Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 236
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Resistance genes in response to root-knot nematode (Meloidogyne javanica) infection suppress one or more of several critical steps in nematode parasitism and their reproduction rate. The reaction of seven commercial tomato genotypes to M. javanica infection was investigated under greenhouse conditions. Current results classified these genotypes as: three resistant (Jampakt, Malika and Nema Guard), one moderately resistant (Fayrouz), and three susceptible (Castle Rock, Super Marmande and Super Strain B). Except Nema Guard, nematode infection significantly reduced plant height, fresh and dry weights of shoots of the other tomato genotypes. Leaf area was significantly reduced for all examined tomato genotypes except Malika and Nema Guard. Total chlorophyll was reduced in all tested tomato genotypes except Jampakt. Infection parameters of M. javanica and their population were significantly reduced on all nematode-resistant tomato genotypes compared to the susceptible genotypes. Also, the maturation rate of M. javanica was suppressed in the resistant genotypes compared to the susceptible genotypes. These results were confirmed by histological study that illustrated a delay in nematode development and their maturation. Total phenolic content significantly increased in nematode infected roots of both resistant and susceptible genotypes except Malika. Among non-infected roots, Malika showed the highest level of total phenols while after M. javanica infection, Nema Guard revealed the highest level of total phenols. Among infected roots, the highest level of total phenols was recorded in Castle Rock. These results suggested that using nematode-resistant tomato genotypes could provide an efficient and nonpolluting method to control root-knot nematodes.

Go to article

Authors and Affiliations

Mohamed Youssef Banora
Omar Abd Alhakim Almaghrabi
Download PDF Download RIS Download Bibtex

Abstract

Cereal cyst nematodes (Heterodera spp.) are distributed globally and cause severe production losses of small grain cereals. To investigate the occurrence of cereal cyst nematodes in wheat-growing areas of Algeria, a survey was conducted and 27 cereal cyst nematode populations were collected. The populations were initially identified based on their morphological and morphometric characters, followed by molecular methods using speciesspecific primers, complemented by ITS-rDNA sequences. The morphological and morphometric features of second-stage juveniles (J2s) and cysts supported the presence of three Heterodera species: H. avenae, H. filipjevi and H. hordecalis. All morphological values of these distinct populations were very similar to those previously described for these species. Using species-specific primers for H. avenae and H. filipjevi, the specific bands of 109 bp and 646 bp confirmed the morphological identification of both species, respectively. In addition, the internal transcribed spacer (ITS) regions were sequenced to study the diversity of the 27 populations. These sequences were compared with those of Heterodera species available in the GenBank database (www.ncbi.nlm.nih.gov) and re-confirmed the identity of the species. Nineteen sequences of ITS-rDNA were similar (99–100%) to the sequences of H. avenae published in the GenBank, six sequences were similar (99–100%) to H. hordecalis, and two were similar (98–99%) to H. filipjevi. The results of this study are of great value to breeding programs and extension services, where they will contribute to the design of control measures to keep damaging nematodes in check.

Go to article

Authors and Affiliations

Djamel Smaha
Fouad Mokrini
Mustafa İmren
Aissa Mokabli
Abdelfattah A. Dababat
Download PDF Download RIS Download Bibtex

Abstract

There are few reports in literature about the selectivity of postemergence application of herbicides for the control of eudicotyledon weeds (broadleaf) in chickpea. For this reason, the aim of this study was to investigate the selectivity of diphenyl-ether herbicides in chickpea influenced by the herbicides and application rates. A field experiment was conducted from February to June 2017 in Urutaí, state of Goiás, Brazil. Cultivar BRS Aleppo was used in the experiment. The experiment was set up in a randomized block design with 2 × 3 + 1 factorial arrangement and three replications. The first factor was herbicides (fomesafen and lactofen) with the second factor being herbicide rate (50, 75, and 100% of referenced rate) plus an untreated check as a comparison. The applied rates of herbicides were 250 and 180 g ⋅ ha–1 of fomesafen and lactofen, respectively. The selectivity of herbicides was evaluated according to agronomic characteristics (plant population, height, dry matter, number of pods per plant and 100-grain weight) and yields. Both herbicides, regardless of dosage, were selective in chickpea cultivation, even exhibiting leaf necrosis symptoms with visible injuries below 20% with no effect on yield.

