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Summary This paper presents information on diet and distribution of larval snailfishes from the
genus Liparis on the Canadian Beaufort Sea Shelf. In this study, 153 larval snailfishes of three species,
Liparis fabricii, L. gibbus and L. tunicatus, were collected during 4 summer cruises (2003—2005,
2007). The majority of the larvae were either in flexion or post-flexion stage, and some were in pre-
flexion stage. Liparis larvae appeared to be generalists in terms of diet and fed on a wide range of
planktonic organisms. Pre-flexion larvae fed on small copepods (mainly adult stages of Triconia
borealis). As larvae grew their diet shifted towards larger copepods (copepodids III/IV of Calanus
hyperboreus, copepodids II—IV of Calanus glacialis and females of Metridia longa) and amphipods
(Themisto libellula). Remarkably, larvaceans Oikopleura spp. and pelagic snails Limacina helicina
made up a substantial part of the larval diet. This paper contributes to the knowledge on arctic
larval fishes and to the ongoing efforts regarding Canadian Beaufort Sea ecosystem modeling.
# 2015 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by
Elsevier Sp. z o.o. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).

Peer review under the responsibility of Institute of Oceanology of the Polish Academy of Sciences.

§ This study was financially supported by the NMCS program with contributions from the Polish Ministry of Science and Higher Education
(grants: SPUB 289/W-NOGAP/2008/0 and SPUB 62/W-NOGAP/2009/0). The Polish—Canadian cooperation was based on an Interchange Canada
Agreement for W. Walkusz. This project in its final phase (preparation of this paper) was partially funded by and is a contribution to the Beaufort
Regional Environmental Assessment Marine Fish Project (AANDC) led by Fisheries and Oceans Canada (lead investigator: J. Reist).
* Corresponding author at: Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada.

Tel.: +1 204 984 7543; fax: +1 204 984 2401.
E-mail addresses: walwo@iopan.gda.pl (W. Walkusz), Joclyn.Paulic@dfo-mpo.gc.ca (J.E. Paulic), Sally.Wong@dfo-mpo.gc.ca (S. Wong),

kwas@iopan.gda.pl (S. Kwasniewski), mhpapst@gmail.com (M.H. Papst), Jim.Reist@dfo-mpo.gc.ca (J.D. Reist).

Available online at www.sciencedirect.com

ScienceDirect

j our na l h omepa g e: www.e l se v ie r.c om/l ocat e/ ocea no

http://dx.doi.org/10.1016/j.oceano.2015.12.001
0078-3234/# 2015 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by Elsevier Sp. z o.o. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.oceano.2015.12.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:walwo@iopan.gda.pl
mailto:Joclyn.Paulic@dfo-mpo.gc.ca
mailto:Sally.Wong@dfo-mpo.gc.ca
mailto:kwas@iopan.gda.pl
mailto:mhpapst@gmail.com
mailto:Jim.Reist@dfo-mpo.gc.ca
http://www.sciencedirect.com/science/journal/00000000
www.elsevier.com/locate/oceano
http://dx.doi.org/10.1016/j.oceano.2015.12.001
http://creativecommons.org/licenses/by-nc-nd/4.0/


118 W. Walkusz et al.
1. Introduction

Of the more than 400 snailfish species known worldwide
(www.fishbase.org), eight Liparis species are listed as pre-
sent in the Arctic (Mecklenburg et al., 2013) but only four
from this genus are regularly found on the shelves and upper
slopes in the Arctic seas: Liparis fabricii (commonly known as
Gelatinous Snailfish), L. gibbus (known as either Variegated
or Dusky Snailfish), L. tunicatus (known as Kelp Snailfish) and
L. bathyarcticus (known as Nebulous Snailfish) (Able, 1990;
Evseenko et al., 2006; Chernova, 2008; Mecklenburg et al.,
2011). These are distributed circumpolarly and all but one (L.
bathyarcticus) were recorded previously in the Beaufort Sea
(Chiperzak et al., 2003; Jarvela and Thorsteinson, 1999;
Paulic and Papst, 2013; Wong et al., 2013). All four Liparis
species were also found in the Chukchi Sea and Bering Strait
(Mecklenburg et al., 2011; Mecklenburg et al., 2007; Norcross
et al., 2010), while the former three species were also
collected in Hudson Bay (Morin and Dodson, 1986; Ponton
et al., 1993). Snailfishes, particularly adults during the
spawning period, are found in the nearshore areas that have
hard substrate and often kelp beds to which the fishes show
an affinity (Byers and Prach, 1988; Dunton et al., 1982).

