1. Zervas, M. N. & Codemard, C. . High power fiber lasers: A review. IEEE J. Sel. Topics Quantum Electron. 20, 219–241 (2014). https://doi.org/10.1109/JSTQE.2014.2321279
    2. Davis, M. K., Digonnet, M. J. F. & Pantell, R. H. Thermal effects in doped fibers. J. Light. Technol. 16, 1013 (1998). https://doi.org/10.1109/50.681458
    3. Brown, D. C. & Hoffman, H. J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J. Quantum Electron. 37, 207–217 (2001). https://doi.org/10.1109/3903070
    4. Limpert, J. et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation. Opt. Express 11, 2982–2990 (2003). https://doi.org/10.1364/OE.11.002982
    5. Wang, Y., Xu, Ch.-Q. & Po, H. Thermal effects in kilowatt fiber lasers. IEEE Photonics Technol. Lett. 16, 63–65 (2004). https://doi.org/10.1109/LPT.2003.818913
    6. Zintzen, B., Langer, T., Geiger, J., Hoffmann, D. & Loosen, P. Heat transport in solid and air-clad fibers for high-power fiber lasers. Opt. Express 15, 16787–16793 (2007). https://doi.org/10.1364/OE.15.016787
    7. Lapointe, M.-A., Chatigny, S., Piché, M., Cain-Skaff, M. & Maran, J.-N. Thermal effects in high-power CW fiber lasers. in Fiber Lasers VI: Technology, Systems, and Applications, Proc. SPIE 7195, 430–440 (2009). https://doi.org/10.1117/12.809021
    8. Liu, T., Yang, Z. M. & Xu, S. H. Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser. Opt. Express 17, 12875–12890 (2009). https://doi.org/10.1364/OE.17.012875
    9. Sabaeian, M., Nadgaran, H., Sario, M. D., Mescia, L. & Prudenzano, F. Thermal effects on double clad octagonal Yb:glass fiber laser. Opt. Mater. 31, 1300–1305 (2009). https://doi.org/10.1016/j.optmat.2008.10.034
    10. Ashoori, V. & Malakzadeh, A. Explicit exact three-dimensional analytical temperature distribution in passively and actively cooled high-power fibre lasers. J. Phys. D. 44, 355103 (2011). https://doi.org/10.1088/0022-3727/44/35/355103
    11. Fan, Y. et al. Thermal effects in kilowatt all-fiber MOPA. Opt. Express 19, 15162–15172 (2011). https://doi.org/10.1364/OE.19.015162
    12. Fan, Y. et al. Efficient heat transfer in high-power fiber lasers. Chin. Opt. Lett. 10, 111401–111401 (2012). http://col.osa.org/abstract.cfm?URI=col-10-11-111401
    13. Huang, C. et al. A versatile model for temperature-dependent effects in Tm-doped silica fiber lasers. J. Light. Technol. 32, 421–428 (2014). https://doi.org/10.1109/JLT.2013.2283294
    14. Mohammed, Z., Saghafifar, H. & Soltanolkotabi, M. An approximate analytical model for temperature and power distribution in high-power Yb-doped double-clad fiber lasers. Laser Phys. 24, 115107 (2014). https://doi.org/10.1088/1054-660X/24/11/115107
    15. Yang, J., Wang, Y., Tang, Y. & Xu, J. Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers. arXiv preprint arXiv:1503.07256 (2015). https://arxiv.org/abs/1503.07256
    16. Daniel, J. M. O., Simakov, N., Hemming, A., Clarkson, W. A. & Haub, J. Metal clad active fibres for power scaling and thermal management at kW power levels. Opt. Express 24, 18592–18606 (2016). https://doi.org/10.1364/OE.24.018592
    17. Karimi, M. Theoretical study of the thermal distribution in Yb-doped double-clad fiber laser by considering different heat sources. Prog. Electromagn. Res. C 88, 59–76 (2018). https://doi.org/10.2528/PIERC18081505
    18. Lv, Y., Zheng, H. & Liu, S. Analytical thermal resistance model for high power double-clad fiber on rectangular plate with convective cooling at upper and lower surfaces. Opt. Commun. 419, 141–149 (2018). https://doi.org/10.1016/j.optcom.2018.03.001
    19. Mafi, A. Temperature distribution inside a double-cladding optical fiber laser or amplifier. J. Opt. Soc. Am. B 37, 1821–1828 (2020). https://doi.org/10.1364/JOSAB.390935
    20. Peterka, P. et al. Thulium-doped silica-based optical fibers for cladding-pumped fiber amplifiers, Opt. Mater. 30, 174–176 (2007). https://doi.org/10.1016/j.optmat.2006.11.039
    21. Peterka, P., Faure, B., Blanc, W., Karásek, M. & Dussardier, B. Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Opt. Quantum Electron. 36, 201–212 (2004). https://doi.org/10.1023/B:OQEL.0000015640.82309.7d
    22. Koška, P., Peterka, P. & Doya, V. Numerical modelling of pump absorption in coiled and twisted double-clad fibers. IEEE J. Sel. Topics Quantum Electron. 22, 55–62 (2016). https://doi.org/10.1109/JSTQE.2015.2490100
    23. Darwich, D. et al., 140 μm single-polarization passive fully aperiodic large-pitch fibers operating near 2 μm. Appl. Opt. 56, 9221–9224 (2017). https://doi.org/10.1364/AO.56.009221
    24. Franczyk, M., Stępień, R., Filipkowski, A., Pysz, D. & Buczyński, R. Nanostructured core active fiber based on ytterbium doped phosphate glass. IEEE J. Light. Technol. 37, 5885–5891 (2019). https://doi.org/10.1109/jlt.2019.2941664
    25. Michalska, M., Brojek, W., Rybak, Z., Sznelewski, P., Mamajek, M. & Świderski, J. Highly stable, efficient Tm-doped fiber laser—a potential scalpel for low invasive surgery. Laser Phys. Lett. 13, 115101 (2016). https://doi.org/10.1088/1612-2011/13/11/115101
    26. Todorov, F. et al. Active optical fibers and components for fiber lasers emitting in the 2-µm spectral range. Materials 13, 5177 (2020). https://doi.org/10.3390/ma13225177
    27. Engineering ToolBox. Air – thermal conductivity. (2009). https://www.engineeringtoolbox.com/air-properties-viscosity-conductivity-heat-capacity-d_1509.html
    28. Schreiber, T., Eberhardt, R., Limpert, J. & Tunnermann, A. High-power fiber lasers and amplifiers: fundamentals and enabling technologies to enter the upper limits. in Fiber lasers 7–61 (ed. Okhotnikov, O. G.) (Wiley-VCH, 2012). https://doi.org/10.1002/9783527648641.ch2
    29. Limpert, J. et al. High-power rod-type photonic crystal fiber laser, Opt. Express 13, 1055–1058 (2005). https://doi.org/10.1364/OPEX.13.001055
    30. Limpert, J. et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation. Light Sci. Appl. 1, e8 (2012). https://doi.org/10.1038/lsa.2012.8
    Go to article