Go to article

Authors and Affiliations

Luís Gustavo Barroso Silva
Lucas da Silva Araújo
Daniel José Gonçalves
Mateus Souza Valente
Anderson Rodrigo da Silva
Warley Marcos Nascimento
Paulo César Ribeiro da Cunha
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the effects of 10, 20, 30 ppm hormone mixtures (indole-3-acetic acid + gibberellic acid + kinetin) with 0.1, 0.3, 0.5 and 1 ppm zinc (Zn) concentrations alone and their mixtures on the cambial activity of sour cherry (Cerasus vulgaris Miller) cuttings were investigated. Morphological and anatomical developments of the plants were observed. The leaves of the plants treated with zinc were found to be greener than the control. Plants treated with zinc faded earlier than the control. The cambial zone thickness, the cambial zone cell line, the radial and tangential lengths of the cambial zone cells decreased with increasing concentrations of zinc and increased with increasing concentrations of hormones. The radial and tangential wall widths of the cambial zone cells increased with increasing zinc concentrations and decreased with increasing hormone concentrations. As a result, in the 0.1, 0.3, 0.5 and 1 ppm Zn concentrations, the cambial zone thickness decreased by 10, 28, 50 and 65%, respectively, compared to the control. Thirty ppm hormone mixture – H.M. (indole-3-acetic acid + gibberellic acid + kinetin) increased the cambial zone thickness by 65, 15, 5% in 0.1, 0.3 and 0.5 Zn, respectively, compared to the control. It was found that plant hormones importantly improved the harmful effects of zinc on the cambial activity of the plant cuttings.

Go to article

Authors and Affiliations

Kemal Yuce
Bekir Tileklioglu
Download PDF Download RIS Download Bibtex

Abstract

Globally more than 5.2 billion hectares of farming fields are damaged through erosion, salinity and soil deterioration. Many salt stress tolerant bacteria have plant growth promoting (PGP) characteristics that can be used to overcome environmental stresses. Isolation and screening of salt-tolerant endophytes from Salicornia brachiata were achieved through surface sterilization of leaves followed by cultivation on 4% NaCl amended media. Performance of isolates towards indole-3-acetic acid (IAA) production, phosphate solubilization, ACC deaminase activity, ammonia production, siderophore production and stress tolerance were determined. On the basis of the highest plant growth promoting activity, SbCT4 and SbCT7 isolates were tested for plant growth promotion with wheat and maize crops. In the present study, a total of 12 morphologically distinct salt-tolerant endophytic bacteria was cultured. Out of 12 isolates, 42% of salt-tolerant endophytes showed phosphate solubilization, 67% IAA production, 33% ACC-deaminase activity, 92% siderophore production, 41.6% ammonia production and 66% HCN production. A dendrogram, generated on the basis of stress tolerance, showed two clusters, each including five isolates. The bacterial isolates SbCT4 and SbCT7 showed the highest stress tolerance, and stood separately as an independent branch. Bacterial isolates increased wheat shoot and root dry weights by 60–82% and 50–100%, respectively. Similarly, improved results were obtained with maize shoot (27–150%) and root (80–126%) dry weights. For the first time from this plant the bacterial isolates were identified as Paenibacillus polymyxa SbCT4 and Bacillus subtilis SbCT7 based on phenotypic features and 16S rRNA gene sequencing. Paenibacillus polymyxa SbCT4 and B. subtilis SbCT7 significantly improved plant growth compared to non-inoculated trials.

Go to article

Authors and Affiliations

Arun Karnwal
Download PDF Download RIS Download Bibtex

Abstract

Rice blast is one of the most destructive rice diseases known to cause considerable yield losses globally. Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) are closely associated with rice plants and improve plant growth and health. To determine how isolated bacteria trigger rice growth, an assessment of phosphate solubilization and auxin production mechanisms was carried out in vitro and in vivo. In this study, the interactions between PGPR and Rhizophagus irregularis were evaluated in wildtype and CYCLOPS mutant plants to provide a sustainable solution against blast disease and reduce the amount of yield loss. Importantly, Bacillus subtilis UTSP40 and Pseudomonas fluorescens UTSP50 exhibited a suppressive effect on AMF colonization which shows the probable existence of a functional competition between AMF and PGPR to dominate the rhizosphere. On the other hand, R. irregularis decreased the biocontrol activity of B. subtilis UTSP40 in wild type, although this reduction was not significant in mutant plants. Results showed that the same defense-related genes were induced in the roots of wild type colonized by B. subtilis UTSP40 and R. irregularis. Therefore, plant cell programs may be shared during root colonization by these two groups of beneficial microorganisms.

