
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2016, VOL. 62, NO. 4, PP. 343-346

Manuscript received October 15, 2016; revised November, 2016. DOI: 10.1515/eletel-2016-0047

CBM

Abstract— This paper presents possibility of using of the DNS

(Domain Name System) protocol for creating a simplex

communication channel between a malware-infected computer

with a compromised DNS server. The proposed channel can be

used to steal data or confidential enterprise information secretly.

Keywords— DNS, network steganography, malware

I. INTRODUCTION

ETWORK steganography is the family of methods that

uses telecommunications protocols as carriers for hidden

data. These techniques utilise modifications of the packets to

perform covert communication by modification to the structure

of the packet (a payload and protocol specific fields) or

modification to time relations among packets (like changing

the sequence of the packets or inter-packet delays). Due to the

fact that the DNS protocol (Domain Name System) is

commonly used in the Internet, it is a prime candidate for a

carrier [5]. The arguments speaking in favour of it include,

among others, a great volume of standard packets and

considerable problems with network operation when an

administrator applies too stringent rules of traffic filtering to

this protocol.

With respect to the above, various attempts have been made

to use the DNS for purposes other than originally intended. In

2011 Symantec announced the discovery of the W32.Morto

bug, which used vulnerability in RDP (Remote Desktop

Protocol). For communication with the C&C channel

(Command and Control) it uses TXT records in the DNS,

which are dedicated to storing content understandable to a

human. W32.Morto sends a query to the DNS server about a

TXT record, instead of a typical “IP domain” demand. Next,

the returned text is decrypted and processed. In this manner, an

electronic signature of the file and an IP address are usually

provided, from which an even more malicious malware is

downloaded [3].

Another idea for use is channelling between the client’s

machine and a substituted server, which is designated to

provide a response for a previously crafted domain. Thus, it is

possible to obtain access to the Internet even in a situation,

when the only machine from a local network authorized to do

so is a local DNS server. As demonstrated by the research [4],

a channel obtained in this manner may reach the bit rate of as

much as 1 Mbit/s, with delays of 150 ms. In this case, initial

fragments of the URL address (Uniform Resource Locator) of

the query are used for communication.

All authors are with the Warsaw University of Technology, Warsaw,

Poland (e-mail: mdrzyma1@mion.elka.pw.edu.pl, ksz@tele.pw.edu.pl,
m.l.urbanski@stud.elka.pw.edu.pl).

A popular idea in network steganography is to use fields of

the packet’s header. For the protocol in question, this may be

an ID identifying the demand and an answer related to it. Lack

of appropriate distribution of values of this field turns out to be

a problem, when the field is used to carry an encrypted

message. Restoration of a pseudorandom character typical for

an unmodified demand is examined by researchers in [2].

An interesting idea is also hiding communication in a DDoS

attack (Distributed Denial of Service), using DNS

strengthening [6] (zombie machines generate traffic to a DNS

server, but due to a replacement of IP addresses, all answers

reach the victim). Information may be hidden thanks to a

modification of a Zone file and a TXT-type record in a DNS

server controlled by the attacker. Other proposed carriers of

hidden communication include distributions of occurrences of

domains in queries in a specific period of time, or of types of

queries. Detection of atypical communication is more difficult

because an administrator of an attacked network will deal with

the attack in the first order. What is more, potentially recorded

“special” packets will account for a tiny fraction of the traffic

followed.

The structure of this paper is as follows: in section 2 we will

describe the fundamentals of DNS service and protocol. In

section 3 and 4 we will present a steganographic analysis and

the model of hiding information in DNS messages. Section 5

will describe a proof of concept, which will be evaluated in

Section 6. Finally, Section 7 summarizes the paper.

II. DNS SERVICE AND PROTOCOL

DNS is a name of a service, servers of this service and a

protocol for exchange of messages between clients and servers

providing this service. It allows to change mnemonic (easier to

remember) names of domains to IP addresses (of a network

layer protocol of the ISO/OSI model). It is one of basic

services that comprise the operation of the Internet today.

In order to identify a potential vulnerability of a DNS

server, an analysis of formats and scenarios of exchange of

messages between servers and the client has been performed

[7]. This allowed to identify several potential options to hide

information.

