Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 38
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The stratigraphy of the upper Fredericksburg and lower Washita groups of northern Texas and southern Oklahoma is described, and biostratigraphical correlation within the region, and further afield, using micro­ crinoids, ammonites, planktonic foraminiferans and inoceramid bivalves is summarised. The taxonomy of the roveacrind microcrinoids is revised by the senior author, and a new genus, Peckicrinus, is described, with the type species Poecilocrinus porcatus (Peck, 1943). New species include Roveacrinus proteus sp. nov., R. morganae sp. nov., Plotocrinus reidi sp. nov., Pl. molineuxae sp. nov., Pl. rashallae sp. nov. and Styracocrinus thomasae sp. nov. New formae of the genus Poecilocrinus Peck, 1943 are Po. dispandus forma floriformis nov. and Po. dispandus forma discus nov. New formae of the genus Euglyphocrinus Gale, 2019 are E. pyramidalis (Peck, 1943) forma pyramidalis nov., E. pyramidalis forma radix nov. and E. pyramidalis forma pentaspinus nov. The genera Plotocrinus Peck, 1943, Poecilocrinus and Roveacrinus Douglas, 1908 form a branching phylogenetic lineage extending from the middle Albian into the lower Cenomanian, showing rapid speciation, upon which a new roveacrinid zonation for the middle and upper Albian (zones AlR1–12) is largely based. Outside Texas and Oklahoma, zone AlR1 is recorded from the lower middle Albian of Aube (southeastern France) and zones AlR11–CeR2 from the Agadir Basin in Morocco and central Tunisia. It is likely that the zonation will be widely applicable to the middle and upper Albian and lower Cenomanian successions of many other regions.
Go to article

Authors and Affiliations

Andrew Scott Gale
1 2
Jenny Marie Rashall
3
William James Kennedy
4 5
Frank Koch Holterhoff
6

  1. School of the Environment, Geography and Geological Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO13QL UK
  2. Earth Science Department, Natural History Museum, Cromwell Road, London SW75BD, UK
  3. Department of Earth and Environmental Sciences, University of Texas at Arlington, 76019 USA
  4. Oxford University Museum of Natural History, Parks Road, Oxford, OX13PW
  5. Department of Earth Sciences, South Parks Road, OX13AN UK
  6. 1233 Settlers Way, Lewisville, TX 75067 USA
Download PDF Download RIS Download Bibtex

Abstract

The nature of the Cenomanian–Turonian Oceanic Anoxic Event (CTOAE) and its δ13 C Excursion is considered in the light of (1) the stratigraphical framework in which the CTOAE developed in the European shelf seas, (2) conclusions that can be drawn from new detailed investigations of the Chalk succession at three locations in England, at Melton Ross and Flixton in the Northern Province where organic-rich ‘black bands’ are present, and at Dover in the Southern Province (part of the Anglo-Paris Basin) where they are absent, and (3) how these conclusion fit in with the present understanding of the CTOAE. The application of the cerium anomaly method (German and Elderfield 1990) at Dover, Melton Ross and Flixton has allowed the varying palaeoredox conditions in the Chalk Sea and its sediments to be related to the acid insoluble residues, organic carbon, δ18O (calcite), δ13C (calcite), δ13C (organic matter), Fe 2+ and Mn2+ (calcite), and P/TiO2 (acid insoluble residue). This has provided evidence that the initial stages of the δ13C Excursion in England were related to (1) a drop of sea level estimated at between 45 and 85 metres, (2) influxes of terrestrial silicate and organic detritus from adjacent continental sources and the reworking of exposed marine sediments, and (3) the presence of three cold water phases (named the Wood, Jefferies and Black) associated with the appearance of the cold-water pulse fauna during the Plenus Cold Event. Conditions in the water column and in the chalk sediment were different in the two areas. In the Northern Province, cerium-enriched waters and anoxic conditions were widespread; the δ13C pattern reflects the interplay between the development of anoxia in the water column and the preservation of terrestrial and marine organic matter in the black bands; here the CTOAE was short-lived (~0.25 Ma) lasting only the length of the Upper Cenomanian Metoicoceras geslinianum Zone. In the Southern Province, water conditions were oxic and the δ13C Excursion lasted to the top of the Lower Turonian Watinoceras devonense Zone, much longer (~1.05 Ma) than in the Northern Province. These differences are discussed with respect to (1) the Cenomanian–Turonian Anoxic Event (CTAE) hypothesis when the ocean-continent-atmosphere systems were linked, (2) limitations of chemostratigraphic global correlation, and (3) the Cenomanian–Turonian Anoxic Event Recovery (CTOAER), a new term to define the varying lengths of time it took different oceans and seas to recover once the linked ocean-continent-atmosphere system was over. The possibility is considered that glacio- eustasy (the glacial control hypothesis of Jeans et al. 1991) with the waxing and waning of polar ice sheets, in association with the degassing of large igneous provinces, may have set the scene for the development of the Cenomanian–Turonian Anoxic Event (CTAE).
Go to article

Authors and Affiliations

Christophers V. Jeans
1
David S. Wray
2
C. Terry Williams
3
David J. Bland
4
Christopher J. Wood
5

  1. Department of Earth Sciences, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
  2. School of Science, University of Greenwich, Pembroke, Chatham Maritime, Kent, ME4 4TB, UK
  3. Department of Mineralogy, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
  4. 15 Pains Close, Pinner, Middlesex, HA5 3BN, UK
  5. Deceased
Download PDF Download RIS Download Bibtex

Bibliography

Anderson, F.M. 1902. Cretaceous Deposits of the Pacific Coast. Proceedings of the California Academy of Sciences (3), Geology, 2, 1–154.
Atabekian, A.A. and Akopyan, V.T. 1972. Late Cretaceous ammonites of the Armenian SSR (Collignoniceratinae, Peroniceratinae). Izvestiya Akademia Nauk Armyanskoj SSR, 2, 3–12. [In Russian]
Barroso-Barcenilla, F. and Goy, A. 2009. The ammonite genera Fagesia and Neoptychites (family Vascoceratidae) in the Iberian Trough, Spain. Géobios, 42, 17–42.
Basse, E. 1947. Les peuplements Malgaches de Barroisiceras (Révision du genre Barroisiceras De Gross). Paléontologie de Madagascar 26. Annales de Paléontologie, 22, 97–178 (1–81).
Basse, E. 1948. Quelques Ammonites nouvelles du Crétacé de Colombie (Am. Sud). Bulletin de la Société Géologique de France, (5) 18, 691–698.
Basse, E. 1951. Quelques mollusques du Crétacé de Colombie. Bulletin de la Société Géologique de France (5), 20 [for 1950], 245–255.
Basse, E. 1952. Ammonoidea s. str. In: Piveteau, J. (Ed.), Traité de Paléontologie, Tome 2, 581–688. Masson et cie; Paris.
Benavides-Cáceres, V.E. 1956. Cretaceous system in northern Peru. Bulletin of the American Museum of Natural History, 108, 353–494.
Besairie, H. 1936. Recherches géologiques à Madagascar. Première Suit, la géologie du Nord-Ouest. Mémoires de l’Académie Malgache, 21, 1–259.
Billinghurst, S.A. 1927. On some new Ammonoidea from the Chalk Rock. Geological Magazine, 64, 511–518.
Boule, M., Lemoine, P. and Thévenin, A. 1906–1907. Paléontologie de Madagascar III Céphalopodes crétacés des environs de Diego-Suarez. Annales de Paléontologie, 1 (1906), 173–192 (1–20); 2 (1907), 1–56 (21–76).
Brüggen, H. 1910. Die Fauna des unteren Senon von Nord- Perú. In: Steinmann, G. Beiträge zur Geologie und Paläontologie von Südamerika. Neues Jährbuch für Mineralogie, Geologie und Paläeontologie Beilband, 30, 717–788.
Bürgl, H. 1957. Biostratigrafia de la Sabana de Bogota y alrededores. Boletin Geologico. Instituto Geologico Nacional, 5, 113–185.
Chancellor, G.R., Kennedy, W.J. and Hancock, J.M.1994. Turonian ammonite faunas from central Tunisia . Special Papers in Palaeontology, 50, 1–118.
Choffat, P. 1898. Recueil d’études paléontologiques sur la faune crétacique du Portugal. I, espèces nouvelles ou peu connues. Deuxième série, Les Ammonées du Bellasien, des couches à Neolobites Vibrayeanus, du Turonien et du Sénonien. Commision des Travaux Géologiques du Portugal, 1898, 41–86.
Cobban, W.A. and Hook, S.C. 1989. Mid-Cretaceous molluscan record from west-central New Mexico. New Mexico Geological Society Guidebook, 40th Field conference, southeastern Colorado Plateau, 247–264. New Mexico Geological Society; Socorro.
Collignon, M. 1948. Ammonites néocrétacées du Menabe (Madagascar). I. Les Texanitidae. Annales Géologiques du Service des Mines de Madagascar, 13, 49–107 (1–63); 14, 7–101 (64–120).
Collignon, M. 1965. Atlas des fossiles caracteristiques de Madagascar (Ammonites). XII (Turonien), iv + 82 pp. Service géologique; Tananarive.
Collignon, M. 1967. Les céphalopodes crétacés du bassin côtier de Tarfaya. Notes et Mémoires Service des Mines et de la Carte Géologique de Maroc, 175, 7–178 (1966 imprint).
Coquand, H. 1859. Synopsis des animaux et des végétaux fossiles observés dans la formation crétacée du Sud-Ouest de la France. Bulletin de la Société Géologique de France, (2) 16, 945–1023.
Diener, C. 1925. Ammonoidea neocretacea. Fossilium Catalogus (1: Animalia), 29, 1–244. Douvillé, H. 1912. Évolution et classification des Pulchelliidés. Bulletin de la Société Géologique de France, (4) 11, 285–320.
Etayo-Serna, F. 1979. Zonation of the Cretaceous of Central Colombia by Ammonites. Publicacion Especial Ingeominas, 2, 1–186.
Fiege, K. 1930. Über die Inoceramen des Oberturon mit besonderer Berücksichtigung der im Rheinland und Westfalen Vorkommenden Formen. Palaeontographica, 73, 31–47.
Gerhardt, K. 1897a. Beiträge zur Kenntniss der Kreideformation in Venezuela und Peru. Neues Jahrbuch für Mineralogie Geologie und Paläontogie Beilageband, 11, 65–117.
Gerhardt, K. 1897b. Beiträge zur Kenntniss der Kreideformation in Columbien. Neues Jahrbuch für Mineralogie Geologie und Paläontogie Beilageband, 11, 118–208.
Gill, T. 1871. Arrangement of the Families of Mollusks. Smithsonian Miscellaneous Collections, 227, 1–49.
Grossouvre, A. de 1894. Recherches sur la craie supérieure, 2, Paléontologie. Les ammonites de la craie supérieure. Mémoires du Service de la Carte Géologique détaillée de la France, 264 pp. Imprimerie Nationale; Paris. (misdated 1893)
Hauer, F. von. 1866. Neue Cephalopoden aus den Gosaugebilden der Alpen. Sitzungsberichte der Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Classe, 53, 300–308 (1–9).
Heinz, R. 1930. Zur stratigraphischen Stellung der Sonnenbergschichte bei Waltersdorf in Sachsen (westsüdwestlich von Zittau). Beiträger zur Kenntnis der oberkretazischen Inoceramen IX. Jahresbericht des Niedersächsischen Geologischen Vereins zu Hannover, 24, 24–52.
Howarth, M.K. 1966. A mid-Turonian ammonite fauna from the Moçâmedes desert, Angola. Garcia de Orta, 14, 217–228.
Hyatt, A. 1889. Genesis of the Arietidae. Smithsonian Contributions to Knowledge, 673, 1–239.
Hyatt, A. 1900. Cephalopoda, 502–604. In: Zittel, K.A. von 1896–1900 (Ed.), Textbook of Palaeontology, transl. Eastman, 706 pp. C.R. Macmillan; London and New York.
Hyatt, A. 1903. Pseudoceratites of the Cretaceous. United States Geological Survey Monograph, 44, 1–351.
Ifrim, C., Múzquiz, H.P. and Stinnesbeck, W. 2019. Ammonoids, their biozonation and their palaeobiogeographic relation across the Turonian–Coniacian boundary in northern Coahuila, Mexico. Cretaceous Research, 102, 170–195.
Ifrim, C., Vega, F.J. and Stinnesbeck, W. 2011. Epizoic stramentid cirripedes on ammonites from late Cretaceous platy limestones. Journal of Paleontology, 85, 526–538.
Kakabadze, M.V. and Thieuloy, J.-P. 1991. Ammonites Hetéromorphes du Barremien et de l’Aptien de Colombie (Amérique de Sud). Géologie Alpine, 67, 81–113.
Kaplan, U. and Kennedy, W.J. 1994. Ammoniten des Westfälischen Coniac. Geologie und Paläontologie in Westfalen, 31, 1–155.
Karsten, H. 1858. Über die geognostischen Verhältniss des weslichen Columbien, der heutgen Republiken Neu-Granada und Ecuador. Amtlicher Bericht der versammlung Deutscher naturforscher und Äerzte, 32 (for 1856), 80–117.
Kauffman, E.G., Kennedy, W.J. and Wood, C. 1996. The Coniacian Stage and Substage Boundaries. Bulletin de l’Insitut Royal des Sciences Naturelles de Belgique, 66, 81–94.
Kennedy, W.J. 1984. Systematic palaeontology and stratigraphic distribution of the ammonite faunas of the French Coniacian. Special Papers in Palaeontology, 39, 1–131.
Kennedy, W.J. 1988. Late Cenomanian and Turonian ammonite faunas from north-east and central Texas. Special Papers in Palaeontology, 39, 1–129.
Kennedy, W.J. 2018 .Reymenticoceras gen. nov. nodosoidesappelatus Etayo-Serna, 1979, Benueites reymenti Collignon, 1966, and Tolimacoceras gen. nov. colombianus Etayo-Serna, 1979 from the lower Turonian of Tolima Province, Colombia. Cretaceous Research, 88, 384–391.
Kennedy, W.J. 2019. The Ammonoidea of the Upper Chalk. Part 1. Monograph of the Palaeontographical Society, 173, 1–112.
Kennedy, W.J. and Cobban, W.A. 1991. Coniacian ammonite faunas from the United States Western Interior. Special Papers in Palaeontology, 45, 1–96.
Kennedy, W.J., Cobban, W.A. and Landman, N.L. 2001. A revision of the Turonian members of the ammonite subfamily Collignoniceratinae from the United States Western Interior and Gulf Coast. Bulletin of the American Museum of Natural History, 267, 1–148.
Kennedy, W.J., Gale, A.S., Ward, D.J. and Underwood, C.J. 2008. Lower Turonian ammonites from Goulmima, southern Morocco. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 78, 149–177.
Kennedy, W.J. and Kaplan, U. 2019. Ammoniten aus dem Turonium des Münsterlander Kreidebeckens. Geologie und Paläontologie in Westfalen, 92, 1–223.
Kennedy,W.J. and Walaszczyk, I. 2004. Forresteria (Harleites) petrocoriensis (Coquand, 1859), from the Upper Turonian Mytiloides scupini Zone of Slupia Nadbrzena, Poland. Acta Geologica Polonica, 54, 55–59.
Kennedy, W.J., Wright, C.W. and Klinger, H.C. 1983. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Barroisiceratinae Basse, 1947. Annals of the South African Museum, 90, 241–324.
Klinger, H.C. and Kennedy, W.J. 1984. Cretaceous faunas from Zululand and Natal, South Africa. The ammonite subfamily Peroniceratinae Hyatt, 1900 . Annals of the South African Museum, 92, 113–294.
Koenen, A. von. 1897. Ueber Fossilien der unteren Kreide am Ufer des Mungo in Kamerun. Abhandlungen der Königlichen Gesellschaft der Wissenschaft zu Göttingen, Mathematischen- Physikalische Klasse, n.f., 1, 1–48.
Koenen, A. von. 1898. Nachtrag zu Ueber Fossilien der unteren Kreide am Ufer des Mungo in Kamerun. Abhandlungen der Königlichen Gesellschaft der Wissenschaft zu Göttingen, Mathematischen-Physikalische Klasse, n.f., 1, 49–65.
Korn, D., Ebbighausen, V., Bockwinkel, J. and Klug, C. 2003. The A-mode ontogeny in prolecanitid ammonites. Palaeontology, 46, 1123–1132.
Kossmat, F. 1895–1898. Untersuchungen über die Südindische Kreideformation. Beiträge zur Paläontologie Österreich-Ungarns und des Orients, 9 (1895), 97–203 (1–107); 11 (1897), 1–46 (108–153); 11 (1898), 89–152 (154–217).
Kullmann, J. and Wiedmann, J. 1970. Significance of sutures in phylogeny of Ammonoidea. University of Kansas, Paleontological Contributions, 42, 1–32.
Lüthy, J. 1918. Beitrag zur Geologie und Paläontologie von Péru. Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 43, 1–87.
Matsumoto, T. 1955. Evolution of Peroniceratidae. Transactions and Proceedings of the Palaeontological Society of Japan, 18, 37–44.
Matsumoto, T. 1959. The Upper Cretaceous Ammonites of California. Part II. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, Special Volume 1, 1–172.
Matsumoto, T. 1965. A monograph of the Collignoniceratidae from Hokkaido, Part 1. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 14, 1–80.
Matsumoto, T. 1969. A monograph of the Collignoniceratidae from Hokkaido. Part III. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 19, 297–330.
Matsumoto, T. 1971. A monograph of the Collignoniceratidae from Hokkaido. Part V. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 21, 129–162.
Meek, F.B. 1877. Paleontology. United States Geological Survey, Exploration of the 40th Parallel, 4, 1–197.
Meister, C. and Abdallah, H. 2005. Précision sur les successions d’ammonites du Cénomanien–Turonien dans la région de Gafsa, Tunisie du centre-sud. Revue de Paléobiologie, 24, 111–199.
Orbigny, A. d’. 1850. Prodrome de Paléontologie stratigraphique universelle des animaux Mollusques et rayonnés faisant suite au cours élémentaire de Paléontologie et de Géologie stratigraphiques, Vol. 2, 427 pp. Masson; Paris.
Patarroyo, P. 2011. Sucesión de amonitas del Cretácico superior (Cenomaniano–Coniaciano) de la parte más alta de la Formación Hondita y de la Formación Loma Gorda en la quebrada Bambucá, Aipe-Huila, (Colombia, S.A.). Boletin de Geologia, 33, 69–92.
Patarroyo, P. 2016. Amonoideos y otros macrofósiles del lectoestratotipico de la Formación la Frontera, Turoniano superior- medio (cretácico superior) en San Francisco, Cundinamarca (Colombia). Boletin de Geologia, 38, 41–54.
Patarroyo, P. and Bengtson, P. 2018. Codazziceras ospinae (Karsten, 1858) from the Turonian (Upper Cretaceous) of Colombia. Cretaceous Research, 88, 392–398.
Peron, A. 1896–1897. Les ammonites du Crétacé supérieur de l’Algerie. Mémoires de la Société Géologique de France, 17, 1–88. (1–24, 1896; 25–88, 1897).
Pervinquière, L. 1907. Études de paléontologie tunisienne. 1. Céphalopodes des terrains secondaires. Carte Géologique de la Tunisie, v + 438 pp. J. Lamarre et Cie; Paris.
Reeside, J.B. jr. 1932. The Upper Cretaceous ammonite genus Barroisiceras in the United States. United States Geological Survey Professional Paper, 170-B, 9–29.
Renz, O. 1982. The Cretaceous ammonites of Venezuela, 132 pp. Maraven; Basel.
Reuss, A.E. 1845. Die Versteinerungen der böhmischen Kreideformation I, 58 pp. E. Schweizerbart’sche Verlagsbuch Druckerei; Stuttgart.
Reyment, R.A. 1954a. New Turonian (Cretaceous) ammonite genera from Nigeria. Colonial Geology and Mineral Resources, 4, 149–164.
Reyment, R.A. 1954b. Some new Upper Cretaceous ammonites from Nigeria. Colonial Geology and Mineral Resources, 4, 248–270.
Reyment, R.A. 1955. The Cretaceous Ammonoidea of Nigeria and the southern Cameroons. Bulletin of the Geological Survey of Nigeria, 25, 1–112.
Reyment, R.A. 1958. Neubeschreibung der Redtenbacher’schen ammoniten-originale aus den Gosauschichten. Stockholm Contributions to Geology, 2, 31–49.
Reyment, R.A. 1981. Colombia. In: Reyment, R.A. and Bengtson, P. (Eds), Aspects of mid-Cretaceous geology, 175–195. Academic Press; London.
Riedel, L. 1938. Amonitas del Cretacico inferior de la Cordillera Oriental. In: Estudios geológicos y paleontológicos sobre la Cordillera Oriental de Colombia, parte segunda, 7–78. Departamento de Minas y Petroleos, Ministerio de Industrias y Trabajo; Bogota.
Schlüter, C. 1867. Beitrag zur Kenntniss der jüngsten Ammoneen Norddeutschlands, 36 pp. A. Henry; Bonn. Schlüter, C. 1871–1876. Cephalopoden der oberen deutschen Kreide. Palaeontographica, 21, 1–24 (1871); 21, 25–120 (1872); 24, 1–144 (121–264) + x (1876).
Shimizu, S. 1932. On a new type of Senonian ammonite, Pseudobarroisiceras nagaoi Shimizu gen. et sp. nov. from Teshio Province, Hokkaido. Japanese Journal of Geology and Geography, 10, 1–4.
Solger, F. 1904. Die Fossilien der Mungokreide in Kamerun und ihre geologische Bedeutung, mit besonderer Berücksichtigung der Ammoniten. In: Esch, E., Solger, F., Oppenheim, P. and Jaekel, O. (Eds), Beiträge zur Geologie von Kamerun, 85–242. E. Schweizerbartsche Verlagsbuchhandlung; Stuttgart.
Sornay, J. 1957. Ammonites du Coniacien du massif de la Haute Medjerda (Constantine, Algérie). Bulletin de la Société Géologique de France, (6) 7, 187–196.
Spath, L.F. 1926. On new ammonites from the English Chalk. Geological Magazine, 63, 77–83.
Steinmann, G. 1930. Geologie von Peru, 448 pp. Carl Winters Universitäts Buchhandlung; Heidelberg.
Summesberger, H. and Kennedy, W.J. 1996. Turonian ammonites from the Gosau Group (Upper Cretaceous/Northern Calcareous Alps, Austria) including a revision of Barroisiceras haberfellneri (HAUER, 1866). Beiträge zur Paläontologie, 21, 105–177.
Summesberger, H. and Zorn, I. 2012. A catalogue of the type specimens of late Cretaceous cephalopods housed in the collections of the Geological Survey of Austria in Vienna. Jahrbuch der Geologischen Bundesanstalt, 152, 155–205.
Tröger, K.A. 1967. Zur Paläontologie, Biostratigraphie und faziellen Ausbildung der unteren Oberkreide) (Cenoman bis Turon). Teil 1: Paläontologie und Biostratigraphie Inoceramen des Cenoman bis Turon. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden, 12, 13–208.
Walaszczyk, I., and Cobban, W.A. 2000. Inoceramid faunas of the Upper Turonian–Lower Coniacian of the Western Interior of the United States. Special Papers in Palaeontology, 64, 1–118.
Walaszczyk, I. and Wood, C.J. 1998. Inoceramids and biostratigraphy at the Turonian/Coniacian boundary; based on the Salzgitter-Salder Quarry, Lower Saxony, Gemany, and the Słupia Nadbrzeżna section, Central Poland. Acta Geologica Polonica, 48, 395–434.
Wiedmann, J. 1966. Stammesgeschichte und System der posttriadischen Ammonoideen; ein überblick. Neues Jahrbuch fur Geologie und Paläontologie Abhandlungen, 125, 49–79; 127, 13–81.
Wiese, F. 1997. Das Turon und Unter-Coniac im Nordkantabrischen Becken (Provinz Kantabrien, Nordspanien): Faziesentwicklung, Bio-, Event und Sequenzestratigraphie. Berliner Geowissenschaftliche Abhandlungen, E24, 1–131.
Wiese, F. 2000. Coniacian (Upper Cretaceous) ammonites from the North Cantabrian Basin (Cantabria, northern Spain). Acta Geologica Polonica, 50, 125–141.
Woods, H. 1896. The Mollusca of the Chalk Rock: Part 1. Quarterly Journal of the Geological Society of London, 52, 68–98.
Wright, C.W.1957. Cretaceous Ammonoidea. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology. Part L, Mollusca 4, Cephalopoda Ammonoidea, 1–490. Geological Society of America and University of Kansas Press; New York and Lawrence.
Wright, C.W. 1996. Treatise on Invertebrate Paleontology. Part L, Mollusca 4: Cretaceous Ammonoidea (with contributions by J.H. Calloman (sic) and M.K. Howarth), xx + 362 pp. Geological Society of America and University of Kansas; Boulder, Colorado and Lawrence, Kansas.
Wright, C.W. and Wright, E.V. 1951. A survey of the fossil Cephalopoda of the Chalk of Great Britain. Monograph of the Palaeontographical Society, 105, 1–40.
Young, K. 1963. Upper Cretaceous ammonites from the Gulf Coast of the United States. University of Texas Bulletin, 6304, 1–373.
Zaborski, P.M.P. 1987. Lower Turonian (Cretaceous) ammonites from south-east Nigeria. Bulletin of the British Museum (Natural History), Geology, 41, 31–66.
Zaborski, P.M.P. 1990. Some Upper Cretaceous ammonites from southern Nigeria. Journal of African Earth Sciences, 10, 565–581.
Zittel, K.A. von. 1884. Handbuch der Palaeontologie. 1, Abt. 2; Lief 3, Cephalopoda, 329–522. R. Oldenbourg; Münich and Leipzig.
Go to article