Go to article

Authors and Affiliations

Samira Peighami Ashnaei
Download PDF Download RIS Download Bibtex

Abstract

Interest in growing roses in Poland is related to the production of cut flowers as ornamentals and of petals and hips for cosmetics or food products. However, recently there has been an increasing number of reports of pest damage on rose plantations. In the case of fruits the damage has been attributed to flies (Rhagoletis alternata) or moths (Cydia tenebrosana), while nematodes have been implicated for growth reduction even on plantations grown under soil-less conditions. Field trials and laboratory experiments to test the possibility of controlling R. alternata larvae or pupae with entomopathogenic fungi and nematodes resulted in a lack of parasitism. On the other hand, the use of Bacillus thuringiensis subsp. kurstaki or Cydia pomonella granulovirus effectively controlled C. tenebrosana. Meloidogyne incognita infestation of roses growing on rock wool substrate was drastically reduced by Arthrobothrys oligospora or abamectin. Factors such as the method of product application or pest susceptibility to the used microbial-based products accounted for the observed differences in efficacy.

Go to article

Authors and Affiliations

Eligio Malusá
Malgorzata Tartanus
Grażyna Soika
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to evaluate the use of the naphthalic anhydride safener on the protection of common bean cultivars BRS-Estilo (carioca) and BRS-Esplendor (black) from negative effects of herbicides. Two experiments were conducted, one for each cultivar in a complete randomized design with five replications, in a 6 × 3 factorial scheme, with six herbicide treatments: bentazon, fluazifop-P + fomesafen, bentazon + imazamox, fomesafen, cloransulam, and control without application, and three naphthalic anhydride treatments: without application, foliar application, and application via seed treatment. Visible injuries at 7, 14 and 21 days after application, photosystem II electron transport rate, and plant dry weight were evaluated. The naphthalic anhydride applied via foliar, and seed treatment reduced significantly the visible injuries in relation to the control when using the herbicides bentazon, fluazifop-P + fomesafen, bentazon + imazamox, and cloransulam. The photosystem II electron transport rate was protected by anhydride applied via foliar and seed treatment when using the herbicides bentazon, fluazifop-P + fomesafen and bentazon + + imazamox. The application of naphthalic anhydride via seed treatment protected the BRS-Estilo and BRS-Esplendor common bean cultivars, with no reductions in the plant dry weight when using the herbicides fluazifop-P + fomesafen, and fomesafen. The use of naphthalic anhydride via seed treatment and foliar application protected BRS-Estilo and BRSEsplendor common bean cultivars, from the negative effects of fluazifop-P + fomesafen and fomesafen herbicides. Thus, this practice has potential to be used in common beans.

Go to article

Authors and Affiliations

Fábio Henrique Krenchinski
Edicarlos Batista de Castro
Victor José Salomão Cesco
Diego Belapart
Danilo Morilha Rodrigues
Caio Antonio Carbonari
Edivaldo Domingues Velini
Download PDF Download RIS Download Bibtex

Abstract

Two field experiments were established at the Agricultural Experimental Station of the National Research Centre at Nubaria, Beheira Governorate, Egypt to study the herbicidal potential of the leaf extract of Eucalyptus citriodora at 5, 10, 15, 20 and 25% compared to two hand hoeing, unweeded treatments and the chemical herbicides Bentazon + Clethodium, Bentazon + Fluazifop-P-butyl and Butralin on pea plants and associated weeds. The results indicated that two hand hoeing achieved the maximum weed depression as expressed by the dry matter of total weeds. The dry matter of total weeds decreased by 95.08 to 94.77% as compared with unweeded treatment 50 and 70 days after sowing (DAS) followed by Butraline (93.93–94.65%), Bentazon + Clethodium (93.26–94.07%), Bentazon + Fluazifop--P-butyl (91.82–92.77%) and leaf extract of Eucalyptus at 25% (91.61–91.95%). Furthermore, the reduction in weed development was accompanied by enhanced pea growth and yield. The results revealed that two hand hoeing was the best treatment to increase plant height, shoot dry weight and SPAD value at 50 and 70 DAS. Also, two hand hoeing produced the maximum values of pod length and number of seeds/pod. The results also indicated that Bentazon + Clethodium treatment gave observable values [recorded 72.96% in pod yield (ton ⋅ fed.–1) over that of unweeded control] of number of pod/plant, weight of pod/plant, seed yield/fed and protein percentage. Also, the results revealed great increases in the growth of pea as well as yield due to treatment with E. citriodora dry leaf extract at 25%. [recorded 64.8% in in pod yield (ton ⋅ fed.–1) over that of unweeded control]. So, the results indicated using Bentazon + Clethodium as well as E. citriodora dry leaf extract at 25% to control weeds associated with pea plants. The authors suggested application of E. citriodora dry leaf extract at 25% in controlling weeds associated with pea plants as a safe method that avoids environmental contamination.

