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Abstract—This paper presents statistical analysis of RSSI read-

outs recorded in indoor environment. Many papers concerning 

indoor location, based on RSSI measurement, assume its normal 

probability density function (PDF). This is partially excused by 

relation to PDF of radio-receiver's noise and/or together with 

influence of AWGN (average white Gaussian noise) radio-channel 

– generally modelled by normal PDF. Unfortunately, commercial 

(usually unknown) methods of RSSI calculations, typically as 

"side-effect" function of receiver's AGC (automatic gain control), 

results in PDF being far different from Gaussian PDF. This paper 

presents results of RSSI measurements in selected ISM bands: 

433/868 MHz and 2.4/5 GHz. The measurements have been 

recorded using low-cost integrated RF modules (at 433/868 MHz 

and 2.4 GHz) and 802.11 WLAN access points (at 2.4/5 GHz). 

Then estimated PDF of collected data is shown and compared to 

normal (Gaussian) PDF. 

 
Keywords—indoor location, RSSI measurement, RSSI 

statistical analysis, ISM bands, probability density function. 

I. INTRODUCTION 

NDOOR positioning based on RSSI measurements has got 

great interest in areas related with indoor positioning. One 

of the reason is low price of easily available RF modules 

returning RSSI data. Therefore, there have been proposed 

many ideas for its practical utilization and accuracy 

improvements [1]–[24]. Unfortunately, many authors still 

blindly assume that error of RSSI read-out follows normal 

(Gaussian) probability distribution function (PDF). It is not 

impossible - however, many measurements prove that such 

distribution can be far from normal PDF. 

There have been performed exemplary, indoor RSSI 

measurements for 4 ISM bands, by means of 5 RF modules. 

The environment has been static constant for all 

measurements: a standard university building from 70’s: 

concrete ceilings and full-brick walls. Measurements in ISM 

433 MHz and 868 MHz bands have been performed using 

RFM69W-433S2 and RFM69CW-868S2 RF modules 

respectively - both from HopeRF. There have been collected 

4000 samples for each band, every 700 ms. The modules have 

been selected for their low cost, low power consumption and 

high dynamics of the RSSI read-out: 115 dB. 

Measurements in WLAN ISM 2.4 GHz and 5 GHz band 

have been performed be means of TP-Link TL-WDR3500 

v1.2, running OpenWRT v15.05 (Chaos Calmer). There have 

been collected 640 000 samples, every 3 s. 
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Additionally, IoT module ESP8266 MOD-12E (from AI-

Thinker) has been used for 2.4 GHz band. There have been 

collected 4000 samples, every 1 s. RSSI dynamics of the last 

three modules was approx. 90 dB. 

Because of different levels of power transmission, antenna 

gains, receivers sensitivity and wave attenuation for each case 

(module and frequency), all RSSI measurements have been 

normalized. First, there has been calculated quasi-mean value: 

 

𝑅𝑆𝑆𝐼𝑚𝑒𝑎𝑛  =
1

𝑁
∑ 𝑅𝑆𝑆𝐼𝑛

𝑁

𝑛=1

 (1) 

where: 

 N – number of RSSI samples (measurements), 

 RSSIn – single n-th RSSI measurement [dBm], 

 RSSImean – “mean” value [dBm]. 

It should be strongly emphasized that abovementioned quasi-

mean value equals estimated value only for case, when 

probability density function of RSSI data is symmetrical – 

which not always holds true. Asymmetrical PDFs will be 

presented in next chapters. 

Then, quasi-normalization is performed: 

 𝑅𝑆𝑆𝐼𝑛
𝑛𝑜𝑟𝑚 = 𝑅𝑆𝑆𝐼𝑛 − 𝑅𝑆𝑆𝐼𝑚𝑒𝑎𝑛

𝑛 = 1,2, … , 𝑁
 (2) 

where RSSIn
norm is “normalized” value of n-th RSSI sample 

[dBm]. 