Authors and Affiliations

William James Kennedy
1

  1. Oxford University Museum of Natural History, Parks Road, Oxford OX1 3P Wand Department of Earth Sciences, South Parks Road, Oxford OX1 3AN, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

The known occurrence of corals distinguished here in the new Family Krynkaphyllidae varies at the subfamily level. Those of the Subfamily Krynkaphyllinae subfam. nov. are so far almost unknown from outside of the Donets Basin. In contrast, those of the Subfamily Colligophyllinae subfam. nov. are common, possibly ranging from the lower Viséan Dorlodotia Salée, 1920, a potential ancestor of the family, to the Artinskian Lytvophyllum tschernovi Soshkina, 1925. They bear different generic names, but were all originally described as fasciculate colonial. A detailed study of Lytvophyllum dobroljubovae Vassilyuk, 1960, the type species of Colligophyllum gen. nov., challenges that recognition in that at least some of those taxa are solitary and gregarious and/or protocolonial. As such, solitary, protocolonial and, probably, fasciculate colonial habits are accepted in the Colligophyllinae subfam. nov., whereas the Krynkaphyllinae subfam. nov. contains only solitary taxa. The resemblance to the Suborder Lonsdaleiina Spasskiy, 1974 led to the analysis of families included in that suborder by Hill (1981) in the context of their relationship, or homeomorphy, to Krynkaphyllidae fam. nov. This question primarily concerns the Family Petalaxidae Fomichev, 1953; a relationship with the Family Geyerophyllidae Minato, 1955, is more distant, if one exists. The distinct, parallel stratigraphic successions of taxa within two subfamilies of the Krynkaphyllidae fam. nov. document their probably common roots and early divergence. However, a lack of robust data precludes an interpretation or treatment of those successions as phylogenetic. The absence of key stratigraphic and morphologic data meant that eastern Asiatic taxa have not been considered in these successions; however, morphological similarities allow for their tentative inclusion within the Krynkaphyllidae fam. nov. The following new taxa are introduced: Krynkaphyllidae fam. nov., Krynkaphyllinae subfam. nov., Colligophyllinae subfam. nov., Krynkaphyllum gen. nov., Colligophyllum gen. nov., Protokionophyllum feninoense sp. nov., Krynkaphyllum multiplexum sp. nov., Krynkaphyllum validum sp. nov., and three species of Protokionophyllum Vassilyuk in Aizenverg et al., 1983 left in open nomenclature.
Go to article

Authors and Affiliations

Jerzy Fedorowski
1

  1. Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, PL-61-680 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present contribution provides a study of calcareous nannofossils and siliceous microfossils from the Sawai Bay Formation on Car Nicobar Island, northern Indian Ocean. Two stratigraphically short sediment intervals near Sawai Bay have been examined. Qualitative and quantitative microfossil analyses show the Sawai Bay ‘A’ Section to be devoid of siliceous microfossils, while 24 well-preserved calcareous nannofossil taxa are identified. The Sawai Bay ‘B’ Section yields 18 calcareous nannofossil, 33 radiolarian and 25 diatom taxa. The calcareous nannofossil index taxa ( Ceratolithus armatus Müller, 1974a and C. cristatus Kamptner, 1950) indicate both sections to be from zones NN12 (CN10b) and NN13 (CN10c) of early Pliocene (Zanclean) age. The radiolarian taxa, i.e., Didymocyrtis avita Riedel, 1953, Euchitonia spp., Siphocampe lineata (Ehrenberg) Nigrini, 1977, Stichocorys peregrina Riedel, 1953, Semantis spp. and Stylochlamydium sp. are common in the Sawai Bay ‘B’ Section, which is assigned to Zone RN9. Most of the diatom taxa are represented by representatives of the genera Actinocyclus Ehrenberg, 1837, Azpeitia Peragallo in Tèmpere and Peragallo, 1912, Coscinodiscus Ehrenberg, 1839a, Grammatophora Ehrenberg, 1841 and Triceratium Ehrenberg, 1839b, with the benthic diatom species Triceratium favus Ehrenberg, 1839b being predominant (~35% of the total diatom count). Siliceous microfossils are also represented by silicoflagellates dominated by Dictyocha spp. and sponge spicules dominated by astrophorids.
Go to article

Authors and Affiliations

Arindam Chakraborty
1
Amit K. Ghosh
1
Kevin McCartney
2
Stuti Saxena
1
Rikee Dey
1
Lopamudra Roy
1

  1. Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226 007, India
  2. Department of Environmental Science and Sustainability, University of Maine at Presque Isle, Presque Isle, 04769 ME, USA
Download PDF Download RIS Download Bibtex

Abstract

Rare erratic clasts – extraneous rock types – occur in the Upper Cretaceous Chalk, including a local basal facies, the Cambridge Greensand. The underlying Upper Albian Gault Clay and the Hunstanton Red Chalk Formations have also yielded erratics. The discovery of these erratics, their description and the development of hypotheses to explain their origins and significance are reviewed. They became the subject of scientific interest with the interpretation of a particularly large example “The Purley Boulder” by Godwin-Austen (1858) as having been transported to its depositional site in the Chalk Sea by drifting coastal ice. Thin section petrography (1930–1951) extended knowledge of their diverse provenance. At the same time the Chalk Sea had become interpreted as warm, so drifting ice was considered out of context, and the preferred agents of transport were entanglement in the roots of drifting trees, as holdfasts of floating marine algae, or as stomach stones of marine reptiles or large fish. Reconsideration of their occurrence, variable nature and sedimentary setting suggests that there are three zones in the English Chalk where erratics may be less rare (1) near the base of the Cenomanian in the Cambridge area, (2) the Upper Cenomanian–Middle Turonian in Surrey, and (3) the Upper Coniacian and Lower Santonian of Kent. The assemblage from each level and their sedimentary setting is subtly different. Present evidence suggests that the erratics found in the Upper Albian–Lower Cenomanian and the Upper Cenomanian–Middle Turonian zones represent shallow water and shoreline rocks that were transported into the Chalk Sea by coastal ice (fast-ice) that enclosed coastal marine sediments as it froze. The Upper Coniacian and Lower Santonian erratics from Rochester and Gravesend in Kent are gastroliths.
Go to article

Bibliography

Ballantyne, C.K. 2018. Periglacial Geomorphology. 454 pp. John Wiley and Sons; Hoboken.
Ben, D.I. and Evans, D.J.A. 2013. Glaciers and glaciation. 2nd Edition, 802 pp. Routledge; London and New York.
Bennett, M.R. and Doyle, P. 1996. Global cooling inferred from dropstones in the Cretaceous – fact or wishful thinking? Terra Nova, 8, 182–185.
Bennett, M.R., Doyle, P. and Mather, A.E. 1996. Dropstones – their origins and significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 121, 331–339.
Bonney, T.G. 1873. On the Upper Greensand or Chloritic Marl of Cambridgeshire. Proceedings of the Geologist Association, 3, 1–20.
Cayeux, L. 1897. Craie du Bassin de Paris. Mémoire de la Societé géologique du Nord, 4, 418–425.
Chumakov, N.M. 1998. Stones scattered in Cretaceous deposits of south England. Lithology and Mineral Resources, 33, 313–326.
Cope, J.C.W., Ingham, J.K. and Rawson, P.F. (Eds) 1992. Atlas of Palaeogeography and Lithofacies. Geological Society London, Memoir, 13, 153 pp.
Dibley, G.E. 1918. Additional notes on the Chalk of the Medway valley, Gravesend, west Kent, north-east Surrey, and Grays (Essex). Proceedings of the Geologists’ Association, 29, 68–93.
Double, I.S. 1931. Some boulders from the Chalk of Betch- worth, Surrey. Geological Magazine, 68, 65–71.
Dowdeswell, J.A., Elverhøi, A., and Spielhagen, R. 1998. Glacimarine sedimentary processes and facies on the polar north Atlantic margins. Quaternary Science Reviews, 17, 243–272.
Fletcher, T.P. 1977. Lithostratigraphy of the Chalk (Ulster White Limestone Formation) in Northern Ireland. Report of the Institute of Geological Sciences, 77/24.
Forbes, D.L. and Taylor, R.B. 1994. Ice in the shore zone and the geomorphology of cold coasts. Progress in Physical Geography, 18, 59–89.
Gallois, R.W. 1994. Geology of the country around King’s Lynn and The Wash. Memoir of the British Geological Survey, sheet 145 and part of 129 (England and Wales), 210 pp. HMSO; London.
Gilbert, R. 1990. Rafting in glaciomarine environments. In: Dowdeswell, J.A. and Scourse, J.D. (Eds), Glaciomarine environments: processes and sediments. Geological Society London, Special Publications, 53, 10–20.
Godwin-Austen, R. 1858. On a boulder of granite found in the “White Chalk” near Croydon, and on the extraneous stones from that Formation. Quarterly Journal of the Geological Society of London, 14, 252–266.
Godwin-Austen, R. 1860. On the occurrence of a mass of coal in the Chalk of Kent. Quarterly Journal of the Geological Society of London, 16, 326–327.
Grove, R. 1976. Coprolite mining in Cambridgeshire. The Agricultural History Review, 24, 36–43. Haq, B.U. 2014. Cretaceous eustacy revisited. Global and Planetary Change, 113, 44–58.
Hansom, J.D., Forbes, D.L. and Etienne S. 2014. The rock coasts of polar and sub-polar regions. In: Kennedy, D.M., Stephenson, D.M. and Naylor, L.A. (Eds), Rock Coast Geomorphology: A Global Synthesis. Geological Society London, Memoirs, 40, 263–281.
Hawkes, L. 1943. The erratics of the Cambridge Greensand; their nature, provenance, and mode of transport . Quarterly Journal of the Geological Society of London, 99, 93–104.
Hawkes, L. 1951. The erratics of the English Chalk. Proceedings of the Geologists’ Association. 62, 257–268.
Hu, X.-F., Jeans, C.V. and Dickson, J.A.D. 2012. Geochemical and stable isotope patterns of calcite cementation in the Upper Cretaceous Chalk, UK: Direct evidence from calcitefilled vugs in brachiopods. Acta Geologica Polonica, 62, 143–172.
Janetschke, N., Niebuhr, B. and Wilmsen, M. 2015. Inter-regional sequence stratigraphical synthesis of the Plänerkalk, Elbtal and Danubian Cretaceous groups (Germany): Cenomanian–Turonian correlations around the Mid-European Island. Cretaceous Research, 56, 530–549.
Jeans, C.V. 1967. The Cenomanian Rocks of England. Unpublished PhD thesis, 156 pp. University of Cambridge; Cambridge.
Jeans, C.V. 2006. Clay mineralogy of the Cretaceous strata of the British Isles. Clay Minerals, 41, 47–150.
Jeans, C.V., Long, D., Hall, M.A., Bland, D.J. and Cornford, C. 1991. The geochemistry of the Plenus Marls at Dover, England: evidence of fluctuating oceanographic conditions and of glacial control during the development of the Cenomanian–Turonian δ13C anomaly. Geological Magazine, 128, 604–632.
Jeans, C.V., Merriman, R.J., Mitchell, J.G. and Bland. D.J. 1982. Volcanic clays in the Cretaceous of southern England and Northern Ireland. Clay Minerals, 17, 105–156.
Jeans, C.V., Wray, D. S., Williams, T.C., Bland, D.J. and Wood, C.J. 2021. Redox conditions, glacio-eustasy, and the status of the Cenomanian–Turonian Anoxic Event: new evidence from the Upper Cretaceous Chalk of England. Acta Geologica Polonica, 71, 103–152.
Jukes-Browne, A.J. and Hill, W. 1903. The Cretaceous rocks of Britain, Vol. II – The Lower and Middle Chalk of England. Memoir of the Geological Survey, 568 pp. HMSO; London.
Jukes-Browne, A.J. and Hill, W. 1904. The Cretaceous rocks of Britain, Vol. III – The Upper Chalk of England. Memoir of the Geological Survey of Great Britain, 566 pp. HMSO; London.
Lefort, J.-P., Monnier, J.-L. and Danukalova, G. 2019. Transport of Late Pleistocene loess particles by katabatic winds during the lowstands of the English Channel. Journal of the Geological Society of London, 179, 1169–1181.
Lisitzin, A.P. 2002. Sea-ice and iceberg sedimentation in the ocean: recent and past, 564 pp. Springer-Verlag; Berlin and Heidelberg.
Markwick, P.J. and Rowley, D.B. 1998. The geological evidence for Triassic to Pleistocene glaciations: implications for eustacy. In: Pindell, J. and Drake, C.L. (Eds), Palaeogeographic evolution and non-glacial eustacy: northern South America. SEPM Special Publication, 58, 17–43.
Mortimore, R.N., Wood, C.J. and Gallois, R.W. 2001. British Upper Cretaceous Stratigraphy. Geological Conservation Review Series, 23, 558 pp. Joint Nature Conservation Committee; Peterborough.
Osterkamp, T.E. and Gosink, J.P. 1984. Observations and analyses of sediment-laden sea ice. In: Barnes, P.W., Schell, D.M. and Reimnitz, E. (Eds), The Alaskan Beaufort Sea: ecosystems and environments, 73–93 pp. Academic Press; New York.
Price, G.D. 1999. The evidence and implications of polar ice during the Mesozoic. Earth-Science Reviews, 48, 183–210.
Rastall, R.H. 1930. The petrography of the Hunstanton Red Rock . Geological Magazine, 67, 436–458.
Schmidt, K. and Schreyer, E.D. 1973. Erratische Gerölle im Turon (Soester Grünsand) des südöstlichen Münsterlandes (Westfalen). Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1973, 297–312.
Sollas, W.J. and Jukes-Browne, A.J. 1873. On the included rock-fragments of the Cambridge Upper Greensand. Quarterly Journal of the Geological Society of London, 29, 11–16.
Stebbing, W.P.D. 1897. On two boulders of granite from the Middle Chalk of Betchworth, Surrey. Quarterly Journal of the Geological Society of London, 53, 213–220.
Thomas, G.S.P. and Connell, R.J. 1985. Iceberg drop, dump, and grounding structures from the Pleistocene glacio-lacustrine sediments, Scotland. Journal of Sedimentary Petrology, 55, 243–249.
Torsvik, T.H. and Cocks, L.R.M. 2017. Earth history and palaeogeography, 317 pp. Cambridge University Press; Cambridge.
Whittle, C.H. and Onorato, L. 2000. On the origin of gastroliths determining the weathering environment of rounded and polished stones by scanning-electron-microscope examination. In: Lucas, S.G. and Heckert, A.B. (Eds), Dinosaurs of New Mexico. Bulletin of the New Mexico Museum of Natural History and Science, 17, 69–73.
Wilmsen, M., Niebuhr, B. and Hiss, M. 2005. The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies, 51 (1-4), 242–263.
Wings, O. 2007. A review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontologica Polonica, 52, 1–16.
Woolnough,W.G. and David, T.W.E. 1926. Cretaceous glaciation in Central Australia. Quarterly Journal of the Geological Society, London, 82, 332–351.
Go to article

Authors and Affiliations

Christopher V. Jeans
1
Ian M. Platten
2

  1. Department of Earth Sciences, University of Cambridge, Downing Place, Cambridge, CB2 3EN, UK
  2. 4 Little Youngs, Welwyn Garden City, Hertfordshire, AL8 6SL, UK
Download PDF Download RIS Download Bibtex

Abstract

The paper is focused on the palaeographic development of the western part of the Holy Cross Mountains, Poland, during the maximum extent of the Sanian 2 (MIS 12) ice sheet and its retreat. The studies were based on archival cartographic data, coupled with new lithological and petrographic analyses of limni- and fluvioglacial sands, i.e., grain-size composition, quartz grain morphology and heavy mineral analysis, as well as analysis of the erratic material of tills. The results confirm the regional variability of the erratic material in the Sanian 2 tills and point to the long-term development of fluvioglacial sands cover documenting cold climate conditions. They also evidence that the western part of the Holy Cross Mountains was the area where two oppositely directed ice sheet lobes (Radoszyce and Sandomierz) advanced during the Sanian 2 Glaciation and that deglaciation of the area took place in two stages. Huge quantities of meltwater released at that time contributed to the intensification of earlier initiated karst phenomena, as well as filling of the existing caves by fluvioglacial sands.
Go to article

Authors and Affiliations

Jan Dzierżek
1
Leszek Lindner
1
Krzysztof Cabalski
1
Jan Urban
2
Michał Cyglicki
3

  1. Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
  2. Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza 33, PL- 31-120, Kraków
  3. Polish Geological Institute-National Research Institute, Rakowiecka 4, PL-00-975, Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The uppermost Albian and lowermost Cenomanian succession at Abouda Plage, north of Agadir, in the Agadir Basin, western Morocco, is described in detail, and ammonites, microcrinoids and planktonic foraminifera are recorded and illustrated. The lower part of the Aït Lamine Formation yields ammonites indicative of the Pervinquieria (Subschloenbachia) rostrata and P. (S.) perinflata ammonite zones, and the Thalmanninella appenninica planktonic foraminiferan Zone. The base of the Cenomanian is identified at 42.2 m above the base of the Aït Lamine Formation, based on the lowest occurrence of the planktonic foraminiferan Thalmanninella globotruncanoides Sigal, 1948. Lower Cenomanian ammonites of the Graysonites adkinsi Zone enter 3 m higher in the succession. Microcrinoid zones AlR11 and AlR12 are identified in the Upper Albian, and the base of the CeR1 Zone coincides with the lowest occurrence of Cenomanian ammonites. The ammonite and microcrinoid occurrences and detailed distributions are very similar to those found in north central Texas, which, in the Cenomanian, was 5,300 km to the west. The new records suggest that the G. adkinsi Zone is equivalent to the uppermost (Lower Cenomanian) part of the Pleurohoplites briacensis Zone of the Global Stratotype Section for the base of the Cenomanian stage. An hiatus, of global extent, immediately underlies the base of the G. adkinsi Zone and is represented in the Agadir Basin by an erosion surface containing bored and encrusted hiatus concretions.
Go to article