    Authors and Affiliations

    Martin Grábner
    1
    ORCID: ORCID
    Pavel Peterka
    1
    ORCID: ORCID
    Pavel Honzátko
    1
    ORCID: ORCID

    1. Department of Fiber Lasers and Nonlinear Optics, Institute of Photonics and Electronics, Czech Academy of Sciences, 1014/57 Chaberská St., 18251 Praha 8, Czech Republic
    Download PDF Download RIS Download Bibtex

    Abstract

    The paper analyses the operation of different types of electronic colour sensors based on the light spectrum analysis. The application goal was to detect the type of the airport lamp based on differences in colour components of the light emitted by luminaires with specific spectral characteristics. Recognition of airport lamps is based on the analysis of the light spectrum. Proposed solution allows for an automatic software selection of appropriate conversion factors and comparison with specific standards necessary for this type of measurements. Various types of sensors were discussed and the AS7262 sensor was examined in detail. The colour sensor and the light intensity sensor were used in the mobile control device for examining elevated airport lamps and in the measurement platform for quality testing of embedded airport lamps. Two additional aspects were investigated: 1) influence of an additional acrylic glass cover; 2) distance between airport lamps and the spectrum sensor.
    Go to article

    Bibliography

    1. European Aviation Safety Agency. Certification Specifications (CS) and Guideline Material (GM) for Aerodrome Design. Edition 3, Annex to Decision No. 2016/027/R of the EASA Executive Director. (2016).
    2. Szpakowski, P. Lotnicza choinka czyli o świetlnych pomocach nawigacyjnych i ich kontroli. Safe Sky, Biuletyn Bezpieczeństwa Polskiej Agencji Żeglugi Powietrznej 4, 4–13 (2020) [in Polish].
    3. Novak, T., Dudek, J., Kolar, V., Sokansky, K. & Baleja, R. Solution of problems with short lifetime of airfield halogen lamps. in 18th International Scientific Conference on Electric Power Engineering (EPE) 1–5 (2017). https://doi.org/10.1109/EPE.2017.7967298
    4. Suder, J. Podbucki, K., Marciniak, T. & Dąbrowski, A. Low complex¬ity lane detection methods for light photometry system. Electronics 10, 1665 (2021). https://doi.org/10.3390/electronics10141665
    5. Podbucki, K., Suder, J., Marciniak, T. & Dąbrowski, A. Elektroniczna matryca pomiarowa do badania lamp lotniskowych. Prz. Elektrotechniczny 2, 47–51 (2021). https://doi.org/10.15199/48.2021.02.12 [in Polish]
    6. Żagan, W. Podstawy Techniki Świetlnej. (Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005). [in Polish]
    7. Suder, J., Maciejewski, P., Podbucki, K., Marciniak, T. & Dąbrowski, A. Platforma pomiarowa do badania jakości działania lamp lotniskowych. Pomiary, Automatyka, Robotyka 23, 5–13 (2019). https://doi.org/10.14313/PAR_232/5 [in Polish]
    8. Gigahertz-Optik GmbH, X4 Light Analyzer Datasheet (2007). http://www.industrycortex.com/datasheets/profile/506792174
    9. Texas Advanced Optoelectronic Solutions Inc., TCS3472 Colour light-to-digital converter with IR filter, TAOS135 (August 2012). http://www.datenblatt-pdf.com/pinout/911411/TCS3472-schematic.html
    10. Avago Technologies, APDS-9960 Digital Proximity, Ambient Light, RGB and Gesture Sensor, Data Sheet, AV02-4191EN (November 8, 2013). https://content.arduino.cc/assets/Nano_BLE_ Sense_av02-4191en_ds_apds-9960.pdf
    11. Intersil, Digital Red, Green and Blue Colour Light Sensor with IRBlocking Filter ISL29125, FN8424.2, (January 24, 2014). https://cdn.sparkfun.com/datasheets/Sensors/LightImaging/isl29125.pdf
    12. AMS, AS7265x Smart 18-Channel VIS to NIR Spectral_ID 3-Sensor Chipset with Electronic Shutter, Datasheet [v1-04], (July 9, 2018). https://datasheetspdf.com/pdf/1315799/ams/AS72651/1
    13. AMS, AS7341 11-Channel Multi-Spectral Digital Sensor, Datasheet DS000504 [v3-00], (June 25, 2020). https://datasheetspdf.com/pdf/1402690/ams/AS7341/1
    14. AMS, AS7262 6-Channel Visible Spectral_ID Device with Electronic Shutter and Smart Interface, Datasheet [v1-01], (March 17, 2017). https://ams.com/documents/20143/36005/AS7262_ DS000486_2-00.pdf
    15. ADB Safe gate, High Intensity Unidirectional Elevated Light for Approach, Threshold and Runway End and for Sequenced Flashing Lights (SFLS) Runway Threshold Identification (RTILS) Systems, User Manual, UM-4020/AM02-630e, Rev. 2.0, (May 19, 2020). https://adbsafegate.com/documents/2326/en/manual-uel
    Go to article