A. Format of messages

The format of DNS messages is constant, irrespective of the

demand type. A message carrying an answer to a question is

bigger because it uses more fields than the question. The fields

for which it has not been specified otherwise are of variable

length, calculated or determined elsewhere.

Network Steganography in the DNS Protocol
Michał Drzymała, Krzysztof Szczypiorski, and Marek Łukasz Urbański

N

344 M. DRZYMAŁA, K. SZCZYPIORSKI, M. Ł. URBAŃSKI

1) Header – a classic header, contains basic information

allowing to send and identify messages.

2) Question – stores queries to the name server.

3) Answer – stores records of answers to queries.

4) Authority – indicates authority servers for a domain.

5) Additional – dedicated for additional information.

B. Format of header field

A header of a message contains many fields, including fields

marked collectively as ‘flags’. The most important elements

for the solution presented in this article include:

1) QR (Query/Response Flag) – (one bit) has value ‘0’ for

queries, it is changed to ‘1’ for answers.

2) Opcode (Operation Code) – (4 bits) specifying the query

type. This is usually 0; not all 4-bit combinations are used.

3) QDCount (Question Count) – (2 bytes) specifies the

number of queries sent in a demand.

4) ANCount (Answer Record Count) – (2 bytes) specifies the

number of answer records. In DNS queries, the ‘0’ value is

not forced.

In the description of the QR field, the word “changed” has

been used on purpose because the packet of answers contains

the query contents in itself (it extends it by completing or

modifying the existing fields).

The count-type fields have a function of an indicator

informing the program interpreting the packet about the

amount of records of a given type to be expected. Information

about the length of every record (where an indicator for its end

byte is calculated) is inside it.

C. Format of an answer field

A question and an answer are formed into structures which

facilitate their matching. Their fields include:

1) Name – contains the name of the object, zone or domain

which identifies the query.

2) Type – (2 bytes) contains the type of record. The most

popular type is record A, that is a query about the IPv4

address of the domain specified in the Name field.

Respectively, AAAA is a query about the IPv6 address.

3) Class – (2 bytes) defines a class of a query, and usually has

value ‘1’ that is IN (Internet).

4) TTL (Time To Live) – (2 bytes) specifies at which number

of demands real queries should be sent to a DNS server,

instead of using previously downloaded data (from the

cache memory).

5) Resource Data Length – (2 bytes) specifies at what number

of bytes the current record ends; this field exists to make it

possible to use a common format for various types of

record.

6) Resource Data – contains data bytes. For instance, for an

A-type record (a basic query for a DNS), four bytes

containing an IPv4 address are required.

D Exchange of messages

For the needs of the solution presented here, a (largely

simplified) scheme of communication with a DNS server may

be depicted as follows: a client wishing to find an IP address of

a domain, first reaches for the address of the main DNS server

recorded in the setup of the web interface. Next, it formulates a

query (for instance about an A-type record) and sends it to the

address obtained in the previous step. Depending on the type

of the query and its content, it may be forwarded to other DNS

servers until the answer finally reaches the client.

III. STEGANOGRAPHIC ANALYSIS

The theoretical analysis performed has been confirmed with

tests carried out by sending standard and prepared queries to a

Google DNS server (IP: 8.8.8.8), and by following them in

WireShark, a program for network traffic monitoring. The

following conclusions have been drawn from the analysis:

1) The DNS server processing the queries ignored distorted

queries i.e. queries containing header fields completed in a

non-standard manner.

2) Rare queries of the reverse query type or with unused

OPCode distinguish themselves greatly, which adversely

affects non-detectability of transmission of additional

information.

3) DNS queries (messages with a QR flag set up to 0) may

also have responses; such a query is not treated as

unprecedented or distorted; in addition, at the arrival of

such a complex message, it is correctly interpreted by the

server – a prepared answer is simply replaced with a

correct one.

4) In the DNS answer structure, the Resource Data Length

field informs us how many bytes the Resource Data field

occupies; this value may, however, be predicted, for

instance for an answer to the A-type record, this field will

always occupy 4 bytes, which is as much as needed to

record the IPv4 address; therefore, in the case of a record of

this type, the protocol envisages the interpretation of only

first four bytes from the Resource Data field – the other are

ignored, in spite of determining their number in the

Resource Data Length field.

IV. STEGANOGRAPHIC MODEL

Considering the analysis, among many options the most

promising seems to be the following model of hiding

information in DNS messages:

1) This is a standard (Opcode = 0) query (QR = 0) about one

domain (QDCount = 1, Query[1]).