Little is known about the ecology of snailfishes, their sig-
nificance in food webs and their importance in the Arctic
ecosystems, though studies so far show that they are important
food source for marine birds (Gaston, 1985) and seals (Falk-
Petersen et al., 2004). Adult snailfishes feed mainly on bottom-
associated amphipods, polychaetes and cumaceans (Atkinson
and Percy, 1992; Byers and Prach, 1988), which suggests they
occupy and thus feed in the benthic habitats. Apart from a few
records of larval snailfish occurrence (e.g. Paulic and Papst,
2013; Suzuki et al., 2015; Wong et al., 2013) there is virtually
no published information on their ecology in the Arctic.

When compared to the neighboring locations, e.g. the
Canadian Arctic Archipelago (Stern and Gaden, 2015), the
Canadian Beaufort Sea Shelf (<100 m depth) holds a relatively
rich fish community. In the ice-free season it consists of
approximately 25 species in both bottom and pelagic habitats
(Lowdon et al., 2011; Majewski et al., 2009; Paulic and Papst,
2013; Wong et al., 2013). The spatial distribution of these
fishes varies in relation to the oceanographic conditions that
are mainly shaped by the Mackenzie River plume and sea
currents (Paulic and Papst, 2013; Wong et al., 2013). Both
the larval/juvenile and adult snailfishes rank relatively high in
terms of their abundance (approx. 10% of total fish abundance;
Lowdon et al., 2011; Paulic and Papst, 2013; Wong et al.,
2013). Snailfishes, however, remain less abundant than Arctic
Cod (Boreogadus saida; up to 60% of total fish abundance;
Paulic and Papst, 2013) and Arctic Staghorn Sculpin (Gymno-
canthus tricuspis, up to 13% of total fish abundance: Lowdon
et al., 2011). Considering the role of fish as food for higher
predators (e.g. whales), snailfishes and Arctic Cod are ener-
getically similar prey due to their comparable weight at given
length and high calorific content, which is greater than in
Arctic Staghorn Sculpin, for example (Walkusz et al., 2012).

There is virtually no information existing on the feeding
and growth of snailfishes in the Arctic. Although sometimes
numerous in catches, snailfishes generally are an under-
studied component of the Arctic nearshore marine ecosys-
tems. This motivated our research, results of which are
summarized in this paper, the aim of which is to provide
new information on spatial distribution and diet of the larval
snailfishes in the Canadian Beaufort Sea.

2. Material and methods

Larval fishes were collected during 4 summer expeditions
(August 9—20, 2003; August 6—20, 2004; August 3—26, 2005;
July 24—August 18, 2007) to the Canadian Beaufort Sea (Fig. 1),
aboard the Canadian Coast Guard Ship (CCGS) Nahidik. For the
purpose of this paper all fish larvae collected during the 4 years
were pooled together, however none of the stations was
sampled twice over that time. Larval fishes were collected
with a 500 mm Bongo net (60 cm diameter, 300 cm total length)
towed obliquely for 15—20 min from the near-bottom to the
sub-surface with the speed of 2 knots. All larvae were sorted
from a sample and immediately preserved in a 4% solution of
formaldehyde in seawater. After approximately one month
from collection all fishes were identified to species (using
primarily meristic characteristics from Fahay, 2007), weighed
(0.0001 g accuracy; wet mass) and measured (0.01 mm accu-
racy; standard length) in the lab. Larvae that were found
problematic for routine identification were re-examined in
the Atlantic Reference Centre (Huntsman Marine Science Cen-
tre, St. Andrews, NB, Canada). The developmental stage of
each larva was determined (based on Moser et al., 1984) and its
digestive tract removed. All recognizable items from the
stomach/intestines were identified to the lowest possible
taxonomic level. Developmental stages of larger copepod
species were determined for further biomass calculations.
Lengths of all remaining food items were recorded. Since
the majority of the material found in the guts was damaged
due to swallowing/digestion, the wet weight of the food items
was calculated based on the published information for parti-
cular species and developmental stage when applicable (Hans-
sen, 1997; Hay et al., 1991; Karnovsky et al., 2003; Mumm,
1991). ANOVA and Tukey HSD test were performed for statis-
tical analysis of differences among species for larval stage
sizes, weights and food mass.

Breadth of diet of each developmental stage of the three
species was assessed with a Levin's standardized index (Hurl-
bert, 1978):

Bi ¼ 1
n�1

1P
jpij

2 �1

  !
;

where Bi is the Levin's standardized index for predator i, pij is
the proportion of diet of predator i that is made up of prey j,
and n is the number of prey categories.