Authors and Affiliations

Andrew Scott Gale
1 2
William James Kennedy
3 4
Maria Rose Petrizzo
5

  1. School of the Environment, Geography and Geological Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO13QL UK
  2. Earth Science Department, Natural History Museum, Cromwell Road, London SW75BD, UK
  3. Oxford University Museum of Natural History, Parks Road, Oxford, OX13PW
  4. Department of Earth Sciences, South Parks Road, OX13AN UK
  5. Dipartimento di Scienze della Terra ‘A. Desio’, Università degli Studi di Milano, via Mangiagalli 34, 1-20133 Milano, Italy
Download PDF Download RIS Download Bibtex

Abstract

The Oligocene (Rupelian) Byram Formation (Vicksburg Group) in Alabama, USA, is divided into three members, including (in ascending order) the Glendon Limestone, unnamed marl, and the Bucatunna Clay. The Oligocene marine units in Alabama have been historically under-investigated, but bulk samples recently obtained from Glendon Limestone Member exposures at site AWa-9 in Washington County yielded 20 unequivocal elasmobranch and teleost taxa. This surprisingly diverse paleofauna, based on isolated teeth, bones and otoliths, includes the new taxon, Gobiosoma? axsmithi sp. nov., as well as “Aetomylaeus” sp., Albula sp., Aplodinotus gemma Koken, 1888, Ariosoma nonsector Nolf and Stringer, 2003, Balistidae indet., Citharichthys sp., Myliobatoidei indet., Diretmus? sp., Hemipristis sp., Negaprion aff. N. gilmorei (Leriche, 1942), Pachyscyllium sp., Paralbula sp., Physogaleus sp., Preophidion meyeri (Koken, 1888), Sciaena pseudoradians (Dante and Frizzell in Frizzell and Dante, 1965), Sciaenops? sp., Sparus? elegantulus Koken, 1888, Sphyraena sp., and Syacium sp. Additional remains were recovered but could not be identified beyond undetermined Elasmobranchii or Teleostei. All these taxa represent first occurrences within the Glendon Limestone Member in Alabama, and the “Aetomylaeus” sp., Pachyscyllium sp., Paralbula sp., and Sciaenops? sp. specimens represent the first occurrences of each in the Oligocene of the Gulf Coastal Plain of the USA. We also report the first record of Oligocene Paralbula Blake, 1940 teeth, and the first occurrence of an Oligocene member of the Balistidae in the Western Hemisphere. This marine vertebrate assemblage indicates that the Glendon Limestone Member at site AWa-9 represented a subtropical to temperate, middle shelf paleoenvironment with a paleowater depth interpreted as 30–100 m.
Go to article

Authors and Affiliations

Jun A. Ebersole
1
David J. Cicimurri
2
Gary L. Stringer
3

  1. McWane Science Center, 200 19th Street North, Birmingham, AL 35203, USA
  2. South Carolina State Museum, 301 Gervais Street, Columbia, SC 29201, USA
  3. Museum of Natural History, 708 University Avenue, University of Louisiana at Monroe, Monroe, LA 71209, USA
Download PDF Download RIS Download Bibtex

Abstract

In the Balkans, the Serbo-Macedonian Unit (SMU), Serbia, is thrust bounded by the composite Tethyan Vardar Zone and the Carpatho-Balkanides. The SMU actually emerges from beneath the Neoalpine Miocene–Pliocene deposits. Both provenance and geodynamic position of the SMU are poorly known and still debated. This paper reviews the data hitherto published and includes some new field data interpretations. The SMU is composed of a Neoproterozoic–Cambrian high-grade (para- and ortho-) gneiss with peraluminous magmatic arc components (560–470 Ma). The SMU is in the contact with Neoproterozoic upper Ordovician–Carboniferous low-grade metasedimentary succession of an accretionary wedge assembly represented by the Supragetic basement. The SMU basement became folded, sheared and metamorphosed around 490–450 Ma. Paleomagnetic data point to high southern latitudes and a peri-Gondwanan position of the SMU at that time, which concurs with glaciomarine evidence recorded from the upper Ordovician sediments at the base of an accretionary wedge succession. Based on the published data and field survey in the Stalać region, we correlate the SMU with the pre-Mesozoic gneiss terrane exposed in the Strona-Ceneri zone of the Alps. This terrane, identified as the Cenerian orogen of the Alaskan subduction type, developed at an active margin of Gondwana during middle Ordovician times. The SMU basement, with augen and migmatitic gneisses and arc-related peraluminous magmatic bodies, developed at this margin as part of the Cenerian belt or its equivalent. Such an orogenic edifice proved transient and in the earliest Silurian the SMU fragments drifted away being bound for Baltica (amalgamated Moesian microplate and Danubian terrane) to which they became accreted in the Carboniferous and included in the southern European branch of the Variscan orogen (Marginal Dacides/Carpatho-Balkanides). Despite considerable Variscan and Alpine reworking, the pre-Variscan, Cenerian-type crustal assembly along with an inferred boundary between the magmatic arc and the accretionary wedge, accompanied by back-arc/forearc deposits, are still decipherable in the Western Balkan countries.
Go to article

Authors and Affiliations

Darko Spahić
1
ORCID: ORCID
Zoran Bojić
1
Danica Popović
1
Tivadar Gaudenyi
2
ORCID: ORCID

  1. Geological Survey of Serbia, Rovinjska 12, 11000 Belgrade, Serbia
  2. Geographical Institute “Jovan Cvijić” of the Serbian Academy of Sciences and Arts, Djure Jakšića 9, 11000 Belgrade, Serbia
Download PDF Download RIS Download Bibtex

Abstract

Balanomorph cirripedes from the Eocene–Oligocene of the Hampshire Basin (United Kingdom) and the Middle Eocene of the Cotentin Peninsula, Manche (France) are described. A new genus, Vectibalanus, is founded, with the type species Balanus unguiformis J. de C. Sowerby, 1846; assigned to this are also Balanus erisma J. de C. Sowerby, 1846 and Vectibalanus mortoni sp. nov. In addition, a new species of Lophobalanus Zullo, 1984, L. fresvillensis sp. nov., is described. This is the first record of that genus from outside the eastern USA and the oldest species known to date. Cladistic analysis of 24 morphological characters suggests that Vectibalanus unguiformis is sister taxon to a group comprising the most derived balanomorph taxa, and thus represents an important transition in the evolution of the group, with the initiation of development of a complex parietal wall structure. Vectibalanus unguiformis was evidently adapted to low salinity habitats (10–30 ppt), and is the oldest known brackish water barnacle. The other species ( V. erisma, V. mortoni sp. nov.) occupied more clearly marine environments (>30 ppt). Balanomorph barnacles appeared simultaneously in the Priabonian (Upper Eocene) of the Gulf and Atlantic seaboards of the USA and northwest Europe, which probably represents a northerly migration from Tethys.
Go to article

Authors and Affiliations

Andrew Scott Gale
1 2

  1. School of the Environment, Geography and Geological Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth PO13QL, UK
  2. Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW75BD, UK
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to establish the stratigraphic extent of a putative Tournaisian Stage within the Carboniferous succession in the Lublin Basin. The oldest part of the succession, known as the Huczwa Formation and comprising depositional sequences 1–4, was investigated based on lithofacies analysis, sequence stratigraphy and petrographic studies. The article provides descriptions of depositional sequences, parasequences (cyclothems) and lithofacies that were formed in a range of environments (elements of depositional architecture) and as a result of volcanic processes – lava and pyroclastic eruptions and chemical weathering of their products. Correlation of the sequence stratigraphy to the West European and global Carboniferous chronostratigraphic divisions, as well as to the Khoriv suite in the Lviv-Volyn Basin in adjacent Ukraine, indicates a putative late Tournaisian age for sequence 1, and a late Visean age for sequences 2–4. There is a stratigraphic gap between sequences 1 and 2, spanning probably the uppermost Tournaisian and the lower and middle Visean. The upper Tournaisian is represented by the FRST-LST deposits of sequence 1, comprising mainly volcaniclastic conglomerates and sandstones developed in braided-river channels and incised valleys with hyperconcentrated flow processes. These deposits are represented by polymictic paraconglomerate and lithic/sublithic/subarkose arenites or sublithic wackes, and contain predominantly grains of acidic and alkaline volcanic and igneous rocks. This material probably came from the Łuków-Wisznice Elevation and the Volynian Polesia region, located to the NE and E of the Lublin Basin. In the uppermost part of sequence 1, volcanic rocks and tuffs appear which developed during the activity of at least three volcanic cones in the Lublin Basin. The volcanoes were the source of alkaline lavas in the central and SW areas of the basin, and of acidic lavas in the SE area, previously undescribed. The Visean sequences 2–4 consist of the FRST-LST sediments deposited within incised valleys. The TST and HST deposits accumulated mainly in a shallow ramp-type carbonate shelf, shallow clayey shelf and deltaic environments.
Go to article