2) Even though it is a query, the packet contains one answer

(ANCount = 1, Answer[1]); if more than one answer is

placed, the tests have shown that a real DNS server would

reject the packets.

NETWORK STEGANOGRAPHY IN THE DNS PROTOCOL 345

3) In the query field there is one question about the IPv4

address (Query[1].Type = 2) of the existing domain (for

instance: Query[1].Name = kstit2016.iitis.pl).

4) The Answer[1].TTL field serves to number the sent

messages. It is able to address 32,768 messages (2 bytes).

5) In the Answer[1].IP field the correct IPv4 address is

placed, which would be provided by the DNS server to

such a query.

6) After the Answer[1].IP field (where, in line with the

protocol specification, there should be no data)

confidential information is placed.

7) The Answer[1].ResourceDataLength field contains correct

information on data length (4 bytes to the prepared IPv4

address + length of confidential data).

V. PROOF OF CONCEPT

A Malware

The concept explained above was proven right during the

implementation of malware. It contains a setup file in which

the following items are defined:

1) DnsAddr – A public IPv4 address of a compromised DNS

server – this is where all DNS queries (even the true ones)

from an infected computer will go.

2) FilePointer – A name or path to a file, which is to be

secretly sent.

3) ChuckSize – Maximum size of a single DNS message –

when an indicated file exceeds this size, it will be cut into

pieces; files with a maximum size of

32768 * ChuckSize are allowed, because this is the

maximum amount of messages which may be sent within

one session (one malware launch).

4) IpDnsList – Prepared list of pairs (IP address – DNS name)

serving to prepare queries. In every DNS demand in which

information is hidden, there is a question about a certain

domain from this list, and the answer contains the IP

address of this domain – in this way, the answer resembles

more the one with an Opcode = 1 code. This is another

form of a security measure in the case of an analysis of

DNS queries against suspicious or uncommon parameters,

such as an IP address occurring too often or a private

address occurring where a public one should.

5) WaitTime – A maximum limit of time which may elapse

between sending one packet of data and another.

B From the perspective of the infected computer

1) A malware process reading start parameters from a setup

file is launched on an infected computer.

2) The process replaces the address of a systemic DNS server

with the one specified as a parameter, previously saving the

original address.

3) The process finds the file with the required name and

divides it into pieces, if necessary, and then begins sending

it (generating queries with answers, using the IpDnsList

file).

4) Sending chunks of data is randomized – before sending a

consecutive packet, the malware waits for a random time

from the range from 0 to WaitTime.

C From the perspective of the compromised server

1) A prepared DNS server process is launched.

2) It captures all the queries, which reach it and divides them

into the ones, which contain hidden information and those

which do not.

3) From those with information hidden data are extracted and

then they are treated like other demands. These packets are

not filtered out because this could be detected on an

infected computer – a large number of demands without

answers would occur.

4) Those without hidden data are forwarded to the real DNS

server (DNS Google with the address: 8.8.8.8) with the

source address replaced with the address of the

compromised server; the answers to the demands returning

to the server taken over are then directed to the infected

computer; from its perspective it looks as if the

(compromised) server under query were a real DNS server

– unnoticeable delays are introduced, and all source and

target addresses are set up so that they do not betray any

suspicious activity.

Thanks to such a realization of a client and server

application, prepared queries are very difficult to detect.

Except from the fact that they contain an answer (and

constantly ANCount is set to 1), they bear no difference from

other DNS queries sent from the infected computer. Another

asset is completely correct answers to prepared queries, which

may also mislead a person attempting to detect suspicious

traffic.

D Implementation details

The malware application has been written on the .NET

platform in C#, using the Pcap.NET library. Such a choice was

due to a good integration of the platform with the Windows

operating systems, which facilitated processing of system calls.

The DNS server application was written in Java from the

scratch due to simple network management and multithreading

support. It managed a large number of queries very well, both

prepared and standard ones, without introducing any

noticeable delay.

The entire testing environment was launched on virtual

machines, under Windows 7 operating system control, thanks

to the Hyper-V solution by Microsoft. Despite of a

virtualization layer, the environment ran very smoothly and it

allowed to perform the tests mentioned above.

The tests were conducted inside a local network under

control of one router. The malware set up the router’s public

address as the DNS server address on the infected computer.