This index ranges from 0 to 1 with low values indicating
diets dominated by few prey items and higher values indicat-
ing broader diets.

Diet overlap between the three Liparis species and their
developmental stages was calculated (based on the average
biomass percentage of food items) using Schoener's index (a)
(Schoener, 1970):

a ¼ 1�0:5�
X

jpxi�pyij
� �

;

where a is the Schoener's index, pxi the proportion of food
category i in the diet of species x, and pyi is the proportion of
food category i in the diet of species y.

The Schoener's index ranges from 0 (no dietary overlap) to
1 (complete dietary overlap).

http://www.fishbase.org/


Figure 1 Map of the study area with occurrences of larval Liparis indicated. The general location of the study area (red rectangle) in
the Arctic is presented in the insert (Arctic map source: www.ngdc.noaa.gov). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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3. Results

3.1. Distribution of larvae

Over the 4 years of sampling we visited 60 stations (Fig. 1).
Overall, 1039 larval fishes were captured representing 12
taxa. Liparis larvae comprised 15% of the total with 153 indi-
viduals collected, including 83 individuals of L. tunicatus,
Table 1 Summary of weight and standard length (�SD) of the t
Average count of prey items and average food load mass for each de
in each developmental stage are provided in parentheses.

Stage Spec

L. fa

Pre-flexion Weight [g] 0.01
Standard length [mm] 12.
Av. food load abundance [ind. larvae�1] 

Av. food load mass [mg dw larvae�1] 0.0

Flexion Weight [g] 0.06
Standard length [mm] 16.
Av. food load abundance [ind. larvae�1] 

Av. food load mass [mg dw larvae�1] 0.26

Post-flexion Weight [g] 0.15
Standard length [mm] 22.
Av. food load abundance [ind. larvae�1] 

Av. food load mass [mg dw larvae�1] 1.15

Juvenile Weight [g] 

Standard length [mm] 

Av. food load abundance [ind. larvae�1] 

Av. food load mass [mg dw larvae�1] 
35 individuals of L. fabricii and 35 individuals of L. gibbus
(Table 1). Liparis larvae were caught at 23 stations (Fig. 1;
Table 2). With the exception of one station where L. tunicatus
was captured, all Liparis larvae occurred in areas deeper than
10 m. Most stations where Liparis larvae were captured were
between 20 and 50 m of depth. The three species were caught
concurrently only at three stations. Liparis fabricii were
captured over the greatest depth range (20—100 m) and
hree Liparis larval species in different developmental stages.
velopmental stage are presented. Numbers of larvae collected

ies

bricii L. gibbus L. tunicatus

6 � 0.005 (3) 0.029 (1) 0.024 � 0.006 (2)
7 � 1.3 (3) 10.2 (1) 10.5 � 4.4 (2)
4 � 4 5 1 � 1
2 � 0.03 0.01 <0.001

3 � 0.037 (10) 0.075 � 0.034 (32) 0.130 � 0.072 (30)
9 � 4.1 (10) 16.3 � 3.1 (32) 19.9 � 2.7 (30)
3 � 3 8 � 8 8 � 9
7 � 0.548 0.880 � 1.739 1.723 � 2.805

4 � 0.093 (22) 0.303 � 0.191 (2) 0.266 � 0.141 (48)
6 � 4.9 (22) 22.7 � 2.7 (2) 24.3 � 3.7 (48)
5 � 6 13 � 15 13 � 16
6 � 2.227 3.899 � 4.702 3.069 � 3.521

— — 0.375 � 0.095 (3)
— — 28.4 � 0.9 (3)
— — 21 � 18
— — 6.636 � 6.171

http://www.ngdc.noaa.gov/


Table 2 Occurrences of larval Liparis species in relation to station depth.

Depth zone [m] No. of stations in zone No. of stations with

L. fabricii L. gibbus L. tunicatus

0—10 25 — — 1
10—20 16 2 2 5
20—50 17 8 3 12
50—100 2 2 — —
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widest geographical area, with L. tunicatus being over the
next greatest range (10—50 m) and area. Liparis gibbus were
captured over the narrowest depth range (20—50 m) and
geographical area.