Bibliography

Al-Mashaikie, S.Z.A.K. and Al-Hawbanie, A.M. 2010. Petrography and geochemical study of the Perlite Rocks from Bait Al-Qeyarie, Kawlan Area, Yemen. Earth Science, 21 (2), 195–217.
Arnott, R.W.C and Hand, B.M. 1989. Bedforms, primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Petrology, 59 (6), 1062–1069.
Ashley, G.M. and Sheridan, R.E. 1994. Depositional model for valley fills on a passive continental margin. In: Dalrymple, R.W., Boyd, R. and Zaitlin, B.A. (Eds), Incised-Valley Systems: Origin and Sedimentary Sequences. Society of Economic Paleontologists and Mineralogists Special Publication, 51, 285–301. Tulsa, Oklahoma.
Baldwin, B. and Butler, C.O. 1985. Compaction Curves. American Association of Petroleum Geologists Bulletin, 69 (4), 622–626.
Batalla, R.J., De Jong, C., Ergenzinger, P. and Sala, M. 1999. Field observations on hyperconcentrated flows in mountain torrents. Earth Surface Processes and Landforms, 24, 247–253.
Bojkowski, K. and Dembowski, Z. 1988. Paleogeography of Carboniferous in the Lublin Coal Basin at the background of paleogeography of Carboniferous in Poland. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 18–26; 227–228.
Bojkowski, K. and Musiał, Ł. 1978. Stratygrafia makrofaunistyczna karbonu. In: Niemczycka, T. (Ed.), Profile Głębokich Otworów Wiertniczych Instytutu Geologicznego, 45, 129–131.
Catuneanu, O. 2006. Principles of Sequence Stratigraphy, 375 pp. Elsevier; Amsterdam.
Cebulak, S. 1988a. Petrographic characteristics of Carboniferous deposits. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 77–88; 231–232. [In Polish with English summary]
Cebulak, S. 1988b. Geological outline of sub-Carboniferousbasement. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 31–34. [In Polish with English summary]
Cebulak, S. 1989. Badania petrograficzne osadów karbonu. In: Krassowska, A. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 66, 180–189.
Cebulak, S., Porzycki, J., Laskowski, M., Różkowski, A., Rudzińska, T., Szewczyk, J., Karwasiecka, M. and Waksmundzka, M.I. 2011. Badania surowcowe boksytów i węgli występujących w utworach karbonu. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 116–122. [In Polish with English summary]
Coleman, J.M. and Wright, L.D. 1975. Modern river deltas: variability of processes and sand bodies. In: Broussard, M. L. (Ed.), Deltas, models for exploration, 99–150. Houston Geological Society; Houston.
Davydov, V.I., Korn, D. and Schmitz, M.D. 2012. The Carbonifeous Period. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D. and Ogg, G.M. (Eds), The Geologic Time Scale, 603–651. Elsevier, Amsterdam.
Depciuch, T. 1974. Rocks of the Precambrian Platform in Poland. Part 2 – Sedimentary cover. In: Łaszkiewicz, A. (Ed.), Prace Instytutu Geologicznego, 74, 81–83. [In Polish with English summary]
Duff, McL.D. and Walton, E.K. 1962. Statistical basis for cyclothems: a quantitative study of the sedimentary succession in the East Pennine Coalfield. Sedimentology, 1 (4), 235–255.
Einsele, G. 1992. Sediment of Marine Delta Complexes, Depositional Rhythms and Cyclic Sequences. In: Einsele, G. (Ed.), Sedimentary Basins. Evolution, Facies and Sediment, 147– 160; 271–310. Springer-Verlag; Berlin, Heidelberg.
Elliott, T. 1974. Interdistributary bay sequence and their genesis. Sedimentology, 21 (4), 611–622.
Elliott, T. 1975. The sedimentary history of a delta lobe from a Yoredale (Carboniferous) cyclothem. Proceedings of the Yorkshire Geological Society, 40 (4), 505–536.
Elliott, T. 1976a. Sedimentary sequences from the Upper Limestone Group of Northumberland. Scottish Journal of Geology, 12 (2), 115–124.
Elliott, T. 1976b. Upper Carboniferous sedimentary cycles produced by river-dominated, elongate deltas. Journal of the Geological Society of London, 132, 199–208.
Elliott, T. 1978. Deltas. In: Reading, H.G. (Ed.), Sedimentary envinronments and facies, 97–142. Blackwell Scientific Publications; Oxford.
Fisher, R.V. and Schmincke, H.U. 1984. Pyroclastic rocks, 471 pp. Springer-Verlag; Berlin, Heidelberg, New York, Tokyo.
Flügel, E. 2004. Depositional Models. Facies Zones and Standard Microfacies. In: Flügel, E. (Ed.), Microfacies of Carbonate Rocks Analysis, Interpretation and Application, 657–723. Springer-Verlag; Berlin, Heidelberg.
Francis, P. and Oppenheimer, C. 2004. Volcanoes, 536 pp. Oxford University Press; Oxford.
Galets’kyi, L.S. 2007. An Atlas of the Geology and Mineral Deposits of Ukraine 1:5 000 000. Section IV. Geological slice maps: Pre-Carboniferous. National Academy of Science of Ukraine; Kyiv and Toronto.
Gastaldo, R., Denko, T. and Liu, Y. 1993. Application of sequence and genetic stratigraphic concepts to carboniferous coal-bearing strata: an example from the Black Warrior Basin, USA. Geologische Rundschau, 82 (2), 212–226.
Godyń, K. 2011. Volcaniclasts of Lower Carboniferous rock formations in Western Pomerania. Biuletyn Państwowego Instytutu Geologicznego, 444, 55–64. [In Polish with English summary]
Grocholski, A. and Ryka, W. 1995. Carboniferous magmatism of Poland. In: Zdanowski, A. and Żakowa, H. (Eds), The Carboniferous System in Poland. Prace Państwowego Instytutu Geologicznego, 148, 181–190.
Hajdenrajch, M. 2010. Stratygrafia sekwencji i sedymentacja utworów karbonu rejonu Niedrzwicy (płd.-zach. Lubelszczyzna), 68 pp. Unpublished M.Sc. thesis, University of Warsaw; Warszawa.
Hampson, G., Stollhofen, H. and Flint, S. 1999. A sequence stratigraphic model for the Lower Coal Measures (Upper Carboniferous) of the Ruhr district, north-west Germany. Sedimentology, 46 (6), 1199–1231.
Hein, F.J. and Walker, R.G. 1977. Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia. Canadian Journal of Earth Sciences, 14 (4), 562–570.
Helland-Hansen, W. 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 94, 95–97.
Helland-Hansen, W. and Gjelberg, J.G. 1994. Conceptual basis and variability in sequence stratigraphy: a different perspective. Sedimentary Geology, 92 (1–2), 31–52.
Jaworowski, K., 1987. Kanon petrograficzny najczęstszych skał osadowych. Przegląd Geologiczny, 35 (4), 205–209.
Kędzior, A., 2016. Reconstruction of an Early Pennsylvanian fluvial system based on geometry of sandstone bodies and coal seams: the Zabrze Beds of the Upper Silesia Coal Basin, Poland. Annales Societatis Geologorum Poloniae, 86 (4), 437–472.
Kmiecik H., 1988. Miospore stratigraphy of the Carboniferous deposits. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 131–141; 235–237. [In Polish with English summary]
Kmiecik, H. and Trzepierczyńska, A. 2007. Wyniki badań palinologicznych utworów karbonu. In: Waksmundzka, M.I. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 119, 119–126. [In Polish with English summary]
Korejwo, K. 1974. The Carboniferous of the Abramów structure. Acta Geologica Polonica, 24 (4), 631–661. [In Polish with English summary]
Korejwo, K. 1986. Biostratigraphy of the Carboniferous deposits of the Świdnik blocks (Lublin Coal Basin). Acta Geologica Polonica, 36 (4), 337–346.
Korejwo, K. and Teller, L. 1968. The Carboniferous of the western part of the Lublin Basin. Acta Geologica Polonica, 18 (1), 154–177. [In Polish with English summary]
Korejwo, K. and Teller, L. 1972. The Carboniferous of the Kock elevation. Acta Geologica Polonica, 22 (4), 655–675. [In Polish with English summary]
Kostyk, I.O., Matrofailo, M.M., Lelyk, B.I. and Korol, M.D. 2016. New data about sequence formation, compound and capacity of the coal-bearing formation of Carbon of the Lviv-Volyn Basin. Naukovyi visnik NGU, 1 (1), 19–31.
Kozłowska, A. and Waksmundzka, M.I. 2020. Diagenesis, sequence stratigraphy and reservoir quality of the Carboniferous deposits of the southeastern Lublin Basin (SE Poland). Geological Quarterly, 64 (2), 422–459.
Krassowska, A. (Ed.) 1989. Profile głębokich otworów wiertniczych Państwowego Instytutu Geologicznego, 66, 1–250.
Krzywiec, P. 2007. Tectonics of the Lublin area (SE Poland) – new views based on results of seismic data interpretation. Biuletyn Państwowego Instytutu Geologicznego, 422, 1–18.
Krzywiec, P., Mazur, S., Gągała, Ł., Kufrasa, M., Lewandowski, M., Malinowski, M. and Buffenmyer, V. 2017. Late Carboniferous thin-skinned compressional deformation above the SW Edge of the East European craton as revealed by seismic reflection and potential field data – Correlation with the Variscides and the Appalachians. In: Law, R.D., Thigpen, J.R., Merschat, A.J. and Stowell, H.H. (Eds), Linkages and Feedbacks in Orogenic Systems. Geological Society of America Memoir, 213, 353–372.
Krzywiec, P. and Narkiewicz M., 2003. O stylu strukturalnym kompleksu dewońskokarbońskiego Lubelszczyzny w oparciu o wyniki interpretacji danych sejsmicznych. Przegląd Geologiczny, 51 (9), 795–797.
Kufrasa, M., Stypa, A., Krzywiec, P. and Słonka, Ł., 2019. Late Carboniferous thin-skinned deformation in the Lublin Basin, SE Poland: results of combined seismic data interpretation, structural restoration and subsidence analysis. Annales Societatis Geologorum Poloniae, 89 (2), 175–194.
Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M. J., Sabine, P.A., Schmid, R., Sørensen, H., Streckeisen, A., Wooley, A.R. and Zanettin, B. 1989. A classification of ignous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommision on the Systematic of Ignous Rocks. Blackwell Scientific Publications, Oxford.
Łydka, K. 1996. Diageneza wulkanoklastyków. Przegląd Geologiczny, 44 (6), 619–620.
Martinsen, O.J. 1994. Evolution of an incised-valley fill, the Pine Ridge Sandstone of Southeastern Wyoming, U.S.A.: systematic sedimentary response to relative sea-level change, In: Dalrymple, R.W., Boyd, R. and Zaitlin, B.A. (Eds), Incised-valley Systems: Origin and Sedimentary Sequences. Society of Economic Paleontologists and Mineralogists Special Publication, 51, 109–128.
Matyja, H. 2008. Pomeranian basin (NW Poland) and its sedimentary evolution during Mississippian times. Geological Journal, 43 (2-3), 123–150.
Mazur, S., Aleksandrowski, P., Kryza, R. and Oberc-Dziedzic T. 2006. The Variscan orogen in Poland. Geological Quarterly, 50 (1), 89–119.
Mazur, S., Aleksandrowski, P., Turniak, K., Krzemiński, L., Mastalerz, K., Górecka-Nowak, A., Kurowski, L., Żelaźniewicz, A. and Fanning, M.C. 2010. Uplift and late orogenic deformation of the Central European Variscan belt as revealed by sediment provenance and structural record in the Carboniferous foreland basin of western Poland. International Journal of Earth Sciences, 99 (1), 47–64.
Miall, A.D. 1977. A Review of the braided-river depositional environment. Earth Science Reviews, 13 (1), 1–62.
Miall, A.D. 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. In: Miall, A.D. (Ed.), Fluvial sedimentology. Canadian Society of Petroleum Geologists Memoir, 5, 597–604.
Miall, A.D. 1986. Deltas. In: Walker, R.G. (Ed.), Facies Models 2nd Edition, Geoscience Canada Reprint Series 1, 105–118.
Miall, A.D. 1996. The Geology of Fluvial Deposits Sedimentary Facies, Basin Analysis, and Petroleum Geology, 26–30; 40–41. Springer; Berlin, Heidelberg.
Michum, Jr R.M. 1977. Seismic Stratigraphy and Global Changes of Sea Level, Part 11: Glossary of Terms used in Seismic Stratigraphy: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation. In: Payton, E. (Ed) Seismic Stratigraphy – Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 26, 205–212.
Miłaczewski, L. 2010. Subcrop map of the sub-Carboniferous unconformity. In: Modliński Z. (Ed.), Paleogeological Atlas of the sub-Permian Paleozoic of the East-European Craton in Poland and neighbouring areas. PIG-PIB; Warszawa. [In Polish with English summary]
Miłaczewski, L. and Niemczycka, T. 1967. Geological structure of the Niedrzwica region. Kwartalnik Geologiczny, 11 (3), 557–571. [In Polish with English summary]
Migier, T. 1988. Macrofloral stratigraphy of the Carboniferous deposits. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 120–131; 234–235. [In Polish with English summary]
Musiał, Ł. and Tabor, M. 1979. Stratygrafia karbonu Lubelskiego Zagłębia Węglowego na podstawie makrofauny. In: Migier, T. (Ed.), Stratygrafia Węglonośnej Formacji Karbońskiej w Polsce, II Sympozjum Sosnowiec, 4–5 maja 1977, 35–43. Wydawnictwa Geologiczne; Warszawa.
Musiał, Ł. and Tabor, M. 1988. Macrofaunal stratigraphy of Carboniferous. In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 88–122; 232–233. [In Polish with English summary]
Musiał, Ł. and Tabor, M. 1989. Stratygrafia karbonu na podstawie makrofauny. In: Krassowska, A. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 66, 105–108.
Muszyński, A., Biernacka, J., Lorenc, S., Protas, A., Urbanek, Z. and Wojewoda, J. 1996. Petrology and a depositional environment of Lower Carboniferous rocks near Dygowo and Kłanino (the Koszalin-Chojnice zone). Geologos, 1, 93–126. [In Polish with English summary]
Narkiewicz, M. 2007. Development and inversion of Devonian and Carboniferous basins in the eastern part of the Variscan foreland (Poland). Geological Quarterly, 51 (3), 231–256.
Narkiewicz, M. 2020. The Variscan foreland in Poland revisited: new data and new concepts. Geological Quarterly, 64 (2), 377–401.
Narkiewicz, M., Miłaczewski, L., Krzywiec, P. and Szewczyk, J. 1998. Outline of the Devonian depositional architecture in the Radom-Lublin area. In: Narkiewicz, M. (Ed.), Sedimentary basin analysis of the Polish Lowlands. Prace Państwowego Instytutu Geologicznego, 165, 57–72.
Nemec, W. and Postma, G. 1993. Quaternary alluvial fans in south-western Crete: sedimentation processes and geomorphic evolution. In: Marzo, M. and Puigdefabregas, C. (Eds), Alluvial Sedimentation. International Association of Sedimentologists, Special Publication, 17, 235–276.
Nemec, W. and Steel, R.J. 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In: Koster, E.H. and Steel, R.J. (Eds), Sedimentology of Gravels and Conglomerates. Canadian Society of Petroleum Geologists Memoir, 10, 1–31.
Niemczycka, T. (Ed.) 1978. Profile Głębokich Otworów Wiertniczych Instytutu Geologicznego, 45, 1–292.
Nosova, A.A., Veretennikov, N.V. and Levskii, L.K. 2005. Nature of the mantle source and specific features of crustal contamination of Neoproterozoic flood basalts of the Volhynia Province (Nd-Sr Isotopic and ICP-MS Geochemical Data). Doklady Earth Sciences, 401A, 429–433. Translated from Doklady Earth Sciences, 401, 521–525.
Pańczyk, M. and Nawrocki, J. 2015. Tournaisian 40Ar/39Ar age from alkaline basalts from the Lublin Basin (SE Poland). Geological Quarterly, 59 (3), 473–478.
Pettijohn, F.J., Potter, P.E. and Siever, R. 1972. Sand and Sandstone, 583 pp. New York, Springer.
Popek, T., 1986. Przejawy wulkanizmu w górnym wizenie na obszarze lubelskim. Przegląd Geologiczny, 4, 212–215.
Porzycki, J. 1979. Litostratygrafia osadów karbonu Lubelskiego Zagłębia Węglowego. In: Migier, T. (Ed.), Stratygrafia węglonośnej formacji karbońskiej w Polsce. II Sympozjum, Sosnowiec, 19–27. Wydawnictwa Geologiczne; Warszawa.
Porzycki, J. 1988. History of geological survey and discovery of the Lublin Coal Basin. Lithologic and sedimentologic characteristics of Carboniferous deposits, In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 9–18; 40–76; 226–227; 229–231. [In Polish with English summary]
Porzycki, J. and Zdanowski, A. 1995. Southeastern Poland (Lublin Carboniferous Basin), In: Zdanowski, A. and Żakowa, H. (Eds), The Carboniferous System in Poland. Prace Państwowego Instytutu Geologicznego, 168, 102–109.
Postma, G. 1990. An analysis of the variation in delta architecture. Terra Nova, 2 (2), 124–130.
Posamentier, H.W. and Allen, G.P. 1999. Siliciclastic Sequence Stratigraphy: Concepts and Applications. Society of Economic Paleontologists and Mineralogists Concepts in Sedimentology and Paleontology, 7, 1–210.
Posamentier, H.W., Jervey, M.T. and Vail, P.R. 1988. Eustatic controls on clastic deposition. I – conceptual framework. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A. and Van Wagoner, J.C. (Eds), Sea-Level Changes: An Integrated Approach. Society of Economic Paleontologists and Mineralogists Special Publication, 42, 110–124.
Porębski, S.J. and Steel R.J. 2003. Shelf-margin deltas: their stratigraphic significance and relation to deepwater sands. Earth-Science Reviews, 62, 283–326.
Pożaryski, W. and Dembowski, Z. 1983. Geological Map of Poland and Neighbouring Countries without Cenozoic, Mesozoic and Permian Deposits. Warszawa, Poland, Geological Instytute, scale 1:1,000,000.
Pulham, A.J. 1989. Controls on internal structure and architecture of sandstone bodies within Upper Carboniferous fluvial- dominated deltas, County Clare, western Ireland. In: Whateley, M.K.G. and Pickering, K.T. (Eds), Deltas: Sites and Traps for Fossil Fuels. Geological Society Special Publication, 41, 179–203. Ramsbottom, W.H.C. 1977. Major cycles of transgression and regression (mesothems) in the Namurian. Proceedings of the Yorkshire Geological Society, 41 (3), 261–291.
Ramsbottom, W.H.C. 1978. Namurian mesothems in South Wales and northern France. Journal of the Geological Society, 135 (3), 307–312.
Reading, H.G. 1978. Facies. In: Reading, H.G. (Ed.), Sedimentary Environments and Facies, 4–14. Blackwell Science; Oxford.
Rottella, M. and Simandl, G.J. 2004. Marilla perlite – volcanic glass occurrence, British Columbia, Canada. In: Simandl, G.J., McMillan, W.J. and Robinson, N. (Eds), British Columbia Ministry of Energy Mines and Petroleum Resources, Paper 2004-2, 265–272. Geological Survey Branch; Victoria.
Rust, B.R. 1978. A classification of alluvial channel systems. In: Miall, A.D. (Ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists Memoir, 5, 187–198.
Ryka, W. and Maliszewska, A. (Eds) 1991. Słownik petrograficzny. II wyd., 415 pp. Wydawnictwa Geologiczne; Warszawa.
Scruton, P.C. 1960. Delta building and the deltaic sequence. In: Shepard, F.P., Phleger, F.B. and Angel, T.H. (Eds), Recent sediments, northwest Gulf of Mexico, 82–102. American Association of Petroleum Geologists Special Publication; Tulsa.
Segerstrom, K. 1950. Erosion studies of Paricutin, State of Michoacan, Mexico. U. S. Geological Survey Bulletin, 965-A, 1–164.
Shulga, V.F., Zdanovski, A., Zayceva, L.B., Yvanova, A.V., Yvanyna, A.V., Korol, N.D., Kotasova, A., Kotas, A., Kostyk, I.O., Lelyk, B.I., Migier, T., Manycev, B.Y., Matrofailo, M.M., Ptak, B., Savcuk, V.S., Sedayeva, G.M. and Stepanenko, J.G. 2007. Correlation of the Carboniferous coal-bearing formations of the Lviv-Volyn and Lublin Basins, 428 pp. National Academy of Sciences of Ukraine Institute of Geological Sciences Polish State Geological Institute Upper Silesian Branch; Kiev. [In Russian with English and Polish summaries]
Shumlyanskyy, L.V. 2014. Geochemistry of the Osnisk-Mikashevichy Volcanoplutonic Complex of the Ukrainian Shield. Geochemistry International, 52 (11), 912–924.
Siemaszko, E. 1978. Permian effusive rocks from SW part of the Fore-Sudetic Monocline. Kwartalnik Geologiczny, 22 (3), 571–590. [In Polish with English summary]
Skompski S. 1988. Limestone microfacies and facies position of Upper Visean sediments in north-eastern part of the Lublin Coal Basin. Przegląd Geologiczny, 36 (1), 25–30. [In Polish with English summary]
Skompski, S. 1995. Succession of limestone microfacies as a key to the origin of the Yoredale-type cyclicity (Viséan/ Namurian, Lublin Basin, Poland). XIII International Congress Carboniferous–Permian, Kraków, Abstracts, 133.
Skompski, S. 1996. Stratigraphic position and facies significance of the limestone bands in the subsurface Carboniferous succession of the Lublin Upland. Acta Geologica Polonica, 46 (3), 171–268.
Skompski, S. 1998. Regional and global chronostratigraphic correlation levels in the late Visean to Westphalian succession of the Lublin Basin (SE Poland). Geological Quarterly, 42, 121–130.
Skompski, S. 2011. Wykształcenie facjalne wapieni dolnokarbońskich w rejonie otworu Parczew IG 10. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 111–116. [In Polish with English summary]
Skompski, S. and Soboń-Podgórska, J. 1980. Foraminifers and conodonts in the Viséan deposits of the Lublin Upland. Acta Geologica Polonica, 30, 87–96.
Smith, D.G. 1983. Anastomosed fluvial deposits: modern examples from Western Canada. In: Collinson, J. and Lewin, J. (Eds), Modern and Ancient Fluvial Systems. Special Publication of the International Association of Sedimentologists, 6, 155–168.
Soboń-Podgórska, J. 1988. Microfaunal stratigraphy of the Carboniferous deposits (foraminifers). In: Dembowski, Z. and Porzycki, J. (Eds), Carboniferous of the Lublin Coal Basin. Prace Instytutu Geologicznego, 122, 112–120; 233– 234. [In Polish with English summary]
Soboń-Podgórska, J. and Tomaś, A. 1995. Foraminifera. In: Zdanowski, A. and Żakowa, H. (Eds), The Carboniferous System in Poland. Prace Państwowego Instytutu Geologicznego, 148, 44–47.
Svendsen, J., Stollhofen, H., Krapf, C.B.E. and Stanistreet, I.G. 2003. Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sedimentary Geology, 160 (1-3), 7–31.
Szulczewski, M., Bełka, Z. and Skompski, S. 1996. The drowning of carbonate platform: an example from the Devonian– Carboniferous of the southwestern Holy Cross Mountains, Poland. Sedimentary Geology, 106 (1-2), 21–49.
Środoń, J., Paszkowski, M., Drygant, D., Anczkiewicz, A. and Banaś, M. 2013. Thermal history of Lower Paleozoic rocks on the Peri-Tornquist margin of the East European Craton (Podolia, Ukraine) inferred from combined XRD, K-Ar, and AFT data. Clays and Clay Minerals, 61 (2), 107–132.
Tomaszczyk, M. and Jarosiński, M. 2017. The Kock Fault Zone as an indicator of tectonic stress regime changes at the margin of the East European Craton (Poland). Geological Quarterly, 61, 908–925.
Tunbridge, I.P. 1981. Sandy high-energy flood sedimentation – some criteria for recognition, with an example from the Devonian of SW England. Sedimentary Geology, 28 (2), 79–95.
Turner, B.R. and Whateley, M.K.G. 1983. Structural and sedimentological controls of coal deposition in the Nongoma graben, northern Zululand, South Africa. In: Collinson, J.D. and Lewin, J. (Eds), Modern and ancient fluvial systems. Special Publication of the International Association of Sedimentologists, 6, 457–471. Vail, P.R., Todd, R.G. 1981. Northern North Sea Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy. In: Illing, L.V. and Hobson, G.D. (Eds), Petroleum Geology of the Continental Shelf of North West Europe, 216–235. Heyden and Son Ltd.; London.
VanWagoner, J.C. 1985. Reservoir facies distribution as controlled by sea-level change. Society of Economic Paleontologists and Mineralogists Mid-Year Meeting Abstracts, Golden, Colorado, August 11–14, 91–92. Society of Economic Paleontologists and Mineralogists; Tulsa.
Van Wagoner, J.C., Posamentier, H.W., Mitchum, R.M. Jr, Vail, P.R., Sarg, J.F., Loutit, T.S. and Hardenbol, J. 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In: Wilgus, K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A. and Van Wagoner, J.C. (Eds), Sea-Level Changes – An Integrated Approach. Society of Economic Paleontologists and Mineralogists Special Publication, 42, 39–45.
Waksmundzka, M.I. 1998. Depositional architecture of the Carboniferous Lublin Basin. In: Narkiewicz, M. (Ed.), Sedimentary basin analysis of the Polish Lowlands. Prace Państwowego Instytutu Geologicznego, 165, 89–100. [In Polish with English summary]
Waksmundzka, M.I. 2007. Karbon. Litologia, stratygrafia i sedymentologia. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 118, 124–130. [In Polish with English summary]
Waksmundzka, M.I. 2008. Correlation and origin of the Carboniferous sandstones in the light of sequence stratigraphy and their hydrocarbon potential in the NW and Central parts of the Lublin Basin. Biuletyn Państwowego Instytutu Geologicznego, 429, 215–224. [In Polish with English summary]
Waksmundzka, M.I. 2010a. Sequence stratigraphy of Carboniferous paralic deposits in the Lublin Basin (SE Poland). Acta Geologica Polonica, 60 (4), 557–597.
Waksmundzka, M.I. 2010b. Lithofacies-paleothickness and worm’s eye maps of Carboniferous. Plates 21–24, 33–35. In: Modliński, Z. (Ed.), Paleogeological Atlas of the sub- Permian Paleozoic of the East-European Craton in Poland and neighbouring areas. PIG-PIB Warszawa. [In Polish with English summary] Waksmundzka, M.I. 2011. Karbon. Litologia, sedymentologia i stratygrafia. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 101–108. [In Polish with English summary]
Waksmundzka, M.I. 2012. Braided-river and hyperconcentrated- flow deposits from the Carboniferous of the Lublin Basin (SE Poland) – a sedimentological study of core data. Geologos, 18 (3), 135–161.
Waksmundzka, M.I. 2013. Carboniferous coarsening-upward and non-gradational cyclothems in the Lublin Basin (SE Poland): palaeoclimatic implications. In: Gąsiewicz, A. and Słowakiewicz, M. (Eds), Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact. Geological Society, London, Special Publications, 376, 141–175.
Waksmundzka, M.I. and Buła, Z. 2020. Geological Map of Poland without Cenozoic, Mesozoic and Permian deposits 1:2,5000,000. In: Nawrocki, J. and Becker, A. (Eds), Geological Atlas of Poland, 28–29. PIG-PIB; Warszawa.
Walker, R.G. 1992. Facies, facies models, and modern stratigraphic concepts. In: Walker, R.G. and James, N.P. (Eds), Facies Models: Response to Sea Level Change, 1–14. Geological Association of Canada; St. John’s.
Walker, G.P.L. 1973. Lengths of lava flows. Philosophical Transactions of the Royal Society London, 274 (1238), 107–118.
Winchester, J.A. and Floyd, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343.
Wiszniewska, J. and Tołkanowicz, E. 2015. Raw rock resources of the Volhynia Province during the period of Second Republic of Poland and their utilization. Przegląd Geologiczny, 63 (9), 525–530. [In Polish with English summary]
Woszczyńska, S. 2011. The Carboniferous micropalaeontology based on Foraminifera and Ostracoda. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 109–110. [In Polish with English summary]
Wright, L.D. 1977. Sediment transport and deposition at river mouths: a synthesis. Geological Society of America Bulletin, 88 (6), 857–868.
Wright, LD. and Coleman, J.M. 1974. Mississippi river mouth processes: effluent dynamics and morphologic development. Journal of Geology, 82 (6), 751–778.
Zieliński, T. 1992a. Marginal moraines of NE Poland – sediments and depositional conditions. Prace Naukowe Uniwersytetu Śląskiego, 1325, 7–95.
Zieliński, T. 1992b. Proglacial valleys facies of the Silesian Upland – genetic factors and their sedimentological effects. Geologia Sudetica, 26 (1–170), 83–118.
Zieliński, T. 1995. Kod litofacjalny i litogenetyczny – konstrukcja i zastosowanie. In: Mycielska-Dowgiałło, E. and Rutkowski, J. (Eds), Badania osadów czwartorzędowych, Wybrane metody i interpretacja wyników, 220–235. Uniwersytet Warszawski; Warszawa.
Zieliński, T. 2015. Sedymentologia. Osady rzek i jezior, 594 pp. Wydawnictwo Naukowe UAM; Poznań. Żelichowski, A.M. 1969. Karbon. In: Depowski, S. (Ed.), Ropoi gazonośność obszaru lubelskiego na tle budowy geologicznej – część I: Budowa geologiczna obszaru lubelskiego. Prace Geostrukturalne Instytutu Geologicznego, 70–85.
Żelichowski, A.M. 1972. Evolution of the geological structure of the area between the Góry Świętokrzyskie and the River Bug. Biuletyn Instytutu Geologicznego, 263, 7–97; 91–97. [In Polish with English summary]
Żelichowski, A.M. 1987. Development of the Carboniferous of the SW margin of the East European Platform in Poland. Przegląd Geologiczny, 35 (5), 230–237. [In Polish with English summary]
Żelichowski, A.M. and Kozłowski, S. (Eds) 1983. Atlas of geological structure and mineral deposits in the Lublin region. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Żelichowski, A.M., Porzycki, J., Cebulak, S., Musiał, Ł., Tabor, M., Migier, T. and Waksmundzka, M.I. 2011. Profil litologiczno- stratygraficzny Karbon. In: Pacześna, J. (Ed.), Profile Głębokich Otworów Wiertniczych Państwowego Instytutu Geologicznego, 130, 20–39. [In Polish with English summary]
Go to article

Authors and Affiliations

Maria I. Waksmundzka
1
Aleksandra Kozłowska
1
Magdalena Pańczyk
1

  1. Polish Geological Institute – National Research Institute, Rakowiecka 4, PL-00-975 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Inconsistency in the approach to the corals included by different authors in the families Tachylasmatidae Grabau, 1928 and Pentaphyllidae Schindewolf, 1942 are discussed in the context of their relationship vs homeomorphy to the Family Plerophyllidae Koker, 1924. Following Schindewolf (1942), the pentaphylloid or cryptophylloid early ontogeny, typical of the former two families, is contrasted with the zaphrentoid ontogeny typical of the latter family. Comprehensive analysis proves the independent taxonomic position of the Suborder Tachylasmatina Fedorowski, 1973. The taxa described herein support this idea. The relationship of the two families: Tachylasmatidae and Pentaphyllidae within the framework of this suborder are suggested. A new genus left in open nomenclature (represented by a single specimen) and three new species, Pentaphyllum sp. nov. 1, ?Pentaphyllum sp. nov. 2 and Gen. et sp. nov. 1 are described from lower Bashkirian deposits.
Go to article