Go to article

Authors and Affiliations

Ibrahim Mohamed El-Metwally
Kowthar Gad El-Rokiek
Download PDF Download RIS Download Bibtex

Abstract

Pest mites of the family Tetranychidae are commonly reported in several legumes. However, reports of their occurrence in lima beans are insipient, especially in Brazil. The objective of this research was to record the occurrence of mites in lima bean plants and to describe their damage in this Fabaceae. Tetranychus neocaledonicus André and Mononychellus planki McGregor were found in lima bean plants, Phaseolus lunatus (Fabaceae or Leguminosae). The lima bean plants, when infested by these mites, initially exhibit small whitish spots in the leaflets, which with increasing population density rapidly evolve into chlorotic patches, followed by silvering, and may dry out and fall due to their overfeeding. The extent of the damage caused to lima bean plants and the adaptability of the mite to warm and dry conditions indicate that T. neocaledonicus has greater potential as a lima bean pest than M. planki in northeastern Brazil. This is the first record of these mites associated with P. lunatus.

Go to article

Authors and Affiliations

Antonio Vieira Gomes Neto
Paulo Roberto Ramalho Silva
Jayara Dayany Costa Silva
Mayara Fernandes dos Santos
José Wagner da Silva Melo
Solange Maria de França
Download PDF Download RIS Download Bibtex

Abstract

The insecticidal efficiency of Ag-loaded 4A-zeolite (ZAg) and its formulations with Rosmarinus officinalis essential oil (RO) was evaluated against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). For comparison, different rates of ZAg (0.25, 0.5, 0.75, and 1 g ⋅ kg–1 wheat) were used solely and in a combination with LC50 concentrations of RO. Mortality was assessed after 7, 14, and 21 days of insect exposure to treated wheat. The progeny production was also evaluated. The use of ZAg accomplished a complete mortality (100%) on S. oryzae and 96.67% on R. dominica as well as 100% mortality of progeny against the two insect species after the longest exposing duration (21 days), at the highest rate (1 g ⋅ kg–1). On the other hand, the complete mortalities of ZAg formulations on S. oryzae were obtained after 14 d of treatment with F1 formulation (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and after 7 days with the other tested formulations. In addition, the complete mortality on R. dominica was obtained only by F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulation after 14 days of treatment. Concerning the efficiency of the examined formulations on the progeny of S. oryzae, F1 (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and F2 (0.605 g ⋅ kg–1 RO + 0.5 g ⋅ kg–1 ZAg) formulations recorded 100% mortality. In addition, F3 (0.605 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F4 (0.605 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations suppressed the progeny production. Furthermore, the complete mortality of R. dominica progeny was obtained with F7 (0.059 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations. ZAg, especially its formulations with R. officinalis oil, had potential effects against two stored-product insects. F1 and F8 formulations could be treated efficiently on S. oryzae and R. dominica, respectively.

Go to article

Authors and Affiliations

Ahmed M. El-Bakry
Hanan F. Youssef
Nahed F. Abdel-Aziz
Elham A. Sammour
Download PDF Download RIS Download Bibtex

Abstract

Tomato is an economically important vegetable crop which is attacked heavily by insect pests leading to reduction of yield and quality of the fruits. Field experiments were carried out to investigate the dissipation of methomyl (a common insecticide) used mainly on tomato fruits. LC-MS/MS coupled with the QuEChERS method were used for the determination of methomyl. The results showed that the recovery using matrix-matched standards ranged from 87.8 to 101.3%, with relative standard deviation of 2.5 to 7.5%. Kinetics equation, Log R = log R0 – 0.434 Kt, was used to calculate the rate of degradation in tomato, soil and water. Residue half-life calculated using kinetic rate ranged from 1.95 to 1.63 days in tomato and soil, respectively. From the results it was concluded that tomato fruits can be safely harvested for consumption after 15 days of application based on estimated preharvest interval (PHI). It is advisable to re-estimate the PHI regularly owing to data from the EU and Codex.