There have been used six typical probability density 

functions: 

 Normal (Gaussian), 

 Kernel (with normal kernel functions), 

 Stable, 

 t-Location Scale, 

 Logistic, 

 Extreme Value. 

The main reasons for selection of the abovementioned 

density functions have been continuous support over entire real 

domain (-∞, +∞), “good support” for heavy tails and possible 

multimodality (Kernel). Normal density function has been 

used for reference. There have not been made any assumptions 

over probabilistic process from particular RSSI measurements 

– thus a priori selection of appropriate density function. The 

only criterion for agreement of a normalized histogram (in 

sense of probability density function) of normalized RSSI data 

has been mean-squared error (MSE) between histogram points 

and corresponding values of proposed density function (3). 

The histogram centres are discrete values of RSSI [dBm] from 

measured interval [min(RSSIn), max(RSSIn)]. The reason is 

discrete values of RSSI read-outs (with resolution of 1 dBm), 

returned by all used RF modules. 
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where: 

 MSE – mean-squared error between normalized 

histogram H and probability density function estimate 

E, 

 K – number of histogram bins, 

 RSSI – set of all RSSI samples for particular case. 

Above definition of MSE makes it useful for comparison 

within particular case – not between different cases, which is 

not needed here. The smaller value of MSE – the greater 

similarity between data histogram and PDF estimate. 

II. 433 MHZ BAND 

Tab. I presents mean-squared errors for selected probability 

density functions. The results are sorted beginning from the 

best one – minimal value of MSE. 

TABLE I. 

 MEAN-SQUARED ERRORS FOR 433 MHZ BAND 

Probability density 

function (PDF) 

Mean-squared 

error [dBm] 

PDF parameters 

t-Location Scale 1.58∙10-7 

µ = -0.0680 

σ = 0.918 

ν = 3.39 

Kernel 1.83∙10-7 bandwidth = 0.43 

Stable 5.60∙10-7 

α = 1.71 

β = 0.0601 

γ = 0.759 

δ = -0.0686 

Logistic 9.38∙10-7 
µ = -0.0699 

σ = 0.704 

Normal (Gaussian) 5.91∙10-6 
µ = -0.108 

σ = 1.44 

Extreme Value 1.10∙10-5 
µ = 0.546 

σ = 1.35 

 

Fig. 1. PDF estimates for 433 MHz band. 

It can be observed that normal (Gaussian) PDF estimate has 

been outperformed by four other functions: MSE has been 

reduced by order of magnitude. t-Location Scale and kernel 

PDF estimates give comparable (the smallest) values of the 

MSE. Fig. 1 compares selected PDFs with normalized 

histogram of raw RSSI samples. Fig. 2 presents dependence of 

MSE on value of kernel bandwidth (for kernel PDF estimate). 

 

Fig. 2. MSE vs kernel bandwidth for 433 MHz. 

III. 868 MHZ BAND 

Tab. II presents mean-squared errors for selected probability 

density functions. The results are sorted beginning from the 

best one – minimal value of MSE. 

It can be observed that normal (Gaussian) PDF estimate has 

got the worst (largest) value of MSE – greater by two orders of 

magnitude then the other PDF estimates. Fig. 3 compares 

selected PDFs with normalized histogram of raw RSSI 

samples. Fig. 4 presents dependence of MSE on value of 

kernel bandwidth (for kernel PDF estimate). 

 

Fig. 3. PDF estimates for 868 MHz band. 
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Fig. 4. MSE vs kernel bandwidth for 868 MHz. 

TABLE II 

 MEAN-SQUARED ERRORS FOR 868 MHZ BAND 

Probability density 

function (PDF) 

Mean-squared 

error [dBm] 

PDF parameters 

Kernel 1.07∙10-7 bandwidth = 0.44 

Stable 2.21∙10-7 

α = 1.64 

β = -0.289 

γ = 0.830 

δ = 0.299 

t-Location Scale 3.39∙10-7 

µ = 0.247 

σ = 1.01 

ν = 3.10 

Logistic 1.31∙10-6 
µ = 0.217 

σ = 0.826 

Normal (Gaussian) 1.52∙10-5 
µ = 0.188 

σ = 2.48 

IV. 2.4 GHZ BAND – ESP 8266 MODULE 

Tab. III presents mean-squared errors for selected probability 

density functions. The results are sorted beginning from the 

best one – minimal value of MSE. 