Bibliography

Aizenverg, D.E., Astakhova, T.V., Berchenko, O.I., Brazhnikova, N.E., Vdovenko, M.V., Dunaeva, N.N., Zernetskaya, N.V., Poletaev, V.I. and Sergeeva, M.T. 1983. Upper Serpukhovian Substage in the Donets Basin, 160 pp. Akademia Nauk Ukrainskoi SSR. Institut Geologicheskikh Nauk. Naukova Dumka; Kyiv.
Carruthers, R.G. 1919. A remarkable Carboniferous coral. The Geological Magazine, 56, 436–441.
Dana, J.D. 1846. Genera of fossil corals of the family Cyathophyllidae. American Journal of Sciences and Arts, 1, 178–189.
Easton, W.H. 1944. Corals from the Chouteau and related formations of the Mississippi Valley Region. State Geological Survey. Report of Investigations, 97, 1–93.
Ezaki, Y. 1991. Permian corals from Abadeh and Julfa, Iran, West Tethys. Journal of the Faculty of Sciences, Hokkaido University, 23, 53–146.
Fan, Y.N., Yu, X.G., He, Y.X., Pan, Y.T., Li, X., Wang, F.Y., Tang, D.J., Chen, S.J., Zhao, P.R. and Liu, J.J. 2003. The late Palaeozoic rugose corals of Xizang (Tibet) and adjacent regions and their palaeobiogeography, 679 pp. National Science Foundation of China. Hunan Science and Technology Press; Hunan. Fedorowski, J. 1973. Rugose corals Polycoelaceae and Tachylasmatina subord. n. from Dalnia in the Holy Cross Mts. Acta Geologica Polonica, 23, 89–135.
Fedorowski, J. 1981. Carboniferous corals: distribution and sequence. Acta Palaeontologica Polonica, 26 (2), 87–160.
Fedorowski, J. 1997. Remarks on the paleobiology of Rugosa. Geologos, 2, 5–58.
Fedorowski, J. 2009a. On Pentamplexus Schindewolf, 1940 (Anthozoa, Rugosa) and its possible relatives and analogues. Palaeontology, 52 (2), 297–322.
Fedorowski, J. 2009b. Revision of Pentaphyllum De Koninck (Anthozoa, Rugosa). Palaeontology, 52 (3), 569–591.
Fedorowski, J. 2009c. Early Bashkirian Rugosa (Anthozoa) from the Donets Basin, Ukraine. Part. 1. Introductory considerations and the genus Rotiphyllum Hudson, 1942. Acta Geologica Polonica, 59, 1–37.
Fedorowski, J. 2010. Does similarity in rugosan characters and their functions indicate taxonomic relationship? Palaeoworld, 19 (3–4), 374–381.
Fedorowski, J. 2012. On three rugose coral genera from Serpukhovian strata in the Upper Silesian Coal Basin, Poland. Acta Geologica Polonica, 62, 1–33.
Fedorowski, J. and Bamber, E.W. 2001. Guadalupian (Middle Permian) solitary rugose corals from the Degerbols and Trold Fiord formations, Ellesmere and Melville Islands, Canadian Arctic Archipelago. Acta Geologica Polonica, 51, 31–79.
Flügel, H.W. 1968. Rugose Korallen aus den Oberen Nesen-Formation (Dzhulfa Stufe, Perm) des Zentralen Elburz (Iran). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 130, 275–304.
Flügel, H.W. 1972. Die paläozoischen Korallenfunde Ost-Irans. 2. Rugosa und Tabulata der Jamal-Formation (Darwasian?, Perm), Jahrbuch der Geologischen Bundesanstalt, 115, 49–102.
Flügel, H.W. 1973. Rugose Korallen aus dem oberen Perm Ost-Grönlands. Verhandlungen der geologischen Bundesanstalt, 1, 1–57.
Flügel, H.W. 1991. Rugosa aus dem Karbon der Ozbak-Kuh- Gruppe Ost-Irans. Jahrbuch der geologischen Bundesanstalt, 134 (4), 657–688.
Flügel, H.W. 1997. Korallen aus dem Perm von S-Tunesien, W-Iran und NW-Thailand. Österreichische Akademie der Wissenschaften. Sitzungsberiche Mathematisch-naturwissenschaftliche Klasse. Abteilung 1. Biologische Wissenschaften und Erdwissenschaften, 204, 79–109.
Frech, F. and Arthaber, G.A. 1900. Über das Paläozoikum in Hocharmenien und Persien mit einem Anhang über die Kreide von Sirab in Persien. Beiträge zur Paläontologie und Geologie der Österreich-Ungarns, 12, 161–308.
Fromentel, E. de 1861. Introduction à l’étude des éponges fossils. Mémoires de la Société Linnéense de Normandie, 11, 1–150.
Gerth, H. 1921. Die Anthozoën der Dyas von Timor. Palaeontologie von Timor, 9 (16), 65–147.
Gervais, P. 1840. Astrée, Astraea. In: Dictionnaire des Sciences Naturelles Paris, Supplement, v. 1, 481–487. F.G. Levrault; Paris, Strasbourg.
Grabau, A.W. 1922. Palaeozoic corals of China. Part I. Tetraseptata. Palaeontologia Sinica, Series B, 2 (1), 1–76.
Grabau, A.W. 1928. Palaeozoic corals of China. Part I. Tetraseptata II. Second contribution to our knowledge of the streptelasmoid corals of China and adjacent territories. Palaeontologia Sinica, Series B, 2 (2), 1–175.
Hill, D. 1981. Coelenterata, Supplement 1, Rugosa and Tabulata. In: Teichert, C. (Ed.), Treatise on Invertebrate Paleontology, Part F, F1–F762. Geological Society of America and University of Kansas Press; Boulder, Colorado and Lawrence, Kansas.
Hinde, G.J. 1890. Notes on the Palaeontology of Western Australia 2. Corals and Polyzoa. The Geological Magazine, Series 3, 7, 194–204.
Hudson, R.G.S. 1936a. On the Lower Carboniferous corals: Rhopalolasma gen. nov. and Cryptophyllum Carr. Proceedings of the Yorkshire Geological Society, 23, 1–12.
Hudson, R.G.S. 1936b. The development and septal notation of the Zoantharia Rugosa (Tetracoralla). Proceedings of the Yorkshire Geological Society, 23, 68–78.
Ilina, T.G. 1965. Late Permian and Early Triassic Tetracorals from Transcaucasus. Trudy Paleontologicheskogo Instituta, Akademia Nauk SSSR, 107, 1–104. [In Russian]
Ilina, T.G. 1984. Historical development of corals. Suborder Polycoeliina. Trudy Paleontologicheskogo Instituta, Akademia Nauk SSSR, 198, 1–184. [In Russian]
Koker, E.M.J. 1924. Anthozoen uit het Perm van het Eiland Timor. 1. Zaphrentidae, Plerophyllidae, Cystiphyllidae, Amphiastraeidae. Jaarboek van het Mijnwezen in Nederlandsch Oost-Indië, 51, 1–50.
Koninck, L.G. de. 1872. Nouvelles recherches sur les animaux fossils du terrain carbonifère de la Belgique. Part. 1. Bulletin de l’Academie Royalle des Sciences des Letters et des Beaux-Arts de Belgique, 39, 1–178.
Kullmann, J. 1965. Rugose Korallen der Cephalopoden Facies und ihre Verbreitung im Devon des südöstlichen Kantabrischen Gebirges (Nordspanien). Akademie der Wissenschaften und der Literatur. Abhandlungen der mathematisch- wissenschaftliche Klasse, 2, 1–136.
Lavrusevich, A.I. 1968. Rugosa of the post-Ludlovian deposits of the Zeravshan River Valley (Central Tadzhikistan), 102–130. In: Sokolov, B.S. and Ivanovsky, A.B. (Eds), Biostratigraphy of the boundary deposits of the Silurian and Devonian. Nauka; Moscow. [In Russian]
Milne Edwards, H. and Haime, J. 1850–1852. A monograph of the British fossil corals. Monograph of the Palaeontographical Society, 1850 (1–71), 1851 (72–146), 1852 (147–210). Palaeontographical Society; London.
Počta, F. 1902. Anthozoaires et Alcyonaires. In: Barrande, J., Systême Silurien du centre de la Bohême, part 1, vol. 8, pt. 2, i–viii + 1–347. The author; Prague, Paris.
Poletaev, V.I., Vdovenko, M.V., Shchoglev, O.K., Boyarina, N.I. and Makarov, I.A. 2011. The stratotypes of the regional subdivisions of Carboniferous and Lower Permian Don-Dneper Depression and their biostratigraphy, 236 pp. Logos; Kyiv. [In Ukrainian]
Poty, E. 1981. Recherches sur les tétracoralliaires et les hétérocoralliaires du Viséen de la Belgique. Mededelingen rijks geologische dienst, 35-1, 1–161.
Rodríguez, S. and Said, I. 2009. Descripción de los corales from Peñarroya-Pueblonuevo (Córdoba) y El Casar (Badajos). Colloquios de Paleontologia, 59, 7–27.
Rothpletz, A. 1892. Die Perm-, Trias- und Jura-Formationen auf Timor und Rotti im indischen Archipel. Palaeontographica, 39, 57–106.
Rowett, C.L. 1969. Upper Paleozoic stratigraphy and corals from the east-central Alaska Range, Alaska. Arctic Institute of North America, Technical Paper, 23, 1–120.
Schindewolf, O.H. 1940. “Konwergenzen” bei Korallen und bei Ammoneen. Forschrift für Geologie und Palaeontologie, 12, 389–392.
Schindewolf, O.H. 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Eine Studie über den Bau der “Tetracorallen” ind ihre Beziehungen zu den Madreporarien. Abhandlungen des Reichsamtes für Bodenforschung, 204, 1–324.
Schindewolf, O.H. 1952. Korallen der Oberkarbon (Namur) des oberschlesischen Steinkohlen-Becken. Akademie der Wissenschaften und der Literatur, Abhandlungen der matematisch- naturwissenschaftlichen Klasse, 4, 143–227.
Sokolov, B.S. 1960. Permian corals of the southwestern part of the Omolon Massif (with special attention to plerophyllid Rugosa). Trudy Vsesoyuznogo Neftianogo Nauchno-Geologicheskogo Instituta (VNIGRI), 154, 38–77. [In Russian]
Soshkina, E.D., Dobroljubova, T.A. and Porfiriev, G.S. 1941. Permian Rugosa of the European part of the USSR. In: Likcharev, B.K. (Ed.), Palaeontology of the USSR, vol. 5, pt. 3, no. 1. Paleontologicheskiy Institut; Moskva, Leningrad. [In Russian]
Sowerby, J. 1814. The mineral conchology of Great Britain, vol. 1, pt. 13, 153–168. B. Meredith; London.
Stuckenberg, A.A. 1904. Corals and bryozoans from the lower division of the central Russian Carboniferous limestone. Trudy Geologicheskogo Komiteta, 14, I–IV + 1–109. [In Russian with German summary]
Vassilyuk, N.P. 1960. Lower Carboniferous corals from the Donets Basin. Akademia Nauk Ukrainskoi SSR. Trudy Instituta Geologicheskikh Nauk. Seria Stratigrafia i Paleontologia, 13, 1–179. [In Russian]
Verrill, A.E. 1865. Classification of polyps (Extract condensed from a synopsis of the polypi of the North Pacific Exploring Expedition, under captains Ringgold and Rogers, U.S.N.). Proceedings of the Essex Institute, 4, 145–149.
Wang, X.D., Sugiyama, T. and Zhang, F. 2004. Individual variation in a new solitary rugose coral Commutia exsoleta from the Lower Carboniferous of the Baoshan Block, Southwest China. Journal of Paleontology, 78, 77–83.
Weyer, D. 1972. Zur Morphologie der Rugosa (Pterocorallia). Geologie, 21, 710–737.
Weyer, D. 1973. Einige rugose Korallen aus der Erblochsgrauwacke (Unterdevon des Unterharzes). Zeitschrift für Geologische Wissenschaften, 1, 45–65.
Weyer, D. 1975. Korallen aus dem Obertournai der Insel Hiddensee. Zeitschrift für geologische Wissenschafen, 3, 927–949.
Weyer, D. 1977. Review of the rugose coral faunas of the Lower Namurian Ostrava Formation (Upper Silesian Coal Basin). In: Holub, V.M and Wagner, R.H. (Eds), Symposium on Carboniferous Stratigraphy, 459–468. Praha.
Weyer, D. 1994. Korallen im Untertournai-Profil von Drewer (Rheinische Schiefergebirge). Geologie und Paläontologie in Westfalen, 29, 177–221.
Weyer, D. and Ilina, T.G. 1979. Die Permischen Rugosa-Genera Pleramplexus und Pentamplexus. Zeitschrift für Geologische Wissenschaften, 11, 1315–1341.
Go to article

Authors and Affiliations

Jerzy Fedorowski
1

  1. Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, PL 61-680 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Starting from a subjective viewpoint on the decreasing interest in invertebrate fossil taxonomy, this essay discusses its importance in palaeobiological studies exemplified with cases from the palaeobiogeography and palaeoecology of rugose corals, and aims at provoking a discussion on the topic. The possible causes of this negative declining trend include inherent problems of palaeontological taxonomy, and changing systems in science and higher education.
Go to article

Bibliography


Arrigoni, R., Berumen, M.L., Chen, C.A., Terraneo, T.I., Baird, A.H., Payri, C. and Benzoni, F. 2016. Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Molecular Phylogenetics and Evolution, 105, 146–159.
Baird, A.H., Hoogenboom, M.O. and Huang, D. 2017. Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae). ZooKeys, 662, 49–66.
Bamber, E.W., Rodríguez, S., Richards, B.C. and Mamet, B. 2017. Uppermost Viséan and Serpukhovian (Mississippian) rugose corals and biostratigraphy. Canadian Cordillera. Palaeontographica Canadiana, 36, 1–169.
Berkowski, B. and Zapalski, M.K. 2018. Large dwellers of the Silurian Halysites biostrome: rhizosessile life strategies of cystiphyllid rugose corals from the Llandovery of Gotland. Lethaia, 51, 581–595.
Billings, E. 1858. Report for the year 1857. Report of Progress, 147–192. Geological Survey of Canada; Montreal.
Cowman, P.F., Quattrini, A.M., Bridge, T.C.L., Watkins-Colwell, G.J., Fadli, N., Grinblat, M., Roberts, T.E., McFadden, C.S., Miller, D.J. and Baird, A.H. 2020. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Molecular Phylogenetics and Evolution, 153, 106944.
Dana, J.D. 1846–1849. Zoophytes. United States Exploring Expedition during the years 1838–1842, 7, 740 pp. Lea and Blanchard; Philadelphia.
Fedorowski, J. 1980. Some aspects of coloniality in corals. Acta Palaeontologica Polonica, 25, 429–437.
Fedorowski, J. 1986. The rugose coral faunas of the Carboniferous/ Permian boundary interval. Acta Palaeontologica Polonica, 31, 394–402.
Fedorowski, J. 1997. Diachronism in the development and extinction of Permian Rugosa. Geologos, 2, 59–164.
Fedorowski, J. 2019. Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 7. The Family Neokoninckophyllidae Fomichev, 1953, with a preliminary revision of Moscovian taxa. Acta Geologica Polonica, 69, 59–81.
Fedorowski, J. and Bamber, E.W. 2007. Remarks on lithostrotionid phylogeny in western North America and western Europe. In: Hubman, B. and Piller, W.E. (Eds), Fossil corals and sponges. Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera, Graz, 2003. Österreichische Akademie der Wissenschaften. Schriftenreihe der Erdwissenschaftlichen Kommissionen, 17, 251–273.
Fedorowski, J., Bamber, E.W. and Richards, B.C. 2019. Bashkirian rugose corals from the Carboniferous Mattson Formation in the Liard Basin, northwest Canada – stratigraphic and paleobiogeographic implications. Acta Palaeontologica Polonica, 64, 851–870.
Fedorowski, J., Bamber, E.W. and Stevens, C.H. 2007. Lower Permian colonial rugose corals, Western and Northwestern Pangaea: Taxonomy and distribution, 231 pp. National Research Council of Canada Research Press; Ottawa.
Garcia-Bellido, D.C. and Rodríguez, S. 2005. Palaeobiogeographical relationships of poriferan and coral assemblages during the late Carboniferous and the closure of the western Palaeotethys Sea-Panthalassan Ocean connection. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 321– 331.
Gómez-Herguedas, A. and Rodríguez, S. 2009. Paleoenvironmental analysis based on rugose corals and microfacies: a case study at La Cornuda section (Early Serpukhovian, Guadiato Area, SW Spain). Lethaia, 42, 39–54.
Groot, G. de 1963. Carboniferous corals of northern Palencia (Spain). Leidse Geologische Mededelingen, 29, 1–124.
Hill, D. 1981. Coelenterata, Supplement 1, Rugosa and Tabulata. In: Teichert, C. (Ed.), Treatise on Invertebrate Paleontology, Part F, 762 pp. Geological Society of America and University of Kansas Press; Lawrence.
Humboldt, A. v. and Bonpland, A. 1805–1829. Voyage aux régions équinoxiales du Nouveau Continent, fait de 1799 à 1804. Maze; Paris.
Kelly, W.A. 1942. Lithostrotionidae in the Rocky Mountains. Journal of Paleontology, 16, 351–361.
Kitahara, M.V., Capel, K.C.C. and Migotto, A.E. 2020. Coenocyathus sebroecki sp. nov.: a new azooxanthellate coral (Scleractinia, Caryophylliidae) from southeastern Brazil. Marine Biodiversity, 50 (4), 1–9.
Kitahara, M.V., Fukami, H., Benzoni, F. and Huang, D. 2016. The new systematics of Scleractinia: integrating molecular and morphological evidence. In: Goffredo, S. and Dubinsky, Z. (Eds), The Cnidaria, past, present and future: The world of Medusa and her sisters, 41–59. Springer; Cham.
Lamarck, J.-B. M. de. 1816. Histoire naturelle des animaux sans vertèbres. Tome second, 568 pp. Verdière; Paris.
Linnæus, C. 1766–1767. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1, Regnum Animale, 1 and 2, pp. 1–532 [1766], pp. 533–1327 [1767]. Laurentii Salvii; Holmiae.
Lonsdale, W. 1845. Description of some characteristic Palaeozoic corals from Russia, Vol. 1. In: Murchison, R.I., Verneuil, E. de and Keyserling, A. v. (Eds), The Geology of Russia in Europe and the Ural Mountains, 591–634. Murray; London.
McCoy, F. 1849. On some new genera and species of Carboniferous corals and Foraminifera. Annals and Magazine of Natural History, Series 2, 3, 1–20.
Milne Edwards, H. and Haime, J. 1848. Mémoire 2. Monographie des turbinolides. Annales des Sciences Naturelles, Zoologie, Series 3, 9, 211–344.
Milne Edwards, H. and Haime, J. 1851. A monograph of British fossil corals, 322 pp. Palaeontographical Society of London; London.
Minato, M. and Kato, M. 1965a. Waagenophyllidae. Journal of the Faculty of Sciences, Hokkaido University. Series 4. Geology and Mineralogy, 12, 1–241.
Minato, M. and Kato, M. 1965b. Durhaminidae. Journal of the Faculty of Sciences, Hokkaido University. Series 4. Geology and Mineralogy, 13, 13–86.
Oliver, W.A. Jr. 1976. Presidential address. Biogeography of Devonian rugose corals. Journal of Paleontology, 50, 365–373.
Oliver, W.A. Jr. and Pedder, A.E.H. 1979. Biogeography of Late Silurian and Devonian rugose corals in North America. In: Gray, J. and Boucot, A.J. (Eds), Historical biogeography, plate tectonics and changing environment, 131–145. Oregon State University Press; Cornvallis.
Orbigny, A. d’ 1852. Cours élémentaire de paleontology et géologie stratigraphique. Vol. 2, 1146 pp. Victor Masson; Paris.
Paz-García, D.A., Hellberg, M.E., García-de-León, F.J. and Balart, E.F. 2015. Switch between morphospecies of Pocillopora corals. The American Naturalist, 186 (3), 434–440.
Rodríguez, S. 1984. Corales rugosos del este des Asturias. Unpublished Ph.D. thesis, 528 pp. Departamento de Paleontologia, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid.
Rodríguez, S. and Kullmann, J. 1999. Rugose corals from the upper member of the Picos de Europa Formation (Moscovian, Cantabrian Mountains, NW Spain). Palaeontographica, Abteilung A, 252, 23–92.
Said, I., Rodríguez, S., Somerville, I.D. and Cózar, P. 2011. Environmental study of coral assemblages from the Upper Viséan Tizra Formation (Adarough Area, Morocco): implication for Western Palaeotethys biogeography. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260, 101–118.
Saville Kent, W. 1871. On some new and little-known species of madrepores, or stony corals, in the British Museum collection. Proceedings of the Scientific Meetings of the Zoological Society of London, 1871, 275–286.
Scotese, C.R. 2001. Atlas of Earth History. Vol. 1. Paleogeography, 52 pp. PALEOMAP Project; Arlington.
Sorauf, J.E. and Kissling, D.L. 2012. Rugosans immured in Silurian Paleofavosites; Brassfield Formation (Llandovery) of Ohio. Geologica Belgica, 5, 220–225.
Torsvik, T.H. and Cocks, L.R.M. 2017. Earth History and Palaeogeography, 317 pp. Cambridge University Press; Cambridge.
Vinn, O. and Mõtus, M.A. 2014. Endobiotic rugosan symbionts in stromatoporoids from Sheinwoodian (Silurian) of Baltica. Plos One, 9, 1–6.
Wang, H.C. 1950. A revision of the Zoantharia Rugosa in the light of their minute skeletal structures. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 611, 175–264.
Wedekind, R. 1927. Die Zoantharia Rugosa von Gotland (bes. Nordgotland), Nebst Bemerkungen zur Biostratigraphie des Gotlandium. Sveriges Geologiska Undersökning, 19, 1–94.
Wu, W.S. and Zhou, K.J. 1982. Upper Carboniferous corals from Kalping and Aksu, Xinjiang. Academia Sinica. Nanjing Institute of Geology and Palaeontology, Bulletin, 1982, 213– 239. [In Chinese with English summary]
Ziegler, P.A. 1988. Laurussia – the old red continent. In: Mc- Millan, N.J., Embry, A.F. and Glass, D.J. (Eds), Devonian of the World. 1. Regional synthesis. Proceedings of the Second International Symposium on the Devonian System, 5–48. Canadian Society of Petroleum Geologists; Calgary.
Go to article

Authors and Affiliations

Jerzy Fedorowski
1

  1. Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Campanian–Paleocene Jaworzynka Formation, a part of the Magura Nappe succession in the Polish Outer Carpathians, is described in terms of its detailed litho- and biostratigraphy. The formation stretches along the marginal part of the Siary Unit, from the Jaworzynka stratotype area in the Silesian Beskid Mts up to the Mszana Dolna area in the Beskid Wyspowy Mts. Its equivalent in the Moravskoslezské Beskydy Mts of the Czech Republic is the Soláň Formation. In the stratotype area, the formation displays complex structure. We distinguish four lithological units, i.e., Biotite Sandstone and Shale (I), Shale (II), Mutne Sandstone Member (III) and Thin-bedded Turbidite (IV) and provide the first detailed biostratigraphy of particular units. The first unit forms the most prominent part of the formation. It was deposited in the Middle Campanian–earliest Maastrichtian within the upper part of Caudammina gigantea Zone up to the lower part of the Rzehakina inclusa Zone. The second unit occurs only locally and its age is limited to the Maastrichtian, to the Rzehakina inclusa Zone. The third unit is composed of thick-bedded sandstones that in some parts may form more than the half of the total thickness of the formation. It is Late Maastrichtian–Danian in age and is placed in the upper part of the Rzehakina inclusa Zone and the lower part of the Rzehakina fissistomata Zone. It is usually covered by a thin package of thin-bedded turbiditic sandstone and shales of Danian–Thanetian age with foraminifera of the Rzehakina fissistomata Zone.
Go to article