    Authors and Affiliations

    Jakub Suder
    1
    ORCID: ORCID
    Kacper Podbucki
    1
    ORCID: ORCID
    Tomasz Marciniak
    1
    ORCID: ORCID
    Adam Dąbrowski
    1
    ORCID: ORCID

    1. Division of Signal Processing and Electronic Systems, Institute of Automation and Robotics, Poznan University of Technology, 24 Jana Pawła II Ave., 60-965 Poznań, Poland
    Download PDF Download RIS Download Bibtex

    Abstract

    In this study, solar cells based on copper oxide and titanium dioxide were successfully manufactured using the reactive direct-current magnetron sputtering (DC-MS) technique with similar process parameters. TiO2/CuO, TiO2/Cu2O/CuO/Cu2O, and TiO2/Cu2O solar cells were manufactured via this process. Values of efficiencies, short-circuit current, short-circuit current density, open-circuit voltage, and maximum power of PV devices were investigated in the range of 0.02÷0.9%, 75÷350 µA, 75÷350 µA/cm2, 16÷550 mV, and 0.6÷27 µW, respectively. The authors compare solar cells reaching the best and the worst conversion efficiency results. Thus, only the two selected solar cells were fully characterized using I-V characteristics, scanning electron microscopy, X-ray diffraction, ellipsometry, Hall effect measurements, and quantum efficiency. The best conversion efficiency of a solar cell presented in this work is about three times higher in comparison with the authors’ previous PV devices.
    Go to article