Go to article

Authors and Affiliations

Dalia El-Hefny
Ibrahim Abdallah
Rania Helmy
Hend Mahmoud
Download PDF Download RIS Download Bibtex

Abstract

The current research aimed to use non traditional methods to control some stored grain insects. The effects of 180 millitesla (mT) magnetic field (MF) for six different exposure periods (3 min, 30 min, 1 h, 12 h, 24 h and 48 h) on mortality (%) of two stored grain insects, Tribolium casteneum adults and Trogoderma granarium larvae, reduction in F1-progeny (%), seeds germination (%) and seed components (%) after 8 months storage period were studied under laboratory conditions. According to results, the mortality (%) of tested insects increased with increasing of MF time exposure. Trogoderma granarium was more resistant than T. casteneum in which mortality reached 56 and 75%, respectively 14 days after from exposure period. Without any negative effect on seeds germination (%) the MF was very effective in protecting stored wheat from insect infestation up to 8 months compared to non-magnetic seeds which became infested after 3 months of storage. Furthermore, the germination (%) was accelerated by 6 h compared to non-magnetic seeds. The MF level caused a slight increase in the percent of total carbohydrate, crude protein and ash while slightly decrease the percent of moisture, total fats and crude fiber.

Go to article

Authors and Affiliations

Doaa Mohamed Zein
Abdelkhalek Hussein
Download PDF Download RIS Download Bibtex

Abstract

Polyphenol oxidase partial gene PG-PPO was cloned and characterized from Pennisetum glaucum (pearl millet) which showed 42% identity to a PPO sequence isolated from wheat at the region of Copper B with a score of 40 and e-value of 2.8. Multiple sequence alignment results revealed similarity to polyphenol oxidase (PPO) sequences from wheat, trifolium, lettuce, apricot, tobacco, tomato, pokeweed, apple, grape and poplar especially at the Copper B region of PPO. The 395 bp pearl millet PPO sequence was AT rich (53.3%) and contained the highly conserved amino acids of histidine-rich copper binding sites similar to PPO sequences from other crops. Results also indicated that PPO in pearl millet exists in multi copy. The role of the isolated PPO gene during pearl millet-downy mildew interaction was analyzed and the results showed significantly higher and rapid accumulation of PPO mRNAs in resistant pearl millet seedlings inoculated with Sclerospora graminicola in comparison to the susceptible control, demonstrating that the PPO plays a prominent role in pearl millet defense against pathogens, particularly downy mildew pathogen.

Go to article

Authors and Affiliations

Sathyanarayana Niranjan-Raj
Senapathyhally Nagaraju Lavanya
Siddaiah Chandra Nayaka
Download PDF Download RIS Download Bibtex

Abstract

Root associated bacteria were isolated from Suaeda nudiflora and two isolates were selected for this study: rhizospheric Bacillus megaterium and endophytic Pseudomonas aeruginosa. These isolates were inoculated into maize variety Narmada Moti during its germination. TTC (2, 3, 5-triphenyl tetrazolium chloride) staining was used to confirm the association of the isolates with the maize root. The effects of these root associated bacteria were tested alone and in combinations for cell wall reinforcement and the induction of defense enzymes such as phenylalanine ammonia lyase (PAL) and β-1,3-glucanase in the presence of fungal pathogen Aspergillus niger in maize. The results indicated that the rhizospheric bacteria had a greater fight response to fungal infection than the endophhytic bacteria due to cell wall lignification as well as the rapid induction of higher concentrations of defense related enzymes.