Bibliography

Alexandrowicz, S.W., Birkenmajer, K., Cieśliński, S., Dadlez, R., Kutek, J., Nowak, W. Orłowski, S., Szulczewski, M. and Teller, L. 1975. The principles of Polish classification, terminology and stratigraphic nomenclature. Instrukcje i metody badań, 33, 1–63. [In Polish with English summary]
Arreguín-Rodrîguez, G.J., Alegret, L. and Ortiz, S. 2013. Glomospira acme during the paleocene-eocene thermal maximum: Response to CaCO3 Dissolution or to Ecological Forces? Journal of Foraminiferal Research, 43, 40–54.
Bąk, K. 2004. Deep-water agglutinated foraminiferal changes across the Cretaceous/Tertiary and Paleocene/Eocene transitions in the deep flysch environment; eastern part of Outer Carpathians (Bieszczady Mts, Poland). In: Bubík, M. and Kaminski, M.A. (Eds), Proceedings of the Six International Workshop on Agglutinated Foraminifera, Prague, Czech Republic, September 1–7, 2001. Grzybowski Foundation Special Publication, 8, 1–56.
Beckmann, J.-P., Bolli, H.M., Kleboth, P. and Proto-Decima, F. 1982. Micropaleontology and biostratigraphy of the Campanian to Paleocene of the Monte Giglio, Bergamo Province, Italy. Memiore di Scienze Geologiche, 35, 91–172.
Bieda, F., Geroch, S., Koszarski, L., Książkiewicz, M. and Żytko, K. 1963. Stratigraphie des Karpates externes polonaises. Biuletyn Instytutu Geologicznego, 182, 5–174. [In Polish with French summary]
Birkenmajer, K. and Oszczypko, N. 1989. Cretaceous and Palaeogene lithostratigraphic units of the Magura Nappe, Kynica Subunit, Carpathians. Annales Societatis Geologorum Poloniae, 59, 154–181.
Bogacz, K., Dziewański, J., Jednorowska, A. and Węcławik, S. 1979. Paleogene deposits of the Magura nappe near Owczary (Polish Flysch Carpathians). Annales Societatis Geologorum Poloniae, 59, 43–65. [In Polish with English summary]
Bubík, M. 1995. Cretaceous to Paleogene agglutinated foraminifera of the Bile Karpaty unit (West Carpathians, Czech Republic). In: Kaminski, M.A., Geroch, S. and Gasiński, M.A. (Eds), Proceedings of the Fourth International Workshop on Agglutianted Foraminifera, Krakow Poland, September 12–19, 1993. Grzybowski Foundation Special Publication, 3, 71–116.
Bubík, M., Bąk, M. and Švábenická, L. 1999. Biostratigraphy of the Maastrichtian to Paleocene distal flysch sediments of the Raca Unit in the Uzgrun section (Magura group of nappes, Czech Republic). Geologica Carpathica, 50, 33–48.
Burtan, J. 1964a. Detailed Geological Map of Poland in Scale 1:50,000, Mszana Dolna Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. 1964b. Detailed Geological Map of Poland in Scale 1:50,000, Wisła Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. 1973a. Detailed Geological Map of Poland in Scale 1:50,000, Wisła Sheet. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. 1973b. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Wisła Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Burtan, J. 1978. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Mszana Dolna Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Burtan, J., Nescieruk, P. and Wójcik, A. 2017. Detailed Geological Map of Poland in Scale 1: 50,000, Wisła Sheet. Państwowy Instytut Geologiczny-Państwowy Instytut Badawczy; Warszawa.
Burtan, J. and Skoczylas-Ciszewska, K. 1964a. Detailed Geological Map of Poland in Scale 1:50,000, Limanowa Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. and Skoczylas-Ciszewska, K. 1964b. Detailed Geological Map of Poland in Scale 1:50,000, Męcina Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J., Sokołowski, S., Sikora, W. and Żytko, K. 1956. Detailed Geological Map of Poland in Scale 1:50,000, Milówka Sheet. Wydawnictwa Geologiczne; Warszawa.
Burtan, J., Sokołowski, S., Sikora, W. and Żytko, K. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Jeleśnia Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Burtan, J. and Szymakowska, F. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Osielec Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Chodyń, R. 2002. The geological structure of the Siary Zone in the Mutne area based on the lithostratigraphic profile of the Magura Nappe between Zwardoń and Sucha Beskidzka (Flysch Carpathians, southern Poland). Przegląd Geologiczny, 50, 139–147. [In Polish with English summary]
Cieszkowski, M. 1992. Michalczowa Zone a new unit of the Fore-Magura Zone, West Carpathians, South Poland. Kwartalnik AGH Geologia, 18, 1–125. [In Polish with English summary]
Cieszkowski, M., Golonka, J., Waśkowska-Oliwa, A. and Chodyń, R. 2007. Type locality of the Mutne Sandstone Member of the Jaworzynka Formation, Western Outer Carpathians, Poland. Annales Societatis Geologorum Poloniae, 77, 269–290.
Cieszkowski, M., Golonka, J., Waśkowska-Oliwa, A. and Chrustek, M. 2006. Geological structure of the Sucha Beskidzka region – Świnna Poręba (Polish Flysch Carpathians). Kwartalnik AGH Geologia, 32, 155–201. [In Polish with English summary]
Cieszkowski, M. and Waśkowska-Oliwa, A. 2001. Skawce Sandstone Member a new lithostratigraphic unit of the Łabowa Shale Formation (Paleocene–Eocene: Magura Nappe, Siary Subunit) Polish Outer Carpathians. Bulletin of the Polish Academy of Sciences. Earth Sciences, 49, 137–149.
Cieszkowski, M., Waśkowska, A. and Kaminski, M.A. 2011. Deep-water agglutinated foraminifera in Paleogene hemipelagic sediments of the Magura Basin in the Sucha Beskidzka area – variegated shales of the Łabowa Shale Formation. In: Bąk, M., Kaminski, M.A. and Waśkowska, A. (Eds), Integrating Microfossil Records from the Oceans and Epicontinental Seas. Kraków, Grzybowski Foundation, Special Publication 17, 53–63.
Cieszkowski, M., Waśkowska-Oliwa, A. and Machaniec, E. 2000. Lithofacies and micropaleontological data of the Upper Cretaceous deposits of the Subsilesian Unit in the Sułkowice tectonic window (Outer Carpathians, Poland). Slovak Geological Magazine, 6, 205–207.
Geroch, S. 1960. Microfaunal assemblages from the Cretaceous and Paleogene Silesian unit in the Beskid Śląski Mountains. Biuletyn Instytutu Geologicznego, 153, 1–138. [In Polish with English summary]
Geroch, S., Jednorowska, A., Książkiewicz, M. and Liszkowa, J. 1967. Stratigraphy based upon microfauna in the Western Polish Carpathians. Biuletyn Instytutu Geologicznego, 211, 185–282.
Geroch, S. and Nowak, W. 1984. Proposal of zonation for the Late Tithonian–Late Eocene, based upon arenaceous Foraminifera from the Outer Carpathians, Poland. In: Oertli, H.J. (Ed.), BENTHOS ‘83: 2nd International Symposium on Benthic Foraminifera (Pau, April 11–15, 1983), 225–239. ESO REP and TOTAL CFP; Pau and Bordeoux, Elf-Aquitane.
Giusberti, L., Boscolo Galazzo, F. and Thomas, E. 2016. Variability in climate and productivity during the Paleocene–Eocene Thermal Maximum in the western Tethys (Forada section). Climate of the Past, 12, 213–240.
Golonka, J. and Krobicki, M. 2004. Jurassic paleogeography of the Pieniny and Outer Carpathian basins. Rivista Italiana di Paleontologica Stratigrafica, 110, 5–14.
Golonka, J., Pietsch, K., Marzec, P., Kasperska, M., Dec, J. and Cichostępski, K. 2019a. Deep structure of the Pieniny Klippen Belt in Poland. Swiss Journal of Geosciences, 112, 475–506.
Golonka, J., Ślączka, A., Waśkowska, A. and Krobicki, M. 2013. Geology of the western part of the Polish Outer Carpathians. In: Krobicki, M. and Feldman-Olszewska, A. (Eds), Deep-Sea Flysh Sedimentation – Sedimentological Aspects of Carpathian Basins, 11–62. Państwowy Instytut Geologiczny; Warszawa.
Golonka, J. and Waśkowska, A. 2012. The Beloveža Formation of the Rača Unit in the Beskid Niski Mts (Magura Nappe, Polish Flysch Carpathians) and adjacent parts of Slovakia and their equivalents in the western part of the Magura Nappe; Remarks on the Beloveža Formation – Hieroglyphic Beds. Geological Quarterly, 56, 821–832.
Golonka, J., Waśkowska, A. and Ślączka, A. 2019b. The Western Outer Carpathians: Origin and evolution. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 170, 229–254.
Golonka, J. and Wójcik, A. 1978a. Detailed Geological Map of Poland in Scale 1: 50,000, Jeleśnia Sheet. Wydawnictwa Geologiczne; Warszawa.
Golonka, J. and Wójcik, A. 1978b. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Jeleśnia Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Hanzlíková, E. 1983. Paleogene stratigraphy and foraminifera of the Outer Flysch Belt. Miscellanea Micropaleontologica; Knihovnicka Zemniho Plynu a Nafty, 4, 43–71. [In Czech with English summary].
Jednorowska, A. 1968. Foraminiferal assamblages in the outer zone of the Magura Unit (Carpathians) and their stratigraphic meaning. Prace Geologiczne Polskiej Akademii Nauk, 50, 1–89. [In Polish with English summary]
Jednorowska, A. 1975. Small Foraminifera assemblages in the Paleocene of the Polish Western Carpathians. Studia Geologica Polonica, 47, 1–103. [In Polish with English summary]
Jurkiewicz, H. 1967. Foraminifers in the Sub-Menilitic Palaeogene of the Polish Middle Carpathians. Biuletyn Instytutu Geologicznego, 210, 5–128. [In Polish with English summary]
Kaminski, M.A. and Gradstein, F. 2005. Atlas of Paleogene Cosmopolitan Deep-Water Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 10, 1–546.
Kennet, J.P. and Scott, L.D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extincions at the end of the Palaeocene. Nature, 354, 56–58.
Kopciowski, R., Zimnal, Z., Chrząstowski J., Jankowski, L., and Szymakowska, F. 2014. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Gorlice Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish]
Koszarski, L., Sikora, W. and Wdowiarz, S. 1974. The Flysch Carpathians. Polish Carpathians. In: Mahel, M. (Ed.), Tectonic of the Carpathian-Balkan Regions, 180–197. Geologia Ust. D. Stura; Bratislava.
Książkiewicz, M. 1974a. Detailed Geological Map of Poland in Scale 1: 50,000, Sucha Beskidzka Sheet. Wydawnictwa Geologiczne; Warszawa.
Książkiewicz, M. 1974b. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Sucha Beskidzka Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Mahel, M. 1968. Regional Geology of Czechoslovakie: Part II. The West Carpathians, 723 pp. Geological Survey of Czechoslovakia; Praha.
Malata, E. 1981. The stratigraphy of the Magura nappe in the western part of the Beskid Wysoki Mts, Poland, based on microfauna. Biuletyn Instytutu Geologicznego, 331, 103– 113. [In Polish with English summary]
Malata, E. 2002. Albian–Early Miocene foraminiferal assemblages of the Magura Nappe (Polish Outer Carpathians). Geologica Carpathica, Special issue, 53, 77–79.
Malata, E., Malata, T. and Oszczypko, N. 1996. Litho- and biostratigraphy of the Magura Nappe in the eastern part of the Beskid Wyspowy Range (Polish Western Carpathians). Annales Societatis Geologorum Poloniae, 66, 269–284.
Matĕjka, A. and Roth, Z. 1949. Předbĕžné poznámky ku geologii Maravsko-selzských Beskyd. Sborník Státního geologického ústavu Československé republiky, 16, 293–328.
Matĕjka, A. and Roth, Z. 1956. Geologie magurského flyše v severním povodí Váhu mezi Bytčou a Trenčínem. Rozpravy Ústředního ústavu geologického, 22, 1–22.
Mello, J. (Ed.), Potfaj, M., Teťák, F., Havrila, M., Rakús, M., Buček, S., Filo, I., Nagy, A., Salaj, J., Maglay, J., Pristaš, J., Fordinál, K. 2005. Geological Map of the Middle Váh Valley (Stredné Považie) 1: 50,000. State Geological Institute of Dionýz Štúr; Bratislava.
Morgiel, J.J. and Olszewska, B. 1981. Biostratigraphy of the Polish External Carpathians based on agglutinated foraminifera. Micropaleontology, 27, 1–30.
Morgiel, J. and Szymakowska, F. 1978. Palaeocene and Eocene Stratigraphy of the Skole Unit. Biuletyn Instytutu Geologicznego, 310, 39–91.
Nowak, W. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Lachowice Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Olszewska, B. 1980. Stratigraphy of the middle part of the Dukla Unit in the Polish Carpathians based on foraminifera (Upper Cretaceous–Paleogene). Biuletyn Instytutu Geologicznego, 326, 59–97. [In Polish with English summary]
Olszewska, B. 1997. Foraminiferal biostratigraphy of the Polish Outer Carpathians: a record of basin geohistory. Annales Societatis Geologorum Poloniae, 67, 325–337.
Oszczypko, N. 1991. Stratigraphy of the Palaeogene deposits of the Bystrica subunit (Magura Nappe, Polish Outer Carpathians). Bulletin of Polish Academy of Sciences, Earth Sciences, 39, 415–431.
Oszczypko, N. 2006. Late Jurassic–Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geological Quarterly, 50, 169–194.
Oszczypko, N., Malata, E., Bąk, K., Kędzierski, M. and Oszczypko- Clowes, M. 2005. Lithostratigraphy, biostratigraphy and palaeoenvironment of the Upper Albian–Lower/ Middle Eocene flysch deposits in the Beskid Wyspowy and Gorce Ranges; Polish Outer Carpathians, Magura Nappe; Bystrica and Rača subunits. Annales Societatis Geologorum Poloniae, 75, 27–69.
Oszczypko, N. and Oszczypko-Clowes, M. 2009. Stages in the Magura Basin: a case study of the Polish sector (Western Carpathians). Geodinamica Acta, 22, 83–100.
Pesl, V. 1968. Lithofacies of Paleogene in the Magura Unit of the Outer Carpathian Flysch on the Territory of Czechoslovakia and Poland. Sbornik Geologickych Vied, Západne Karpaty, 9, 71–118. [In Czech with English summary]
Picha, F.J., Stráník, Z. and Krejčí, O. 2006. Geology and Hydrocarbon Resources of the Outer West Carpathians and their foreland, Czech Republic. In: Golonka, J. and Picha, F.J. (Eds), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources. American Association of Petroleum Geologists, Memoir, 84, 49–175.
Pivko, D. 2002. Geology of Pilsko Mountain and surroundings (Flysch belt on Northern Orava). Acta Geologica Universitatis Comenianae, 57, 67–94.
Pokorny, V. 1960. Microstratigraphie et biofaciès du flysch Carpatique de la Moravie Méridionale (Tchécoslovaquie). Revue de l’Institut Français du Pétrole et Annales des Combustibles Liquides, 15, 1099–1141.
Potfaj, M. (Ed.), Šlepecký, T., Maglay, J., Hanzel, V., Boorová, D., Žecová, K., Kohút, M., Nagy, A., Teťák, F., Vass, B., Sandanus, M., Buček, S., Sýkora, M., Köhler, E., Fejdiová, O., Kandera, K., Samuel, O., Bubík, M., Beleš, F., 2003: Explanations for Geological Map of the Kysuce Region 1: 50,000, 193 pp. State Geological Institute of Dionýz Štúr; Bratislava. [In Slovak with English summary]
Puglisi, D. 2009. Early Cretaceous flysch from Betic-Maghrebian and Europe Alpine Chains (Gibraltar Strait to the Balkans): comparison and palaeotectonic implications. Geologica Balcanica, 38, 15–22.
Racki, G. and Narkiewicz, M. 2006. Polish Principles of Stratigraphy, 77 pp. Państwowy Instytut Geologiczny; Warszawa.
Rajchel, J. 1990. Lithostratigraphy of Upper Paleocene and Eocene deposits of the Skole Unit. Zeszyty naukowe Akademii Górniczo-Hutniczej – Geologia, 48, 1–122. [In Polish with English summary]
Ryłko, W. and Paul, Z. 2014. Detailed Geological Map of Poland in Scale 1:50,000, Lachowice Sheet. Państwowy Instytut Geologiczny-Państwowy Instytut Badawczy; Warszawa.
Ryłko, W., Żytko, K. and Rączkowski, W. 1992. Explanations to the Detailed Geological Map of Poland in Scale 1:50,000, Czadca-Ujsoły Sheet. Wydawnictwa Geologiczne; Warszawa. [In Polish with English summary]
Schmid, S.M., Bernoulli, D., et al. 2008. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.
Sikora, W. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Jeleśnia Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Sikora, W. 1967. Detailed Geological Map of Poland in Scale 1:50,000, Gorlice Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Sikora, W. and Żytko, K. 1960. Geology of the Beskid Wysoki Range south of Żywiec (Western Carpathians). Biuletyn Instytutu Geologicznego, 141, 61–204. [In Polish with English summary]
Ślączka, A., Kruglow, S., Golonka, J., Oszczypko, N. and Papadyuk, I. 2006. The General Geology of the Outer Carpathians, Poland, Slovakia, and Ukraine. In: Golonka, J. and Picha, F.J. (Eds), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources. American Association of Petroleum Geologists, Memoir, 84, 221–258.
Ślączka, A. and Miziołek, M. 1995. Geological setting of Ropianka Beds in Ropianka (Polish Carpathians). Annales Societatis Geologorum Poloniae, 65, 29–41. [In Polish with English summary]
Speijer, R., Scheibner, C., Stassen, P. and Morsi, A.M. 2012. Response of marine ecosystems to deep-time global warming: A synthesis of biotic patterns across the Paleocene– Eocene thermal maximum (PETM). Austrian Journal of Earth Sciences, 105, 6–16.
Švábenická, L., Bubík, M., Krejčí, O. and Stráník, Z. 1997. Stratigraphy of Cretaceous sediments of the Magura group of nappes in Moravia (Czech Republic). Geologica Carpathica, 48, 179–191.
Świdziński, H. 1947. Stratigraphic Dictionary of the Northern Flysch Carpathians. Biuletyn Państwowego Instytutu Geologicznego, 37, 1–124. [In Polish]
Teťák, F. 2008. Paleogene depositional systems and paleogeography of the submarine fans in the western part of the Magura Basin (Javorníky Mountains, Slovakia). Geologica Carpathica, 59, 333–344.
Teťák, F., Cieszkowski, M., Golonka, J., Waśkowska, A. and Szczęch, M. 2017: The Ropianka Formation of the Bystrica Zone (Magura Nappe, Outer Carpathians): proposal for a new reference section in northwestern Orava. Annales Societatis Geologorum Poloniae, 87, 257–272.
Tet’ák, F., Pivko, D. and Kováčik, M. 2019. Depositional systems and paleogeography of Upper Cretaceous–Paleogene deep-sea flysch deposits of the Magura Basin (Western Carpathians). Palaeogeography, Palaeoclimatology, Palaeoecology, 533 (in press).
Waśkowska-Oliwa, A. 2000. Biostratigraphic and paleoecologic interpretation of the agglutinated foraminifera assemblages of the Paleocene–Middle Eocene deposits of the Magura Nappe in the area of Sucha Beskidzka (Outer Carpathians). Przegląd Geologiczny, 48, 331–335.
Waśkowska-Oliwa, A. 2005. Foraminiferal palaeodepth indicators from the lower Paleogene deposits of the Subsilesian Unit (Polish Outer Carpathians). Studia Geologica Polonica, 124, 297–324.
Waśkowska-Oliwa, A. 2008. The Paleocene assemblages of agglutinated foraminifera from deep-water basinal sediments of the Carpathians (Subsilesian Unit, Poland): biostratigraphical remarks. In: Kaminski, M.A. and Coccioni, R. (Eds), Proceedings of the Seventh International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 13, 1–39.
Waśkowska, A. 2011a. Response of Early Eocene deep-water benthic foraminifera to volcanic ash falls in the Polish Outer Carpathians: Palaeocological implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 305, 50–64.
Waśkowska, A. 2011b. The Early Eocene Saccamminoides carpathicus assemblage in the Outer Flysch Carpathians. In: Kaminski, M.A. and Filipescu, S. (Eds), Proceedings of the Eighth International Workshop On Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 16, 331–341.
Waśkowska, A., Cieszkowski, M., Golonka, J. and Kowal-Kasprzyk, J. 2014. Paleocene sedimentary record of ridge geodynamics in Outer Carpathian basins (Subsilesian Unit). Geologica Carpathica, 65, 35–54.
Waśkowska, A., Golonka, J., Machowski, G. and Pstrucha, E. 2018. Potential source rocks in the Ropianka Formation of the Magura Nappe (Outer Carpathians, Poland) – geochemical and foraminiferal case study. Geology, Geophysics and Environment, 44, 49–68.
Waśkowska, A., Joniec, A., Kotlarczyk, J. and Siwek, P. 2019. The Late Createcous Fucoid Marl of the Ropianka Formation in the Kąkolówka structure (Skole Nappe, Outer carpathians, Poland) – lithology and foraminiferal biostratigraphy. Annales Societatis Geologorum Poloniae, 89, 259–284.
Watycha, L. 1964. Detailed Geological Map of Poland in Scale 1:50,000, Mszana Górna Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Węcławik, S. 1969. The geological structure of the Magura Nappe between Uście Gorlickie and Tylicz. Prace Geologiczne Komisji Nauk Geologicznej PAN, Oddział w Krakowie, 59, 1–101. [In Polish with English summary]
Żytko, K. 1962. Stratigraphy of the Magura Unit in the south western part of the Beskid Żywiecki (Flysch Carpathians). Bulletin de l’Academie Polonaise des Sciences, Serie des Sciences Geologiques et Geographiques, 10, 167–177.
Żytko, K. 1963. Detailed Geological Map of Poland in Scale 1:50,000, Milówka Sheet, Provisional Edition. Wydawnictwa Geologiczne; Warszawa.
Żytko, K., Gucik, S., Ryłko, W., Oszczypko, N., Zając, R., Garlicka, I., Nemčok, J., Eliáš, M., Dvořák, J., Stránik, Z., Rakus, O. and Matějovska, O. 1989. Geological Map of the Western Outer Carpathians and their Foreland without Quaternary formations. Państwowy Instytut Geologiczny; Warszawa.
Go to article

Authors and Affiliations

Anna Waśkowska
1
Jan Golonka
1
Krzysztof Starzec
1
Marek Cieszkowski
2

  1. AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Jagiellonian University, Institute of Geography and Geology, Gronostajowa 3a, 30-387 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