    Bibliography

    1. Olczak, P., Kryzia, D., Matuszewska, D. & Kuta, M. “My Electricity” program effectiveness supporting the development of PV installation in Poland. Energies 14, 231 (2021). https://doi.org/10.3390/en14010231
    2. Cader, J., Olczak, P. & Koneczna, R. Regional dependencies of interest in the ‘My Electricity’ photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24, 97–116 (2021). https://doi.org/10.33223/epj/133473
    3. Zhang, Y. & Park, N.-G. A thin film (<200 nm) perovskite solar cell with 18% efficiency. J. Mater. Chem. A 34 17420–17428 (2020). https://doi.org/10.1039/D0TA05799A
    4. Luo, Y. et al. Electrochemically deposited Cu2O on TiO2 nanorod arrays for photovoltaic application. Electrochem. Solid-State Lett. 15, H34–H36 (2012). https://doi.org/10.1149/2.016202esl
    5. Pavan, M. et al. TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Sol. Energy Mater. Sol. Cells 132, 549–556 (2015). https://doi.org/10.1016/j.solmat.2014.10.005
    6. Rokhmat, M., Wibowo, E., Sutisna, Khairurrijal & Abdullah, M. Performance improvement of TiO2/CuO solar cell by growing copper particle using fix current electroplating method. Procedia Eng. 170, 72–77 (2017). https://doi.org/10.1016/j.proeng.2017.03.014
    7. Sawicka-Chudy, P. et al. Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater. Res. Express 6, 085918 (2019). https://doi.org/10.1088/2053-1591/ab22aa
    8. Zhu, L. Development of Metal Oxide Solar Cells through Numerical Modelling. (University of Bolton, Bolton, 2012).
    9. Hussain, S. et al. Fabrication and photovoltaic characteristics of Cu2O/TiO2 thin film heterojunction solar cell. Thin Solid Films 522, 430–434 (2012). https://doi.org/10.1016/j.tsf.2012.08.013
    10. Hussain, S. et al. Cu2O/TiO2 nanoporous thin-film heterojunctions: Fabrication and electrical characterization. Mater. Sci. Semicond. Process. 25, 181–185 (2014). https://doi.org/10.1016/j.mssp.2013.11.018
    11. Sawicka-Chudy, P. et al. Review of the development of copper oxides with titanium dioxide thin film solar cells. AIP Adv. 10, 010701 (2020). https://doi.org/10.1063/1.5125433
    12. Yang, Y., Xu, D., Wu, Q. & Peng, D. Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectro-chemical hydrogen evolution reaction. Sci. Rep. 6, 35158 (2016). https://doi.org/10.1038/srep35158
    13. Ichimura, M. & Kato, Y. Fabrication of TiO2/Cu2O heterojunction solar cells by electrophoretic deposition and electrodeposition. Mater. Sci. Semicond. Process. 16, 1538–1541 (2013). https://doi.org/10.1016/j.mssp.2013.05.004
    14. Zhang, W., Li, Y., Zhu, S. & Wang, F. Influence of argon flow rate on TiO2 photocatalyst film deposited by dc reactive magnetron sputtering. Surf. Coat. Technol. 182, 192–198 (2004). https://doi.org/10.1016/j.surfcoat.2003.08.050
    15. Sawicka-Chudy, P. et al. Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices. AIP Adv. 9, 055206 (2019). https://doi.org/10.1063/1.5093037
    16. Sawicka-Chudy, P. et al. Performance improvement of TiO2/CuO by increasing oxygen flow rates and substrate temperature using DC reactive magnetron sputtering method. Optik 206, 164297 (2020). https://doi.org/10.1016/j.ijleo.2020.164297