Go to article

Authors and Affiliations

Yachana Jha
Download PDF Download RIS Download Bibtex

Abstract

Genetically modified Bt cotton (Gossypium hirsutum) leaves with typical symptoms of Alternaria early blight disease resembling that of tomato and potato were observed in the main cotton growing schemes in Sudan. Symptoms on leaves appeared as either brown 2leaf spot with gray centers or leaf blight with concentric rings. Pathogenicity tests using isolates with both symptoms showed that the isolated fungi were highly pathogenic to both G. hirsutum and G. barbadense cotton varieties. Alternaria alternata isolated from infected tomato and potato leaves with early blight symptoms was included for comparison. Microscopic examination showed that the mean length of conidia from cotton, tomato and potato isolates ranged from 26.25 to 45.45 μm, while the width ranged from 9.56 to 13.64 μm. The mean number of transverse septa among all isolates was 3.4 to 5.7 and the peak length ranged from 3.75 to 7.8 μm. Based on morphological characteristics the two isolates from cotton were identified as A. alternata. Genomic DNA was extracted directly from fungal cultures grown on potato dextrose agar (PDA) plates using a Zymo Research Quick DNA kit. A species-specific primer using the internal transcribed spacer ribosomal DNA (ITS rDNA) PCR scoring indicated the presence of A. alternata using primer pair ITS4/ITS5. Amplifications of the internal transcribed spacer region of 600 bp revealed 100% identity of the isolated fungus from cotton with A. alternata from tomato and potato. These data oblige us to reconsider the presence of A. alternata in the four main cotton growing schemes in Sudan while these symptoms have always been described for tomato and potato early blight disease.

Go to article

Authors and Affiliations

Omyma Elmahi Mohamed
Mayada Mamoun Beshir
Nafisa Elmahi Ahmed
Download PDF Download RIS Download Bibtex

Abstract

The association of phytoplasma was investigated in sand olive [Dodonaea viscosa ssp. Angustifolia (L. f.) J.G. West], cowpea [Vigna unguiclata (L.)] Wap and alfalfa (Medicago sativa L.) plants exhibiting witches broom, fasciation and little leaf symptoms, respectively. Sequence analysis of ~1.7 kb DNA fragments amplified by P1/P7 primer set confirmed the association of ‘Candidatus Phytoplasma aurantifolia’ within symptomatic alfalfa, while ‘Ca. Phytoplasma cynodontis’ was associated within cowpea and sand olive.

Go to article

Authors and Affiliations

Nawres Al-Kuwaiti
Tareq Kareem
Feryal H. Sadaq
Laith H. AL-Aadhami
Download PDF Download RIS Download Bibtex

Abstract

Potato (Solanum tuberosum L.), an important food crop in the world, is susceptible to many fungal pathogens including Alternaria solani and Fusarium oxysporum causing Fusarium wilt and early blight diseases. Mycoparasitic fungi like Trichoderma encode chitinases, cell wall degrading enzymes, with high antifungal activity against a wide range of phytopathogenic fungi. In this study, a binary vector harboring endochitinase gene of ~1,000 bp was constructed and used to transform potato nodes through Agrobacterium-mediated transformation. Out of several primary transformants, two transgenic potato lines were verified for transgene insertion and integration by Southern blot. In a pot experiment for Fusarium resistance, the transgenic potato lines didn’t show any symptoms of disease, instead they remained healthy post infection. The transgenic potato lines exhibited 1.5 fold higher mRNA expression of endochitinase at 7 days as compared to 0 day post fungus inoculation. It was evident that the mRNA expression decreased over days of inoculation but was still higher than at 0 day and remained stable upto 30 days post inoculation. Similarly, for A. solani infection assay, the mRNA expression of the endochitinase gene was 3 fold higher 7 days post inoculation compared to expression at 0 day. Although the expression decreased by1.2 fold during subsequent days post infection, it remained stable for 30 days, suggesting that protection in transgenic potato plants against fungal pathogens was achieved through an increase in endochitinase transcript.

Go to article

Authors and Affiliations

Neelam Fatima
Bushra Tabassum
Iqra Yousaf
Momina Malik
Anwar Khan
Imtiaz Ahmad Sajid
Muhammad Tariq
Nida Toufiq
Saman Riaz
Idrees Ahmad Nasir
Download PDF Download RIS Download Bibtex