In Butkov Quarry, ammonites of the families Holcodiscidae Spath, 1923 and Barremitidae Breskovski, 1977 occur in the pelagic Lower Cretaceous pelagic deposits of the Manín Unit. This contribution discusses the taxonomy of both families and presents their distribution in the layered sequences of the quarry. The genus Spitidiscus Kilian, 1910 classified as a member of the Superfamily Perisphinctoidea Steinmann in Steinmann and Döderlein, 1890 is an important representative of the Holcodiscidae from a stratigraphic point of view. In areas where the zonal index Acanthodiscus radiatus (Bruguière, 1789) does not occur, as in Butkov Quarry, the first representatives of Spitidiscus indicate the base of the Hauterivian. The genus Plesiospitidiscus Breistroffer, 1947 was long regarded as a member of the Superfamily Desmoceratoidea Zittel, 1895. This superfamily was based on its type species, Eodesmoceras celestini (Pictet and Campiche, 1860), which is not Valanginian in age, as now clearly proven. As a consequence, this superfamily is considered invalid. Vermeulen and Lahondère (2011) proposed an alternative by selecting a suitable initial genus, namely Plesiospitidiscus, for the Family Barremitidae, Superfamily Barremitoidea Breskovski, 1977 ( nom. transl. Vermeulen and Lahondère, 2011).
Go to article

Bibliography

Aguirre Urreta, M.B. and Rawson, P.F. 2003. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: the Hauterivian genus Holcoptychites. Cretaceous Research, 24, 589–613.
Arkell, W.J., Kummel, B. and Wright, C.W. 1957. Mesozoic Ammonoidea. In: Moore, R.C. (Ed.), Treatise on Invertebrate Paleontology, part L, Mollusca 4, Cephalopoda, Ammonoidea, 80–437. The Geological Society of America & The University of Kansas Press; New York & Lawrence.
Avram, E. 1995. Representantives of the family Holcodiscidae Spath, 1924 (Ammonitina) in Rumania. Memoire descrittive della Carta Geologica d’Italia, 51, 11–45.
Avram, E. and Grădinaru, E. 1993. A peculiar Upper Valanginian cephalopod fauna from the Carpathian Bend (Codlea Town Area), Romania): biostratigraphic and paleobistratigraphic implications. Jahrbuch der Geologischen Bundesanstalt, 136, 665–700.
Besaire, H. 1936. Recherches géologiques à Madagascar 1. La geologie du Nord-Ouest. Mémoires de l’Academie Malgache, 21, 1–259.
Borza, K., Michalík, J. and Vašíček, Z. 1987. Lithological, biofacial and geochemical characterization of the Lower Cretaceous pelagic carbonate sequence of Mt. Butkov (Manín Unit, Western Carpathians). Geologický Zborník Geologica Carpathica, 38, 323–348.
Breistroffer, M. 1947. Sur les zones d’ammonites de l’Albien de France et d’Angleterre. Travaux du Laboratoire de Géologie de la Faculté des Sciences de l’Université de Grenoble, 26, 17–104.
Breskovski, S. 1977. Sur la classification de la famille Desmoceratidae Zittel, 1895 (Ammonoidea, Crétacé). Comptes Rendu de l’Académie bulgare des Sciences, 30 (6), 891–894.
Bruguière, J.G. 1789. Histoire naturelle des Vers et des Mollusques. Encyclopédie méthodique, part 1, 344 pp. Panckoucke; Paris.
Bulot, L.G., Thieuloy, J.-P., Blanc, E. and Klein, J. 1993. Le cadre stratigraphique du Valanginien supérieur et de l’Hauterivien du Sud-Est de la France: Définition des biochronozones et caracterisation de nouveaux biohorizons. Géologie Alpine, 68 (1992), 13–56.
Busnardo, R., Charollais, J.-J., Weidmann, M. and Clavel, B. 2003. Le Crétacé inférieur de la Veveyse de Châtel (Ultrahelvétique des Préalpes externes; canton de Fribourg, Suisse). Revue de Paléobiologie, 22, 1–174.
Busnardo, R. and Thieuloy, J.-P. 1989. Les ammonites de l’Hauterivien Jurassien: révision des faunes de la region de l’étage Hauterivien. Mémoires de la Société Neuchâteloise des Sciences Naturelles, 11, 101–147.
Cecca, F., Faraoni, P. and Marini, A. 1998. Latest Hauterivian (Early Cretaceous) ammonites from Umbria-Marche Apennines (Central Italy). Palaeontographia Italica, 85, 61–110.
Cooper, M.R. 1981. Revision of the late Valanginian Cephalopoda from the Sundays River Formation of South Africa, with special reference to the genus Olcostephanus. Annals of the South African Museum, 83, 147–366.
Dimitrova, N. 1967. Les fossils de Bulgarie IV. Crétacé in férieur, Cephalpoda (Nautiloidea et Ammonoidea), 124 pp. B’lgarska Akademiya na Naukite; Sofia. [In Bulgarian]
Duraj, M., Filák, P. and Vašíček, Z. 1990. Ammoniten des Desmoceratentyps aus Ablagerungen der Hauterive-Barréme- Grenze von der Lokalität Lietavská Lúčka bei Žilina (Westkarpaten, Krížna-Decke). Knihovnička Zemního plynu a nafty, 9a, 55–68.
Fallot, P. and Termier, H. 1923. Ammonites nouvelles des Iles Baléares. Trabajos del Museo Nacional de Ciencias Naturales, Madrid, Serie Geológica, 32, 1–85.
Fischer, J.-C. and Gauthier, H. (Eds). 2006. Révision critique de la Paléontologie française d’Alcide d’Orbigny, incluant la réedition de l’original, vol. IV – Céphalopodes Crétacés, 35 pp. Backhuys Publishers; Leiden.
Főzy, I. and Janssen, N.N.M. 2006. The stratigraphic position of the ammonites bearing limestone bank of the Márvány-bánya quarry (Zirc, Bakony Mts, Hungary) and these of the Borzavár Limestone Formations. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 2006 (1), 41–64.
Gorn, N.K. 1969. Almella almensis – new ammonite from the Barremian deposits of Crimea. Vestnik Leningradskogo Univerziteta, Geologiya – Geografiya, 12, 84–90. [In Russian]
Haug, E. 1889. Beitrag zur Kenntniss der oberneocomen Ammonitenfauna der Puezalpe bei Corvara (Südtirol). Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 7, 193–321.
Hoedemaeker, Ph.J. 1995. Ammonite desitribution around the Hauterivian–Barremian boundary along Río Argos (Caravaca, SE Spain). Géologie Alpine, Mémoire Hors Série, 20 (for 1994), 219–277.
Honnorat-Bastide, É.F. 1891. Sur une forme nouvelle ou peu connue de Céphalopodes du Crétacé inférieur des Basses Alpes (Ammonites Julianyi, nov. sp.). L’association scientifique de France, Compte Rendu de la 19me Session, Limoges 1890, second partie, Notes et Memoires, 387–389. Imprimerie Chaix; Paris.
Hyatt, A. 1900. Cephalopoda. In: Zittel, K.A. von, Textbook of Paleontology, 1st English edition, translated by C.R. Eastman, 502–592. Macmillan; London & New York.
Immel, H. 1987. Die Kreideammoniten der nördlichen Kalkalpen. Zitteliana, 15, 3–163.
Karakasch, N.I. 1907. Le Crétacé inférieur de la Crimée et sa faune. Trudy imperatorskago S.-Peterburskago obshchestva estestvoispytatelei, Otdelenie Geologii i Mineralogii, 32 (5), 1–482. [In Russian]
Kemper, E., Rawson, P.F. and Thieuloy, J.-P. 1981. Ammonites of Tethyan ancestry in the early Lower Cretaceous of northwest Europe. Palaeontology, 24, 251–311.
Kilian, W. 1910. Erste Abteilung: Unterkreide (Palaeocretacicum). Lieferung 2: Das bathyale Palaeocretacicum im südostlichen Frankreich; Valendis-Stufe; Hauterive-Stufe; Barreme-Stufe; Apt-Stufe. In: Frech, F. (Ed.), Lethaea Geognostica, II. Das Mesozoikum, Band 3 (Kreide), 169–288. Schweitzerbart; Stuttgart.
Kilian, W. and Reboul, P. 1915. Contribution à l’étude des faunes paléocrétacés du Sud-Est de la France. II. Sur quelques ammonites de l’Hauterivien de la Bégude (La Begüe) (Basses Alpes). Matériaux pour l’étude de la faune de l’Hauterivien des environs de Moustiers-Sainte-Marie, La Palud et Châteauneuf-les-Moustiers (Basses Alpes). Mémoires pour servir a l’éxplication de la carte géologique détaillée de la France, 225–296. Imprimerie Nationale; Paris.
Klein, J. 2005. Lower Cretaceous Ammonites I, Perisphinctaceae 1 – Himalayitidae, Olcostephanitidae, Holcodiscidae, Neocomitidae, Oosterellidae. Fossilium Catalogus, I: Animalia, pars 139, pp. 484. Backhuys Publishers; Leiden.
Klein, J. and Vašíček, Z. 2011. Lower Cretaceous Ammonites V, Desmoceratoidea. Fossilium Catalogus, I: Animalia, pars 148, 311 pp. Backhuys Publishers, Margraf Publishers; The Netherlands.
Mandov, G.K. 1976. L’étage Hauterivien dans les Balkanides occidentales (Bulgarie de l’ouest) et sa faune d’ammonites. Annuaire de l’Université de Sofia, Livre 1, Géologie, 67, 11–99.
Michalík, J. and Vašíček, Z. 1987. Geology and stratigraphy of the Lower Cretaceous limestone deposists (Manín Unit, Middle Váh Valley, Western Slovakia). Mineralia Slovaca, 19, 115–134. [In Slovakian]
Michalík, J., Vašíček, Z. (Eds), Boorová, D., Golej, M., Halásová, E., Hort, P., Ledvák, P., Lintnerová, O., Reháková, D., Schlögl, J., Skupien, P., Smrečková, M., Soták, J., Šimo, V., Šimonová, V. and Zahradníková, B.B. 2013. The Butkov Hill – a stone archive of Slovakian mountains and the Mesozoic sea life history, 164 pp. Veda; Bratislava.
Mutterlose, J., Rawson, P., Reboulet, S., Baudin, F., Bulot, L., Emmanuel, L., Gardin, S., Martinez, M. and Renard, M. 2020. The Global Boundary Stratotype and Point (GSSP) for the base of the Hauterivian Stage (Lower Cretaceous), La Charce, southeast France. Episodes, doi: 10.18814/epiiugs/2020/020072.
Nagy, I. 1968. Unterkretazische Cephalopoden aus dem Gerecse-Gebirge II. Annales historico-naturales Musei Nationalis Hungarici, 60, 41–59.
Nikolov, T.G. and Breskovski, S. 1969. Abrytusites – nouveau genre d’ammonites Barrémiennes. Bulletin of the Geological Institute (série Palaeontology), 18, 91–96.
Orbigny, A. d’. 1840–1842. Paléontologie française. Description zoologique et géologique de tous les animaux mollusques et rayonnés fossiles de France. Terrain Crétacés, vol. 1, Céphalopodes, 121–430 (1841). Masson; Paris.
Paquier, V.L. 1900. Recherches géologiques dans le Diois et les Baronnies orientales. Bulletin de la Société de Statistique des Sciences Naturelles et des Arts Industriels de Departement de l’Isere, Grenoble (series 4), 5, 77–476. (Appendice paléontologique I–VII).
Pictet, F.J. and Campiche, G. 1860. Description des fossiles du terrain Crétacé des environs de Sainte Croix, part 1. Matériaux pour la Paleontologie Suisse (series 2), 209– 380. J. Kessmann & H. Georg; Genève.
Rawson, P.F. and Aguirre-Urreta, M.B. 2012. Lower Cretaceous ammonites from the Neuquén Basin, Argentina: The Hauterivian genus Spitidiscus. Cretaceous Research, 33, 97–105.
Reboulet, S. 1996. L’évolution des ammonites du Valanginien– Hauterivien inférieur du bassin vocontien et de la plateforme provençale (Sud-Est de la France): relations avec la stratigraphie séquentielle et implications biostratigraphiques. Documents des Laboratoires de Géologie Lyon, 137 (for 1995), 1–371.
Reboulet, S., Szives, O., Aguirre-Urreta, B., Barragán, R., Company, M., Frau, C., Kakabadze, M.V., Klein, J., Moreno- Bedmar, J.A., Lukender, A., Pictet, A., Ploch, I., Raisossadat, S.N., Vašíček, Z., Baraboshkin, E.J. and Mitta, V.V. 2018. Report on the 6th International Meeting of the IUGS Lower Cretaceous Ammonite Working Group, the Kilian Group (Vienna, Austria, 20th August 2017). Cretaceous Research, 91, 100–110.
Rodighiero, A. 1919. Il sistena Cretaceo del Veneto occidentale compreso fra l’Adige e il Piave, con speciale riguardo al Neocomiano dei Sette Comuni. Palaentographia Italica, Memoire di Paleontologia, 25, 39–125. Salfeld, H. 1921.
Kiel- und Furchenbildung auf der Schalenaussenseite der Ammonoideen in ihrer Bedeutung für die Systematik und Festlegung von Biozonen. Zentralblatt für Mineralogie, Geologie und Paläontologie, 1921, 343–347.
Sarasin, Ch. and Schöndelmayer, Ch. 1901. Étude monographique des ammonites du Crétacique inférieur de Chatel-Saint- Denis. Mémoires de la Société Paléontologique Suisse, 28, 1–91.
Sowerby, J. de C. 1827. The Mineral Conchology of Great Britain, part 98. In: Sowerby, J. and Sowerby, J. de C. (1812– 1846), The Mineral Conchology of Great Britain, vol. 6, 133–140. Meredith; London.
Spath, L.F. 1922. On the Senonian ammonite fauna of Pondoland. Transactions of the Royal Society of South Africa, 10, 113–148. Spath, L.F. 1923. A Monograph of the Ammonoidea of the Gault. Part 1, 72 pp. Palaeontographical Society; London.
Spath, L.F. 1930. On the Cephalopoda of the Uitenhage Beds. Annals of the South African Museum, 28, 131–157. Steinmann, G. 1890. Cephalopoda. In: Steinmann, G. and Döderlein, L. (Eds), Elemente der Paläontolologie, 848 pp. Wilhelm Engelmann; Leipzig.
Thieuloy, J.-P. 1972. Biostratigraphie des lentilles a peregrinelles (brachiopodes) de l’Hauterivien de Rottier (Drome, France). Géobios, 5 (1), 5–53.
Thomel, G. 1980. Ammonites, 227 pp. Serre; Nice. Tzankov, V. and Breskovski, S. 1985. Ammonites des familles Holcodiscidae Spath, 1924 et Astieridiscidae Tzankov et Breskovski, 1982, II. Description paléontologique. Geologica Balcanica, 15 (5), 3–51.
Vašíček, Z. 2002. Lower Cretaceous Ammonoidea in the Podbranč quarry (Pieniny Klippen Belt, Slovakia). Bulletin of the Czech Geological Survey, 77 (3), 187–200.
Vašíček, Z. 2006. A remarkable assemblage of Early Barremian ammonites in the Central Western Carpathians (Butkov Quarry, Slovakia). Acta Geologica Polonica, 56, 421–440.
Vašíček, Z. 2010. Early Cretaceous ammonites from the Butkov Quarry (Manín Unit, Central Western Carpathians, Slovakia). Acta Geologica Polonica, 60 (3), 393–415.
Vašíček, Z. 2020a. Tescheniceras gen. nov. (Ammonoidea) and the definition of the Valanginian/Hauterivian boundary in Butkov Quarry (Central Western Carpathians, Slovakia). Acta Geologica Polonica, 70, 569–584.
Vašíček, Z. 2020b. Early Cretaceous ammonites of the superfamily Bochianitoidea from the Butkov Quarry (Central Western Carpathains, Slovakia). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 298 (1), 78–85.
Vašíček, Z. and Michalík, J. 1986. The Lower Cretaceous ammonites of the Manín Unit (Mt. Butkov, West Carpathians). Geologický Zborník Geologica Carpathica, 37 (4), 449–481.
Vašíček, Z. and Michalík, J. 1999. Early Cretaceous ammonoid paleobiogeography of the West Carpathian part of the Paleoeuropean shelf margin. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 212 (1–3), 241–262.
Vašíček, Z., Michalík, J. and Reháková, D. 1994. Early Cretaceous stratigraphy, palaeogeography and life in the Western Carpathians. Beringeria, 10, 3–169.
Vašíček, Z., Rabrenović, D., Radulović, V.J., Radulović, B.V. and Mojsić, I. 2013. Ammonoids (Desmoceratoidea and Silesitoidea) from the Late Barremian of Boljetin, eastern Serbia. Cretaceous Research, 41, 39–54.
Vermeulen, J. 2005. Sur quatre espèces particulières d’ammonites du Barrémien du sud-est de la France. Annales du Muséum d’Histoire Naturelle de Nice, 20, 1–24.
Vermeulen, J. 2007a. Boundaries, ammonite fauna and main subdivisions of the stratotype of the Barremian. Géologie Alpine, 2005 (Corrected reprint), série spéciale “Colloques et excursions”, 7, 147–173.
Vermeulen, J. 2007b. Nouvelles données sur l’évolution et la classification des Holcodiscidae Spath, 1923 (Ammonitida, Ammonitina, Silesitoidea). Annales du Muséum d’Histoire Naturelle de Nice, 22, 87–100.
Vermeulen, J., Clement, A. and Autran, G. 1999. Un nouveau repère biostratigraphique dans l’Hauterivien supérieur du Sud-Est de la France: l’horizon à Subsaynella begudensis. Riviéra Scientifique, 1999 (1), 71–78.
Vermeulen, J. and Lahondère, J.-C. 2011. Sur quelques espèces d’ammonites du Barremien utra-tellien de la région de Constantine, Algérie. II. Holcodiscidae et Astieridiscidae (Ammonitina). Annales du Muséum d’Histoire Naturelle de Nice, 26, 17–46.
Vermeulen, J., Lazarin, P., Lépinay, P., Leroy, L. and Mascarelli, E. 2014. Ammonites du Barrémien du Sud-Est de la France (Ammonitina, Ancyloceratina, Turrilitina). Strata, série 2, mémoires, 50, 1–95.
Vermeulen, J., Lazarin, P., Lépinay, P., Leroy, L. and Mascarelli, E. 2017. Sur quelques Holcodiscidae (Ammonitina, Barremitoidea) du Barrémien du Sud-Est de la France. Riviéra Scientifique, 101, 65–80.
Vermeulen, J. and Thieuloy, J.-P. 1999. Conceptions nouvelles de l’évolution et de la classification de la famille Holcodiscidae Spath, 1923 (Ammonoidea, Desmocerataceae). Comptes Rendus Académie des Sciences Paris, Sciences de la terre et des planètes, 329, 363–367.
Weber, E. 1942. Beitrag zur Kentniss der Rossfeldschichten und ihrer Fauna. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, Beilage Band, B 86, 247–281.
Winkler, G.G. 1868. Versteinerungen aus dem bayerischen Alpengebiet mit geognostischen Erläuterungen. I. Die Neocomformation der Urschlauerachenthales bei Traunstein mit Rücksicht auf ihre Grenzschichten, 48 pp. Verlag der J. Lindauer’schen Buchhandlung; München.
Wippich, M.G.E. 2001. Die tiefe Unter-Kreide (Berrias bis Unter- Hauterive) im südwestmarokkanischen Becken: Ammonitenfauna, Bio- und Sequenzstratigraphie, 142 pp. Unpublished Thesis, Universität Bochum.
Wright, C.W. 1955. Notes on Cretaceous ammonites – II. The phylogeny of the Desmocerataceae and the Hoplitidae. The Annals and Magazine of Natural History (twelfth series), 92, 561–575.
Wright, C.W., Callomon, J.H. and Howarth, M.K. 1996. Cretaceous Ammonoidea. Treatise on Invertebrate Paleontology, part L, Mollusca 4 Revised, 362 pp. The Geological Society of America & The University of Kansas Boulder; Colorado & Lawrence, Kansas.
Wright, C.W. and Kennedy, W.J. 1984. The Ammonoidea of the Lower Chalk, Part 1. Monograph of the Palaeontographical Society, 137 (1983), 1–126.
Zittel, K.A. von 1895. Grundzüge der Paläontologie, 971 pp. Oldenburg; München, Leipzig.
Go to article

Authors and Affiliations

Zdeněk Vašíček
1
Jaap Klein
2

  1. Institute of Geonics of the Czech Academy of Sciences, Studentská 1768, CZ-708 00 Ostrava-Poruba, Czech Republic
  2. Demmerik 12, NL-3645 EC Vinkeveen, The Netherlands
Download PDF Download RIS Download Bibtex

Abstract

The Lower Devonian (Emsian) and Middle Devonian of Belarus contain assemblages of biostratigraphically useful faunal and floral microremains. Surface deposits are few, with most material being derived from borehole cores. Acanthodian scales are particularly numerous and comparison with scales from other regions of the Old Red Sandstone continent (Laurussia), specifically the Orcadian Basin of Scotland, the Baltic Region, Spitsbergen, and Severnaya Zemlya have demonstrated a lot of synonymy of acanthodian species between these areas. This is especially the case between Belarus, the Orcadian Basin and the Baltic Region, which has allowed us to produce an interregional biostratigraphic scheme, as well as to postulate marine connection routes between these areas. The acanthodian biostratigraphy of Belarus is particularly important as it is associated with spores and marine invertebrates, so giving the potential of more detailed correlations across not only the Old Red Sandstone continent, but elsewhere in the Devonian world. We also demonstrate that differences in preservation (e.g., wear and how articulated a specimen is) is one of the main reasons for synonymy.
Go to article