    17. Li, D. et al. Prototype of a scalable core–shell Cu2O/TiO2 solar cell. Chem. Phys. Lett. 501, 446–450 (2011). http://doi.org/10.1016/j.cplett.2010.11.064
    18. van der Pauw, L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958). https://doi.org/10.1142/9789814503464_0017
    19. ASTM F76-08(2016)e1, Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in, Single-Crystal Semiconductors (ASTM International, West Conshohocken, USA, 2016). https://doi.org/10.1520/F0076-08R16E01
    20. Ziaja, J. Cienkowarstwowe Struktury Metaliczne i Tlenkowe. Właści-wości, Technologia, Zastosowanie w Elektrotechnice (Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2012). [in Polish]
    21. Łowkis, B., Ziaja, J., Klaus P. & Krawczyk D. Effect of magnetron sputtering parameters on dielectric properties of PTFE foil. IEEE Trans. Dielectr. Electr. Insul. 27, 837–841 (2020). https://doi.org/10.1109/TDEI.2020.008710
    22. Gulkowski, S. & Krawczak, E. RF/DC magnetron sputtering deposition of thin layers for solar cell fabrication. Coatings 10, 1–14 (2020). https://doi.org/10.3390/coatings10080791
    23. Zhang, D. K., Liu, Y. C., Liu, Y. L. & Yang, H. The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction. Physica B 351, 178–183 (2004). https://doi.org/10.1016/j.physb.2004.06.003
    24. Scherrer, P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. in Kolloidchemie Ein Lehrbuch 387–409 (Springer Berlin, Heidelberg, 1912). https://doi.org/10.1007/978-3-662-33915-2_7
    25. Forsyth J.B, Hull S. The effect of hydrostatic pressure on the ambient temperature structure of CuO. J. Phys.: Condens. Matter 35257-5261 (1991). https://doi.org/10.1088/0953-8984/3/28/001
    26. Hanke, L., Fröhlich, D., Ivanov, A., Littlewood, P. B. & Stolz, H. LA Phonoritons in Cu2O. Phys. Rev. Lett. 83, 4365–4368 (1999). https://doi.org/10.1103/PhysRevLett.83.4365
    27. Straumanis, M.  E. & Yu, L. S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and Cu-In alpha phase. Acta Cryst. A25, 676–682 (1969). https://doi.org/10.1107/S0567739469001549
    28. Chrzanowska-Giżyńska, J. Cienkie warstwy z borków wolframu osadzane impulsem laserowym i metodą rozpylania magnetronowego –wpływ parametrów procesu na osadzone warstwy. (Instytut Podstawowych Problemów Techniki, Polska Akademia Nauk, Warszawa, 2017). [in Polish]
    29. Wong, T. K., Zhuk, S., Masudy-Panah, S. & Dalapati, G. K. Current status and future prospects of copper oxide heterojunction solar cells. Materials 9, 271 (2016). https://doi.org/10.3390/ma9040271
    30. Gao, X., Du, Y. & Meng, X. Cupric oxide film with a record hole mobility of 48.44 cm2/Vs via direct–current reactive magnetron sputtering for perovskite solar cell application. Sol. Energy 191, 205–209 (2019). https://doi.org/10.1016/j.solener.2019.08.080
    31. Hu, X. et al. Influence of oxygen pressure on the structural and electrical properties of CuO thin films prepared by pulsed laser deposition. Mater. Lett. 176, 282–284 (2016). https://doi.org/10.1016/j.matlet.2016.04.055
    Go to article