Abstract

Environmental factors and the addition of adjuvants to the spray tank mix may interfere with glyphosate efficiency in hairy fleabane control. The objective of this study was to evaluate the effect of air temperature and the addition of ammonium sulfate (NH4)2SO4 to glyphosate in the control of glyphosate-resistant (GR) and -susceptible (GS) hairy fleabane. Treatments consisted of air temperatures of 12°C and 25°C, six doses of glyphosate from zero to 2,880 g · ha−1, the presence or absence of (NH4)2SO4 in the spray solution, and one GS and another GR biotype. At the lowest tested dose (180 g · ha−1), control of the GR biotype was 91% and 20% when the plants were kept at 12°C and 25°C, respectively, reducing the resistance factor (RF) by 9.30 times and was associated to the reduction of temperature. The addition of (NH4)2SO4 increased the control by 10−20% at high glyphosate doses and at 25°C. The resistance of hairy fleabane to glyphosate was completely reversed when the plants were maintained at 12°C. At this temperature, resistant plants were controlled even at doses well below that recommended for the control of this species. At 25°C, a dose four times higher than that recommended was required for satisfactory control. At the field level, under situations of low temperatures, it was possible to improve the efficacy of glyphosate applications in hairy fleabane control, if there were no other mechanisms of resistance involved.

Go to article

Authors and Affiliations

Giliardi Dalazen
Alexandre Pisoni
Christian Menegaz
Aldo Merotto Jr.
Download PDF Download RIS Download Bibtex

Abstract

Leaf scald, caused by the necrotrophic fungus Monographella albescens, is one of the main threats to rice (Oryza sativa L.) around the world. This disease decreases yields in rice by up to 30% because of dead leaf tissue, damaged seeds, and sterile flowers. Currently, there is limited knowledge about the molecular mechanisms involved in rice plant resistance against this pathogen. For this purpose, six commercial cultivars of rice were primarily screened for M. albescens infection and development. Dasht and Salari were found to be the most resistant and susceptible to M. albescens infection, respectively. The plants were kept in a greenhouse at 29 ± 2°C during the day and 26 ± 2°C at night with a relative air humidity of 85 ± 5%. Forty-five days after sowing, the plants with three biological replications were inoculated by transferring a PDA disc (0.3 cm2) containing M. albescens mycelia to the middle third of the 7th, 8th, and 9th completely open leaves. The leaves were collected 24, 48, 72, 96 and 120 hai. Leaf samples were also collected from the non-inoculated plants (0 h) to serve as controls. Real-time quantitative PCR (RT-qPCR) showed rapid induction and significant accumulation of jasmonic acid (JA) and ethylene (ET) responsive genes such as lipoxygenase (LOX), allene oxide synthase 2 (Aos2), jasmonic acid carboxyl methyltransferase 1 (JMT1) and ACC synthase 1 (ACS1) in the resistant Dasht cultivar after infection with M. albescens. Furthermore, the transcripts of salicylic acid (SA) responsive phenyl alanine ammonia lyase 1 (PAL1) and nonexpressor of pathogenesis-related genes 1 (NPR1) genes were induced in the incompatible interaction. The activities of the defense enzymes superoxide dismutase (SOD), peroxidase (POX) and glutathione reductase (GR) increased strongly in Dasht in response to M. albescens infection. In addition, there was an increase in the H2O2 levels in the leaves of the Dasht cultivar during the infectious period of M. albescens associated with the enhancement of catalase (CAT) activity as well as higher levels of malondialdehyde (MDA). This is the first study on the interaction between rice and M. albescens at the molecular level. It can contribute to understanding how rice responds to pathogen infection, as well as assist with future research plans of molecular breeding regarding the tolerance to leaf scald disease.

Go to article

Authors and Affiliations

Dariush Ebadi Almas
Atefeh Rahmani Kamrodi
Download PDF Download RIS Download Bibtex

Abstract

Phylloplane microbes have been studied as strategic tools in management against plant pathogens. Non-pathogenic bacteria and fungi have been applied as crop protectants against various plant diseases. The present study aimed at evaluating the potentiality of Aspergillus niger spores in altering the activity of four key enzymes related to defense in tomato. The experiment was designed such that two groups of 50 tomato plants were considered: group 1 – sprayed with autoclaved distilled water (control) and group 2 – sprayed with A. niger spores. Spraying was carried out under aseptic conditions. The experimental parameters included analysis of the activity of peroxidase (POX), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL) as well as expression of POX and PPO isoforms. The results demonstrated an inductive effect of A. niger on the activity of POX, PPO, PAL and TAL. Enhanced expression of POX and PPO isoforms was also observed. The results indicated that A. niger can be considered probiotic for the management of tomato against its phytopathogens.