Authors and Affiliations

Dmitry P. Plax
1
Michael Newman
2
ORCID: ORCID

  1. Belarusian National Technical University (BNTU), Nezavisimosti Avenue 65, 220013 Minsk, Republic of Belarus
  2. Vine Lodge, Vine Road, Johnston, Haverfordwest, SA62 3NZ Pembrokeshire, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

The taxonomy of simply deformed paradoxidids from the Miaolingian (Cambrian) of Słowiec Hill, Holy Cross Mountains, Poland, is revised based on morphometric analysis. The material represents two species: Acadoparadoxides slowiecensis (Czarnocki in Orłowski, 1965) and Hydrocephalus? polonicus (Czarnocki in Orłowski, 1965). A new assemblage zone based on the combined although not precisely known ranges of these two taxa is suggested replacing the previous Paradoxides polonicus Zone of Orłowski (1975, 1988, 1992a). The Acadoparadoxides slowiecensis–Hydrocephalus? polonicus Assemblage Zone corresponds to the middle and upper part of the Wuliuan Stage (lower Miaolingian).
Go to article

Bibliography

Adams, D.C., Collyer, M., Kaliontzopoulou, A. and Baken, E. 2016. Package ‘geomorph’. Software for geometric morphometric analyses for 2D/3D landmark data. Available at: http://cran.r-project.org/packages/geomorph/index.html.
Adams, D.C. and Otárola-Castillo, E. 2013. geomorph: an R Package for the collection and analysis of geometric morphometric shape data. Methods in ecology and evolution, 4, 393–399.
Aleksandrowski, P. and Mazur, S. 2017. On the new tectonic solutions in ‘Geological Atlas of Poland’. Przegląd Geologiczny, 65, 1499–1510. [In Polish with English abstract]
Angelin, N.P. 1854. Palaeontologia Scandinavica. Pars I: Crustacea Formationis Transitionis. Fasc. II, 21–92. T.O. Weigel; Leipzig (“Lipsiae”).
Angielczyk, K.D. and Sheets, H.D. 2007. Investigation of simulated tectonic deformation in fossils using geometric morphometrics. Paleobiology, 33, 125–148.
Asklund, B. and Thorslund, P. 1935. Fjällkedjerandens bergbyggnad i norra Jämtland och Ångermanland. Sveriges Geologiska Undersökning C, 382, 1–110.
Axheimer, N. and Ahlberg, P. 2003. A core drilling through Cambrian strata at Almbacken, Scania, S. Sweden: trilobites and stratigraphical assessment. GFF, 125, 139–156.
Barrande, J. 1846. Notice Préliminaire sur le Systême Silurien et les Trilobites de Bohême, 97 pp. C.L. Hirschfeld; Leipzig (“Leipsic”).
Barrande, J. 1852. Systême Silurien du Centre de la Bohême, 935 pp. Private edition by J. Barrande; Prague, Paris.
Bednarczyk, W., Lendzion, K. and Orłowski, S. 1990. Rodzina Paradoxididae Hawle et Corda, 1847. In: Pajchlowa, M. (Ed.), Budowa geologiczna Polski. Tom III. Atlas skamieniałości przewodnich i charakterystycznych. Część 1a. Paleozoik starszy (z proterozoikiem górnym). Ryfej, Wend, Kambr, 58–61. Wydawnictwa Geologiczne; Warszawa.
Belka, Z., Valverde-Vaquero, P., Dörr, W., Ahrendt, H., Wemmer, K., Franke, W. and Schäfer, J. 2002. Accretion of first Gondwana- derived terranes at the margin of Baltica. In: Winchester, J.A., Pharaoh, T.C. and Verniers, J. (Eds), Palaeozoic Amalgamation of Central Europe. Special Publications of the Geological Society of London, 201, 19–36.
Berg-Madsen, V. 1981. The Middle Cambrian Kalby and Borregård Members of Bornholm, Denmark. Geologiska Föreningens i Stockholm Förhandlingar, 103, 215–231.
Berthelsen, A. 1992. From Precambrian to Variscan Europe. In: Blundell, D., Freeman, R. and Müller, S. (Eds), A Continent Revealed: The European Geotraverse, 153–164. Cambridge University Press; Cambridge.
Boeck, C.P.B. 1827. Notizer til Læren om trilobiterne. Magazin for Naturvidenskaberne, 8 (1), 11–44.
Brøgger, W.C. 1878. Om paradoxidesskiferene ved Krekling. Nyt Magazin for Natursvidenskaberne, 24, 18–88.
Brongniart, A. 1822. Les Trilobites. In: Brongniart, A. and Desmarest A.-G., Histoire naturelle des crustacés fossiles, sous les rapports zoologiques et géologiques, 1–65. F.-G. Levrault; Paris.
Czarnocki, J. 1919. Stratygrafja i tektonika Gór Świętokrzyskich. Prace Towarzystwa Naukowego Warszawskiego, 28, 1–172.
Czarnocki, J. 1927a. Kambr i jego fauna w środkowej części Gór Świętokrzyskich. Sprawozdania Państwowego Instytutu Geologicznego, 4 (1/2), 189–208.
Czarnocki, J. 1927b. Le Cambrien et la faune cambrienne de la partie moyenne du massif de Swiety Krzyz (Ste Croix). Congrès Geológique International, Compte-rendue de la XIVe session, en Espagne, 1926, Madrid, 735–750.
Czarnocki, J. 1933. Odsłonięcia kambru okolic Ociesęk i Orłowin jako zabytek w znaczeniu naukowem. Zabytki Przyrody Nieożywionej, 2, 78–85.
Dean, W.T. and Rushton, A.W.A. 1997. Superfamily Paradoxidoidea Hawle and Corda, 1847. In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised, volume 1: Introduction, Order Agnostida, Order Redlichiida, 470–481. Geological Society of America and University of Kansas Press; Boulder and Lawrence.
Fletcher, T.P. 2007. Correlating the zones of ‘Paradoxides hicksii’ and ‘Paradoxides davidis’ in Cambrian Series 3. Memoirs of the Association of Australasian Palaeontologists, 33, 35–56.
Geyer, G. 1998. Intercontinental, trilobite-based correlation of the Moroccan early Middle Cambrian. Canadian Journal of Earth Sciences, 35, 374–401.
Geyer, G. 2019. A comprehensive Cambrian correlation chart. Episodes, 42 (4), 321–332.
Geyer, G. and Landing, E. 2001. Middle Cambrian of Avalonian Massachusetts: stratigraphy and correlation of the Braintree trilobites. Journal of Paleontology, 75, 116–135.
Geyer, G., Nowicki, J., Żylińska, A. and Landing, E. 2019. Comment on: Álvaro, J.J., Esteve, J. & Zamora, S. 2019. Morphological assessment of the earliest paradoxidid trilobites (Cambrian Series 3) from Morocco and Spain [Geological Magazine]. Geological Magazine, 156, 1691–1707.
Geyer, G. and Vincent, T. 2015. The Paradoxides puzzle resolved: the appearance of the oldest paradoxidines and its bearing on the Cambrian Series 3 lower boundary. Paläontologische Zeitschrift, 89, 335–398.
Green, J. 1834. Descriptions of some new North American trilobites. American Journal of Science, 25, 334–337.
Gürich, G. 1892. Ueber eine cambrische Fauna von Sandomir in Russisch-Polen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 1892 (1), 69–70.
Haber, A. 2011. OSymm. Available at: http://life.bio.sunysb.edu/morph/morphmet/OSymm.R.
Hawle, I. and Corda, A.J.C. 1847. Prodrom einer Monographie der böhmischen Trilobiten, Königliche Böhmische Gesellschaft der Wissenschaften, Abhandlungen, 5, 1–176.
Henningsmoen, G. 1952. Early Middle Cambrian fauna from Rogaland, SW Norway (Paradoxides oelandicus stage = 1c a). Norsk Geologisk Tidsskrift, 30, 13–32.
Hughes, N.C. and Jell, P.A. 1992. A statistical/computer-graphic technique for assessing variation in tectonically deformed fossils and its application to Cambrian trilobites from Kashmir. Lethaia, 25, 317–330.
Jendryka-Fuglewicz, B. 1992. Comparative analysis of brachiopods from the Cambrian deposits of the Holy Cross Mountains and the Precambrian Platform in Poland. Przegląd Geologiczny, 40, 150–155. [In Polish]
Klingenberg, C.P., Barluenga, M. and Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution; International Journal of Organic Evolution, 56, 1909–1920.
Kobayashi, T. 1935. The Cambro-Ordovician formations and faunas of South Chosen. Palaeontology. Part III. Cambrian fauna of South Chosen with a special study of the Cambrian trilobite genera and families. Journal of the Faculty of Science, Imperial University of Tokyo, section 2, 4, 49–344.
Konon, A. 2008. Tectonic subdivision of Poland: Holy Cross Mountains and adjacent areas. Przegląd Geologiczny, 56, 921–926. [In Polish with English abstract]
Kordule, V. 1990. Rejkocephalus, a new paradoxidid genus from the Middle Cambrian of Bohemia (Trilobita). Věstník Ústředního Ústavu Geologického, 65, 55–60.
Kowalczewski, Z., Żylińska, A. and Szczepanik, Z. 2006. Kambr w Górach Świętokrzyskich. In: Skompski, S. and Żylińska, A. (Eds), 77 Zjazd Naukowy Polskiego Towarzystwa Geologicznego, Ameliówka k. Kielc 28–30 czerwca 2006 r., 14–27. Wydawnictwa Geologiczne; Warszawa.
Liñán, E. and Gozalo, R. 1986. Trilobites del Cámbrico inferior y medio de Murero (Cordillera Ibérica). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 2, 1–104.
Linnarsson, J.G.O. 1869. Om Vestergötlands cambriska och siluriska aflagringar. Kungliga Vetenskaps-Akademiens Handlingar, 8 (2), 1–89.
Linnarsson, J.G.O. 1876. On the Brachiopoda of the Paradoxides Beds of Sweden. Bihang till Kungliga Svenska Vetenskaps-Akademiens Handlingar, 3 (12), 1–34.
Masiak, M. and Żylińska, A. 1994. Burgess Shale-type fossils in Cambrian sandstones of the Holy Cross Mountains. Acta Palaeontologica Polonica, 39, 329–340.
Matthew, G.F. 1887. Illustrations of the fauna of the St. John Group. No. IV. On the smaller-eyed trilobites of Division I, with a few remarks on the species of the higher divisions of the group. Canadian Record of Science, 2, 357–363.
Minchin, P.R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 69, 89–107.
Nawrocki, J., Dunlap, J., Pecskay, Z., Krzemiński, L., Żylińska, A., Fanning, M., Kozłowski, W., Salwa, S., Szczepanik, Z. and Trela, W. 2007. Late Neoproterozoic to Early Palaeozoic palaeogeography of the Holy Cross Mountains (Central Europe): an integrated approach. Journal of the Geological Society, London, 164, 405–423.
Nielsen, A.T. and Ahlberg, P. 2019. The Miaolingian, a new name for the ‘Middle’ Cambrian (Cambrian Series 3): identification of lower and upper boundaries in Baltoscandia. GFF, 141, 162–173.
Nielsen, A.T. and Schovsbo, N.H. 2006. Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia. Bulletin of the Geological Society of Denmark, 53, 47–92.
Nowicki, J. 2015. morphoutils – utility functions for geometric morphometrics. Available at: https://github.com/jakubnowicki/morphoutils.
Nowicki, J. 2016. Taxonomic revision of the Cambrian trilobite family Paradoxididae Hawle et Corda, 1847 from the Holy Cross Mountains (Poland) with the application of morphometric analysis, 192 pp. Unpublished Doctoral Thesis, University of Warsaw. [In Polish]
Nowicki, J. and Żylińska, A. 2019. The first occurrence of the earliest species of Acadoparadoxides outside Gondwana (Cambrian; Holy Cross Mountains, Poland). Geological Magazine, 156, 1027–1051.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. and Wagner, H. 2016. vegan: Community Ecology Package. Available at: https://cran.r-project.org/web/packages/vegan/ index.html.
Orłowski, S. 1957. On the presence of Paradoxides ölandicus Beds in the Holy Cross Mountains. Bulletin de l’Académie Polonaise des Sciences, Série des sciences chimiques, géologiques et géographiques, 5, 769–772.
Orłowski, S. 1959a. Paradoxidae from lower Middle Cambrian Strata in the vicinity of Sandomierz (Central Poland). Bulletin de l’Académie Polonaise des Sciences, Série des sciences chimiques, géologiques et géographiques, 7, 441–446.
Orłowski, S. 1959b. Ellipsocephalidae from the Lower Beds of the Middle Cambrian in the Vicinity of Sandomierz (Central Poland). Bulletin de l’Académie Polonaise des Sciences, Série des sciences chimiques, géologiques et géographiques, 7, 515–520.
Orłowski, S. 1964. Middle Cambrian and its fauna in the eastern part of the Holy Cross Mts. Studia Geologica Polonica, 16, 5–94. [In Polish with English abstract]
Orłowski, S. 1965. A revision of the Middle Cambrian fauna from the Słowiec Hill (Holy Cross Mountains). Biuletyn Geologiczny UW, 6, 136–146. [In Polish with extensive English abstract]
Orłowski, S. 1975. Cambrian and Upper Precambrian lithostratigraphic units of the Holy Cross Mts. Acta Geologica Polonica, 25, 431–448. [In Polish with English abstract]
Orłowski, S. 1985. New data on the Middle Cambrian trilobites and stratigraphy in the Holy Cross Mts. Acta Geologica Polonica, 35, 251–263.
Orłowski, S. 1988. Stratigraphy of the Cambrian system in the Holy Cross Mts. Kwartalnik Geologiczny, 32, 525–532.
Orłowski, S. 1989. Trace fossils in the Lower Cambrian sequence in the Świętokrzyskie Mountains, Central Poland. Acta Palaeontologica Polonica, 34, 211–231.
Orłowski, S. 1992a. Cambrian stratigraphy and stage subdivision in the Holy Cross Mountains, Poland. Geological Magazine, 129, 471–474.
Orłowski, S. 1992b. Trilobite trace fossils and their stratigraphical significance in the Cambrian sequence of the Holy Cross Mountains, Poland. Geological Journal, 27, 15–34.
Özdikmen, H. 2009. Nomenclatural changes for twenty trilobites genera. Munis Entomology & Zoology, 4, 155–171. R Core Team, 2016. R: A Language and Environment for Statistical Computing. Available at: http://www.r-project.org.
Richter, R. 1932. Crustacea (Paläontologie). In: Dittler, R., Joos, G., Korschelt, E., Linck, G., Oltmanns, F. and Schaum, K. (Eds), Handwörterbuch der Naturwissenschaften, Zweite Auflage, 840–864. Gustav Fischer; Jena.
Rohlf, F.J. 2016. TPS software series. Available at: http://life.bio.sunysb.edu/morph/.
Rushton, A.W.A. 2006. Revision of the middle Cambrian trilobite Paradoxides jemtlandicus. Geological Magazine, 143, 771–776.
Rushton, A.W.A. and Weidner, T.R. 2007. The Middle Cambrian paradoxidid trilobite Hydrocephalus from Jämtland, central Sweden. Acta Geologica Polonica, 57, 391–401.
Rushton, A.W.A., Weidner, T. and Ebbestad, J.O.R. 2016. Paradoxidid trilobites from a mid-Cambrian (Series 3, stage 5) limestone concretion from Jämtland, central Sweden. Bulletin of Geosciences, 91, 515–552.
Salter, J.W. 1865. A monograph of the British trilobites from the Cambrian, Silurian and Devonian formations. Monographs of the Palaeontolographical Society, 81–128. The Palaeontographical Society; London.
Samson, S., Palmer, A.R., Robison, R.A. and Secor Jr., D.T. 1990. Biogeographical significance of Cambrian trilobites from the Carolina slate belt. Bulletin of the Geological Society of America, 102, 1459–1470.
Schlotheim, E.F. 1823. Nachträge zur Petrefactenkunde, 114 pp. Becker’sche Buchhandlung; Gotha. Sdzuy, K. 1958. Neue Trilobiten aus dem Mittelkambrium von Spanien. Senckenbergiana lethaea, 39, 235–253.
Sjögren, A. 1872. Om några försteningar i Ölands Kambriska lager. Geologiska Föreningens i Stockholm Förhandlingar, 1 (5), 67–80.
Šnajdr, M., 1957. O nových trilobitech z českého kambria. Věstnik Ústředniho Ústavu Geologického, 32, 235–244.
Šnajdr, M. 1958. Trilobiti českého středního kambria. Rozpravy Ústředniho Ústavu Geologického, 24, 1–280.
Šnajdr, M. 1986. Two new paradoxid trilobites from the Jince Formation (Middle Cambrian, Czechoslovakia). Věstnik Ústředniho Ústavu Geologického, 61, 169–174.
Srivastava, D.C. and Shah, J. 2006. Digital method for strain estimation and retrodeformation of bilaterally symmetric fossils. Geology, 34, 593–596.
Strand, T. 1929. The Cambrian beds of the Mjøsen district in Norway. Norsk Geologisk Tidsskrift, 10, 308–366.
Sundberg, F.A., Geyer, G., Kruse, P.D., McCollum, L.B., Pegel’, T.V., Żylińska, A. and Zhuravlev, A.Yu. 2016. International correlation of the Cambrian Series 2–3, Stages 4–5 boundary interval. Australasian Paleontological Memoirs, 49, 83–124.
Szczepanik, Z. and Żylińska, A. 2016. The oldest rocks of the Holy Cross Mountains, Poland – biostratigraphy of the Cambrian Czarna Shale Formation in the vicinity of Kotuszów. Acta Geologica Polonica, 66, 267–281.
Thorslund, P. 1949. Notes on Kootenia sp. n. and associated Paradoxides species from the lower Middle Cambrian of Jemtland, Sweden. Sveriges Geologiska Undersökning, ser. C, 410, 3–8.
Wahlenberg, G. 1818. Petrifacta telluris Svecanae. Acta Societas Regiae Scientiarum, 8, 1–116. [for 1921]
Walch, J.E.I. 1771. Die Naturgeschichte der Versteinerungen zur Erläuterung der Knorrischen Sammlung von Merkwürdigkeiten der Natur, 250 pp. Felßecker; Nürnberg.
Walczak, A. and Belka, Z. 2017. Fingerprinting Gondwana versus Baltica provenance: Nd and Sr isotopes in Lower Paleozoic clastic rocks of the Małopolska and Łysogóry terranes, southern Poland. Gondwana Research, 45, 138–151.
Webster, M. and Hughes, N.C. 1999. Compaction-related deformation in Cambrian olenelloid trilobites and its implications for fossil morphometry. Journal of Paleontology, 73, 355–371.
Westergård, A.H. 1936. Paradoxides oelandicus Beds of Öland. Sveriges Geologiska Undersökning C, 394, 1–66.
Żelaźniewicz A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J. and Żytko, K. 2011. Regionalizacja tektoniczna Polski, 60 pp. Komitet Nauk Geologicznych PAN; Wrocław.
Żelaźniewicz, A., Buła, Z., Fanning, M., Seghedi, A. and Żaba, J. 2009. More evidence on Neoproterozoic terranes in Southern Poland and southeastern Romania. Geological Quarterly, 53, 93–124.
Żylińska, A., Kin, A. and Nowicki, J. 2013. Application of morphometric techniques for taxonomic revision of Berabichia oratrix (Orłowski, 1985) (Trilobita, Cambrian) from the Holy Cross Mountains, Poland. Geodiversitas, 35, 505–528.
Żylińska, A. and Szczepanik, Z. 2009. Trilobite and acritarch assemblages from the Lower–Middle Cambrian boundary interval in the Holy Cross Mountains (Poland). Acta Geologica Polonica, 59, 413–458.
Go to article

Authors and Affiliations

Jakub Nowicki
1
Anna Żylińska
1

  1. Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Many geological problems have not been convincingly explained so far and are debatable, for instance the origin and changes of the Neogene depositional environments in central Poland. Therefore, these changes have been reconstructed in terms of global to local tectonic and climatic fluctuations. The examined Neogene deposits are divided into a sub-lignite unit (Koźmin Formation), a lignite-bearing unit (Grey Clays Member), and a supra-lignite unit (Wielkopolska Member). The two lithostratigraphic members constitute the Poznań Formation. The results of facies analysis show that the Koźmin Formation was deposited by relatively high-gradient and well-drained braided rivers. Most likely, they encompassed widespread alluvial plains. In the case of the Grey Clays Member, the type of river in close proximity to which the mid-Miocene low-lying mires existed and then were transformed into the first Mid-Miocene Lignite Seam (MPLS-1), has not been resolved. The obtained results confirm the formation of the Wielkopolska Member by low-gradient, but mostly well-drained anastomosing or anastomosing-to-meandering rivers. The depositional evolution of the examined successions depended on tectonic and climatic changes that may be closely related to the mid-Miocene great tectonic remodelling of the Alpine-Carpathian orogen. This resulted in palaeogeographic changes in its foreland in the form of limiting the flow of wet air and water masses from the south and vertical tectonic movements.
Go to article

Authors and Affiliations

Marek Widera
1
Tomasz Zieliński
1
Lilianna Chomiak
1
Piotr Maciaszek
2
Robert Wachocki
3
Achim Bechtel
4
Barbara Słodkowska
5
Elżbieta Worobiec
6
Grzegorz Worobiec
6

  1. Adam Mickiewicz University, Institute of Geology, Krygowskiego 12, 61-680 Poznań, Poland
  2. Polish Geological Institute – National Research Institute, Marine Geology Branch, Kościerska 5, 80-328 Gdańsk, Poland
  3. Konin Lignite Mine, 600-lecia 9, 62-540 Kleczew, Poland
  4. Montanuniversitaet Leoben, Austria, Department of Applied Geosciences and Geophysics, Peter-Tunner-Str. 5, A-8700 Leoben, Austria
  5. Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  6. W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland

Authors and Affiliations

Anna M. Komornicka
Maciej Jońca

This page uses 'cookies'. Learn more