    Authors and Affiliations

    Grzegorz Wisz
    1
    ORCID: ORCID
    Paulina Sawicka-Chudy
    1
    ORCID: ORCID
    Maciej Sibiński
    2
    ORCID: ORCID
    Zbigniew Starowicz
    3
    ORCID: ORCID
    Dariusz Płoch
    1
    ORCID: ORCID
    Anna Góral
    3
    Mariusz Bester
    1
    ORCID: ORCID
    Marian Cholewa
    1
    Janusz Woźny
    4
    ORCID: ORCID
    Aleksandra Sosna-Głębska
    2

    1. Institute of Physics, College of Natural Science, University of Rzeszów, 1 Pigonia St., 35-317 Rzeszów, Poland
    2. Department of Semiconductor and Optoelectronic Devices, Łódź University of Technology, 211/215 Wólczańska St., 90-924 Łódź, Poland
    3. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków, Poland
    4. Department of Semiconductor and Optoelectronic Devices, Łódź University of Technology, 211/215Wólczańska St., 90-924 Łódź, Poland
    Download PDF Download RIS Download Bibtex

    Abstract

    Rotational seismology is one of the fastest developing fields of science nowadays with strongly recognized significance. Capability of monitoring rotational ground motions represents a crucial aspect of improving civil safety and efficiency of seismological data gathering. The correct sensing network selection is very important for reliable data acquisition. This paper presents initial data obtained during the international research study which has involved more than 40 various rotational sensors collected in one place. The key novelty of this experiment was the possibility to compare data gathered by completely different rotational sensors during artificially generated ground vibrations. Authors collected data by four interferometric optical fiber sensors, Fiber-Optic System for Rotational Events & Phenomena Monitoring (FOSREM), which are mobile rotational seismographs with a wide measuring range from 10-7 rad/s up to even few rad/s, sensitive only to the rotational component of the ground movement. Presented experimental results show that FOSREMs are competitive in rotational events recording compared with the state-of-the-art rotational sensors but their operation still should be improved.
    Go to article