Go to article

Authors and Affiliations

Susmita Goswami
ORCID: ORCID
Prabir Kumar Paul
Prem Datt Sharma
Download PDF Download RIS Download Bibtex

Abstract

In two field experiments, the effect of some weed control treatments (citric acid at the rate of 10, 15 and 20%, acetic acid at the rate of 20, 30 and 40%, oxadiargyl, oxyflurfen, rice straw mulch, hand hoeing and an unweeded check control treatment) on weed growth and onion productivity in sandy soils at the Agricultural Experimental Station of the National Research Centre, Egypt was studied. The results indicated that all weeded treatments reduced the dry weight of broadleaf, grassy and total weeds as compared with the weedy check. Oxadiargyl, followed by two hand hoeing, rice straw mulch and acetic acid 40% recorded the greatest weed control efficiency. Insignificant differences were noticed between these treatments. Applying rice straw mulch increased bulb length, bulb diameter, bulb weight and onion yield by 67.52, 57.55, 45.74 and 66.22% over the weedy check, respectively. The highest values of N, P and K were obtained from rice straw mulch treatment followed by hand hoeing, oxadiargyl and acetic acid 40% treatments. It may be concluded that farmers can certainly depend on mulching or acetic acid at 40% instead of using chemical herbicides especially in organic farm systems for controlling onion weeds.

Go to article

Authors and Affiliations

Ibrahim El-Metwally
Shehata Shalaby
Download PDF Download RIS Download Bibtex

Abstract

5.8S ribosomal RNA plays an important role in protein synthesis and eukaryotic ribosome translocation. Contact DNA insecticides based on antisense fragments of 5.8S ribosomal RNA gene of gypsy moth Lymantria dispar L. showed prospective insecticidal activity on its larvae. The most pronounced insecticidal effect was found for antisense fragments 10 and 11 nucleotides long (oligoRIBO-10 and oligoRIBO-11), whereas 12 nucleotides long fragment (oligoRIBO-12) caused the lowest level of insect mortality. This data corresponds to results obtained earlier using rabbit reticulocyte and wheat germ extracts, where maximum inhibition of protein synthesis was observed when a relevant oligomer 10-11 nucleotides long was used, whilst longer chain lengths resulted in reduced inhibition. Using oligoRIBO-11 fragment we have shown penetration of antisense oligonucleotides to insect cells through insects’ exoskeletons. MALDI technique registered the penetration of the oligoRIBO-11 fragment into insect cells after 30 min and a significant response of insect cells to the applied oligonucleotide after 60 min, which indicates not only that the oligonucleotide enters the insect cells, but also the synthesis of new substances in response to the applied DNA fragment. Contact DNA insecticides developed from the L. dispar 5.8S ribosomal RNA gene provide a novel biotechnology for plant protection using unmodified antisense oligonucleotides.

Go to article

Authors and Affiliations

Volodymyr V. Oberemok
Kateryna V. Laikova
Refat Z. Useinov
Nikita V. Gal’chinsky
Ilya A. Novikov
Kseniya A. Yurchenko
Mikhail E. Volkov
Mikhail V. Gorlov
Valentina A. Brailko
Yuri V. Plugatar
Download PDF Download RIS Download Bibtex

Abstract

Biological parameters of the larval parasitoid Cephalonomia tarsalis (Ashmead) (Hymenoptera : Bethylidae) and its host the saw-toothed beetle Oryzapehilus surinamensis (L.) (Coleoptera : Silvanidae) were studied in the laboratory. The duration of the immature period, survival during development, as well as adult longevity and the number of progeny of both insects were recorded. Our data were used for the estimation of several demographic parameters and life table construction of both the host and the parasitoid. The wasp managed to complete its development (egg – adult) in 19.8 days at 25oC, whereas the adult female lived for 24.3 days. The host O. surinamensis demonstrated a longer developmental period (30.5 days) and adult female longevity (103.0 days). Female wasps laid an average of 66.4 eggs throughout their lifetime whereas their beetle hosts laid five times more eggs (313.9). Life table parameters of C. tarsalis were estimated for the first time. The intrinsic rate of natural increase (rm) was 0.124 which was almost double that of its host (0.056). Our results are discussed on the basis of evaluating and improving the performance of C. tarsalis as a biocontrol agent against O. surinamensis in storage facilities.

Go to article

Authors and Affiliations

Panagiotis A. Eliopoulos

This page uses 'cookies'. Learn more