3.2. Developmental characteristics of larvae

We found more larvae in post-flexion stage for L. fabricii and
L. tunicatus than for L. gibbus — virtually all individuals of the
latter species occurred in the flexion stage. Due to the low
number of pre-flexion and juvenile larvae a statistical com-
parison of sizes and weights for these stages could not be
performed. Larvae of L. tunicatus in the flexion stage were
longer and heavier than larvae of the two other species
(ANOVA, Tukey HSD test, p < 0.01). There were no differ-
ences between the length and weight of flexion larvae of L.
fabricii and L. gibbus. There was no difference between L.
fabricii and L. tunicatus post-flexion larvae in regards to
Figure 2 Weight composition of gut contents of the three larval Li
found in trace quantities: diatoms, Podon leuckartii (Cladocera),
Oithona similis (Copepoda), Microcalanus spp. (Copepoda), Jashnov
thricella minor (Copepoda), Harpacticoida (Copepoda), Onisimus g
septemcarinata (Decapoda), Echinodermata larvae, Cirripedia naup
their length (Table 1), however, L. tunicatus larvae were
heavier (ANOVA, Tukey HSD test, p < 0.01). Both the sum of
individual prey items and the food mass in an individual
stomach increased with fish length in all species.

3.3. Diet of larvae

Overall, the diet of larval snailfishes contained 28 taxa/food
categories (Fig. 2). There was no significant interspecific
difference in total weight of gut contents at each develop-
mental stage (ANOVA, Tukey HSD test, p > 0.01). The pre-
flexion stage of all three species relied heavily on small
cyclopoid copepods Triconia borealis and polychaete larvae.
At the flexion stage, all three fish species fed on diverse food
items, including the larvacean Oikopleura spp., the large-
sized copepods Metridia longa and Calanus glacialis and the
pelagic snail Limacina helicina. Once the larvae reached the
post-flexion stage, their diet, apart from Oikopleura spp. and
paris species. The category “Others” includes the following taxa
 Acartia spp. (Copepoda), Eurytemora herdmanii (Copepoda),
ia tolli (Copepoda), Paraeuchaeta glacialis (Copepoda), Scoleci-
lacialis (Amphipoda), Apherusa glacialis (Amphipoda), Sabinea
lii/cypris and insects.



Table 3 Values of the Levin's index obtained from the diets
of the particular developmental stages of the three Liparis
species.

L. fabricii L. gibbus L. tunicatus

Pre-flexion 0.018 0.010 0.000
Flexion 0.160 0.110 0.167
Post-flexion 0.250 0.070 0.147
Juvenile — — 0.076

Table 4 The Schoener overlap index calculated for the diets
of the three Liparis species and their developmental stages.
Note: sample sizes for pre-flexion larvae were too small for
meaningful comparisons.

Pair of species compared

L. fabricii/
L. gibbus

L. fabricii/
L. tunicatus

L. gibbus/
L. tunicatus

Pre-flexion — — —

Flexion 0.51 0.41 0.68
Post-flexion 0.46 0.68 0.52
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L. helicina, contained late copepodid stages of C. glacialis
and Calanus hyperboreus. At post-flexion, larvae of L. fab-
ricii and L. tunicatus fed also on the amphipod Themisto
libellula. The juvenile L. tunicatus diet consisted almost
exclusively of Calanus copepods and T. libellula while L.
helicina and Oikopleura spp. were absent.

The diversity of diet items for all species, calculated here
as a Levin's index, increased as the fish grew (Table 3). Also,
overall L. gibbus had the least diverse diet while L. fabricii
had the greatest diet breadth.

A low number of pre-flexion larvae collected precluded us
from the diet overlap analysis for this stage. There was a
moderate diet overlap amongst flexion and post-flexion
stages of the three Liparis species investigated (Schoener
index between 0.41 and 0.68; Table 4).

4. Discussion

Adult Liparis seem to depend, particularly during spawning,
on the presence of a hard substrate and often kelp beds for
successful reproduction (Byers and Prach, 1988; Dunton
et al., 1982). There are, however, no reported kelp beds
or rocky bottoms in the Mackenzie Shelf area of the Canadian
Beaufort Sea. Therefore, the Liparis larvae found in this
study are most likely expatriates from other areas, advected
to this region. In the neighboring waters kelp beds were
observed to the west in the Alaskan Beaufort Shelf (Dunton
et al., 1982) and to the east in the Amundsen Gulf and
Darnley Bay (Andrew Majewski, Fisheries and Oceans Canada,
pers. comm.), and this is from where the larvae were most
likely carried into the study area by currents (Pickart, 2004;
Shadwick et al., 2011).