    Bibliography

    1. Huang, B. S. Ground rotational motions of the 1991 Chi-Chi, Taiwan, earthquake asinferred from dense array observations. Geophys. Res. Lett. 30, 1307–1310 (2003). https://doi.org/10.1029/2002GL015157
    2. Igel, H. et al. Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003. Geophys. Res. Lett. 32, (2005). https://doi.org/10.1029/2004GL022336
    3. Takeo, M. Ground Rotational Motions Recorded in Near-Source Region of Earthquakes. in Earthquake Source Asymmetry, Structural Media and Rotation Effects (eds. Teisseyre, R., Takeo, M., Majewski, E.) 157–167 (Springer-Verlag Berlin Heidelberg, 2006).
    4. Trifunac, M. D. A note on rotational components of earthquake motions on ground surface for incident body waves. Int. J. Soil Dyn. Earthq. Eng. 1, 11–19 (1982). https://doi.org/10.1016/0261- 7277(82)90009-2
    5. Trifunac, M D. Effects of Torsional and Rocking Excitations on the Response of Structures. in Earthquake Source Asymmetry, Structural Media and Rotation Effects (eds. Teisseyre, R., Takeo, M., Majewski, E.) 569–582 (Springer-Verlag Berlin Heidelberg, 2006).
    6. Guéguen, P. & Astorga, A. The Torsional Response of Civil Engineering Structures during Earthquake from an Observational Point of View. Sensors 21, 342 (2021). https://doi.org/10.3390/s21020342.
    7. Kurzych, A. T. et al. Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope. Opto-Electron. Rev., 28(2), 69-73 (2020). https://doi.org/10.24425/opelre.2020.132503
    8. Jaroszewicz, L. R. et al. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16, 2161 (2016). https://doi.org/10.3390/s16122161
    9. Igel, H. et al. ROMY: a multicomponent ring laser for geodesy and geophysics. Geophys. J. Int. 225, 684-698 (2021). https://doi.org/10.1093/gji/ggaa614
    10. Yuan, S. et al. Seismic source tracking with six degree-of-freedom ground motion observations. J. Geophys. Res. Solid Earth 126, e2020JB021112 (2021). https://doi.org/10.1029/2020JB021112
    11. Brokesova, J. & Malek, J. Comparative measurements of local seismic rotations by three independent methods. Sensors 20, 5679 (2020). https://doi.org/10.3390/s2019679
    12. Kurzych, A. T. et al. Two correlated interferometric optical fiber systems applied to the mining activity recordings. J. Lightwave Technol. 37, 4851–4857 (2019). https://doi.org/10.1109/JLT.2019.2923853
    13. Adams, R. D. & Engdahl, E. R. International Association of Seismology and Physics of the Earth’s Interior. in International Geophysics (eds. Lee, W. H. K., Kanamori, H., Jennings, P. C., Kisslinger, C.) 15411549 (Academic Press, 2003).
    14. Bernauer, F. et al. Rotation, strain and translation sensors performance tests with active seismic sources. Sensors 21, 264 (2021). https://doi.org/10.3390/s21010264
    15. Brokesova, J. et al. Rotaphone-CY: The new rotaphone model design and preminary results from performance tests with active seismic sources. Senosrs 21, 562 (2021). https://doi.org/10.3390/s21020562
    16. Kurzych, A. T. et al. Measurements of rotational events generated by artificial explosions and external excitations using the optical fiber sensors network. Sensors 20, 6107 (2020). https://doi.org/10.3390/s20216107
    17. Bernauer F. et al. BlueSeis3A: full characterizationof a 3C broadband rotational seismometer. Seismol. Res. Lett. 89, 620-629 (2018). https://doi.org/10.1785/0220170143
    18. Yuan, S. et al. Six degree-of freedom broadband ground-motion observations with portable sensors: validation, local earthquakes, and signal processing. Bull. Seismol. Soc. Am. 110, 953-965 (2020). https://doi.org/10.1785/0120190277v
    19. Bernauer, F., Wassermann, J. & Igel H. Dynamic tilt correction using direct rotational motion measurements. Seismol. Res. Lett. 20, 1–9 (2020). https://doi.org/10.1785/0220200132
    20. Jaroszewicz, L. R. et al. The fiber-optic rotational seismograph - laboratory tests and field application. Sensors 19, 2699 (2019). https://doi.org/10.3390/s19122699
    21. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE-SA Standards Board 952, (1997). https://doi.org/10.1109/IEEESTD.1998.86153
    22. Allan Variance: Noise Analysis for Gyroscopes. Application Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc. (Eindhoven, Niderlands, 2015).
    23. Konno, K. & Ohmachi, T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88, 228-241 (1998).
    Go to article

    Authors and Affiliations

    Anna T. Kurzych
    1
    ORCID: ORCID
    Leszek R. Jaroszewicz
    1
    ORCID: ORCID
    Michał Dudek
    1
    ORCID: ORCID
    Bartosz Sakowicz
    2
    ORCID: ORCID
    Jerzy K. Kowalski
    3
    ORCID: ORCID

    1. Institute of Technical Physics, Military University of Technology., 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland
    2. Dep. of Microelectronics and Computer Science, Lodz University of Technology, 221/223 Wólczańska St., Lodz 90-924, Poland
    3. Elproma Elektronika Ltd., 13 Szymanowskiego St., Łomianki 05-092, Poland

    This page uses 'cookies'. Learn more