The router was set up so that all the DNS queries (UDP

packets to port 53), which reached it were directed to the

346 M. DRZYMAŁA, K. SZCZYPIORSKI, M. Ł. URBAŃSKI

address of a substituted server on another machine inside the

network. Thus, the Internet’s impact on the solution’s

behaviour was minimized. The exchange of packets is depicted

in Fig. 1.

Fig. 1. Scheme of DNS message exchange: The infected computer sends

a query to its DNS (1). The router directs such a query to the address of

a substituted DNS server (2). The latter forwards the query to the real DNS

server and waits for an answer (3, 4). The response to the request is returned

(5, 6) and is directed to the original demand author (7, 8). All the steps

consider the right replacement of source and target addresses and ports.

VI. EVALUATION

The presented solution has been tested with the use of the

following scenario (repeated 10 times):

1) A computer user browses the Internet – s/he goes to a

website which s/he is interested in, makes him/herself

familiar with the content presented there (and on several

webpages) and then goes to another website.

2) In the course of his/her activity, malware process is

launched, which sends an s-packet (that is a packet

containing a prepared query) to a compromised server

every second, on average.

3) The entire traffic is monitored by WireShark.

The averaged data from measurement results are presented

in Table I (averaged for 10 measurements).

TABLE I

AVERAGED RESULTS OF MEASUREMENTS

Parameter Value

Measurement time 600 s

Number of all packets 254621

Number of DNS packets 4838

Number of s-packets 590

Share of DNS packets in all packets 1.9 %

Share of s-packets in all packets 0.23 %

Share of s-packets in DNS packets 12.2 %

Volume of data hidden in one s-packet 30 B

Steganographic bit rate 29.5 B

Volume of information sent during

measurement

17.3 kB

VII. SUMMARY

Thanks to the research conducted, it was possible to find

a steganographic method, which, according to the authors, is a

golden mean in a triangle proposed by Jessica Fridrich [1]:

1) It ensures a very good steganographic bit rate – thanks to a

large number of DNS queries, it is easy to blend into the

crowd; in addition, it is possible to easily regulate the speed

of sending information by introducing additional delays.

2) It ensures satisfactory undetectability – without advanced

filters and dedicated software to follow anomalies in the

network, it is virtually undetectable.

3) It ensures satisfactory resistance to modification – without a

rule which will monitor a particular set of parameters (the

number of answers vs QR field), packets with data may be

subject to any modifications which may be applied to

standard DNS packets at the attempt to detect or prevent

steganography.

Furthermore, the unique method is easy to modify to obtain

a two-direction communication – it is enough to cyclically

send queries for instructions to the compromised server, which

will be sending them in answers.

REFERENCES

[1] Fridrich, J., “Applications of Data Hiding in Digital Images”.

Tutorial for The ISSPA’99, Brisbane, Australia (August 22-25,

1999).

[2] Altalhi A. H., Ngadi M. A., Omar S. N., Sidek Z. M., “DNS ID

Covert Channel based on Lower Bound Steganography for

Normal DNS ID Distribution”. International Journal of

Computer Science Issues (IJCSI), 8(6), 2011.

[3] Mazurczyk, W., Wendzel, S., Zander, S., Houmansadr., A.,

Szczypiorski, K., “Information Hiding in Communication

Networks: Fundamentals, Mechanisms, Applications, and

Countermeasures”, Wiley-IEEE Press; 1 edition, February 2016.

[4] Van Leijenhorst, T., Kwan-Wu. C., Lowe, D., “On the viability

and performance of DNS tunneling”. The 5th International

Conference on Information Technology and Applications

(ICITA 2008), Cairns, Australia, (June 23-26 2008).

[5] Zielińska, E., Mazurczyk, W., and Szczypiorski, K. (2014).

Trends in steganography. Communications of the ACM, 57(3),

86-95.

[6] Mehic, M., Voznak M., Safarik J., Partila P., Mikulec M.. 2014.

“Using DNS amplification DDoS attack for hiding data”. Proc.

SPIE 9120, Mobile Multimedia/Image Processing, Security, and

Applications 2014, 91200R (May 22 2014).

[7] The TCP/IP Guide. Accessed on: 11th on June 2016.

http://www.tcpipguide.com/.

http://www.tcpipguide.com/