The larval distributions presented herein demonstrate co-
occurrence of the three Liparis species in the study area. It
appears that the L. fabricii larvae were more frequently
present in the off-shore stations, while L. tunicatus were
observed in areas that are more heavily influenced by the
Mackenzie plume (Walkusz et al., 2010). Jarvela and Thor-
steinson (1999) observed in large numbers only two larval
snailfish species, L. fabricii and L. gibbus, in coastal waters of
the Alaskan Beaufort Sea. On the other hand, Moulton and
Tarbox (1987) did not find any of the aforementioned species
but only collected adults of L. tunicatus in this area. Rand
and Logerwell (2010) collected adults of only two species (L.
fabricii and L. gibbus) further offshore in the Alaskan Beau-
fort Sea, which agrees with the more offshore presence of the
L. fabricii in this study. This is likely due to the lower
influence of the riverine plume in offshore waters. These
observations suggest either a geographical separation of
these species along an on- to off-shore gradient, differences
in spawning timing that result in the larvae being present
differentially at certain times of the year, or differences in
sampling efficiency by different gear for adults (e.g. purse
seine vs. otter-trawl, in Jarvela and Thorsteinson (1999) and
Moulton and Tarbox (1987), respectively).

An increase in the prey diversity and prey size was
observed for all three Liparis species as the larvae grew,
demonstrated by the shift from the small copepod T. borealis
(max. size of adults 0.7 mm), through younger stages of
larger copepod species (2—3 mm) towards the adults of larger
copepods and amphipods (4—6 mm). This transition has been
already noted for Arctic Cod in the studied area and can be
related to a larger gape size and increasing ability to catch
more mobile prey as the larvae grow (Walkusz et al., 2011).
Changing feeding focus from smaller to larger prey implies
higher amounts of lipids are consumed to sustain rapid
growth of larvae (10-fold weight increase between pre-
and post-flexion). For example, the lipid content per indivi-
dual copepodid increases approximately 50 times between
the early and late life stages in C. glacialis (Falk-Petersen
et al., 2009). Remarkably, the larvae of all three species
fed heavily on larvacean Oikopleura spp. and pelagic snail
L. helicina of which both may be an easy target due to their
relatively slow motion. Oikopleura has been observed to be a
key diet item of other larval fishes (e.g. Pacific herring (Foy
and Norcross, 1999) or plaice (Shelbourne, 1962)). Madin
et al. (1981) reported that tunicates, to which larvaceans
belong, have high protein content (approx. 80% of organic
content). Consuming this food, along with lipid-rich cope-
pods, may help the Liparis larvae obtain the required energy
supply and have a better balanced diet. Similarly, high lipid
content found in L. helicina, particularly in the juvenile
individuals (approx. 30% of dry mass; Gannefors et al.,
2005), can explain notable frequency and biomass contribu-
tion of this food item to the larval snailfishes diet found in our
study.

Diet overlap, particularly amongst the youngest larvae of
L. gibbus and L. tunicatus, could suggest a shared dietary
niche in early life history of these fishes. However, small
sample size limits confidence in any conclusions. Neverthe-
less, Walkusz et al. (2013) showed the opposite habitat
preferences for Polychaeta larvae and the copepod T. bor-
ealis, the potential planktonic food items of the larval fish,
with the latter being affiliated with more saline (near bot-
tom) water masses on the shelf. Thus, one could suggest that
in the studied locations, pre-flexion L. gibbus and L. tunica-
tus are more associated with saline waters found deeper in



122 W. Walkusz et al.
the water column as opposed to pre-flexion L. fabricii, which
dietary preferences suggest feeding in the near-surface,
fresher plume waters.

In summary, the Liparis larvae in the coastal Canadian
Beaufort Sea were found to be generalists in terms of their
feeding approach and relied on a broad spectrum of plank-
tonic organisms (relatively high diversity of taxa as prey). A
switch was observed in the diet, from small diet items in pre-
flexion larvae (small copepods) towards larger items in flex-
ion and post-flexion larvae (larger copepods and amphipods).
This presumably results in the fish consuming food items
having higher amounts of lipids, that provides the necessary
amounts of energy required by larger snailfishes for proper
development. The larval snailfishes in the study area fed also
on larvaceans (Oikopleura) and pelagic snails (L. helicina)
that can contribute significantly to the fish diet due to their
high protein and lipid content, respectively. This study, along
with many others, contributes to the current and future
attempts of quantifying biomass/energy transfers in the
Canadian Beaufort Sea. It can also be applied as baseline
information in environmental assessments of the region.
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