TABLE III 

MEAN-SQUARED ERRORS FOR 2.4 GHZ BAND (ESP 8266) 

Probability density 

function (PDF) 

Mean-squared 

error [dBm] 

PDF parameters 

Kernel 4.24∙10-8 bandwidth = 0.47 

Stable 1.13∙10-6 

α = 1.99 

β = -0.642 

γ = 1.14 

δ = -0.0842 

Normal (Gaussian) 1.41∙10-6 
µ = -0.099 

σ = 2.02 

t-Location Scale 1.59∙10-6 

µ = -0.0864 

σ = 1.54 

ν = 11.7 

Logistic 1.90∙10-6 
µ = -0.082 

σ = 0.976 

It can be observed that all unimodal PDFs perform similarly. 

Still, MSE of kernel PDF estimate is smaller by two orders of 

magnitude. Fig. 5 compares selected PDFs with normalized 

histogram of raw RSSI samples. Fig. 6 presents dependence of 

MSE on value of kernel bandwidth (for kernel PDF estimate). 

 

Fig. 5. PDF estimates for 2.4 GHz band (ESP 8266). 

 

Fig. 6. MSE vs kernel bandwidth for 2.4 GHz. 

V. 2.4 GHZ BAND – WLAN CHANNEL 2 

Tab. IV presents mean-squared errors for selected probability 

density functions. The results are sorted beginning from the 

best one – minimal value of MSE. 

TABLE IV 

 MEAN-SQUARED ERRORS FOR 2.4 GHZ BAND (WLAN CH. 2) 

Probability density 

function (PDF) 

Mean-squared 

error [dBm] 

PDF parameters 

Kernel 1.45∙10-10 bandwidth = 0.46 

t-Location Scale 2.42∙10-8 

µ = -1.64 

σ = 3.91 

ν = 1.65 

Stable 2.58∙10-8 

α = 1.32 

β = 0.538 

γ = 3.55 

δ = -2.32 

Logistic 3.35∙10-8 
µ = -0.972 

σ = 4.41 

Normal (Gaussian) 4.47∙10-8 
µ = 0.263 

σ = 8.90 
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RSSI measurement in the WLAN channel 2 has been strongly 

affected by other transmitters. This is not surprise, because this 

channel is very busy at the university building – and it has 

been selected intentionally. Strong and asymmetrical 

multimodality of the RSSI normalized histogram can be 

observed, thus only kernel PDF estimate is a reasonable choice 

here. The other PDF estimates have been shown for reference 

only. Fig. 7 compares selected PDFs with normalized 

histogram of raw RSSI samples. Fig. 8 presents dependence of 

MSE on value of kernel bandwidth (for kernel PDF estimate). 

 

Fig. 7. PDF estimates for 2.4 GHz band (WLAN ch. 2). 

 

Fig. 8. MSE vs kernel bandwidth for 2.4 GHz. 

VI. 2.4 GHZ BAND – WLAN CHANNEL 14 

WLAN channel 14 should be less affected by wireless traffic, 

because many Wi-Fi devices cannot (or are not configured by 

default) to use it. Therefore, “less spikes” should make RSSI 

histogram to more resemble unimodal PDF. Tab. V presents 

mean-squared errors for selected probability density functions. 

The results are sorted beginning from the best one – minimal 

value of MSE. 

 

 

 

TABLE V 

MEAN-SQUARED ERRORS FOR 2.4 GHZ BAND (WLAN CH. 14) 

Probability density 

function (PDF) 

Mean-squared 

error [dBm] 

PDF parameters 

Kernel 3.50∙10-11 bandwidth = 0.50 

t-Location Scale 4.43∙10-9 

µ = -3.85 

σ = 4.97 

ν = 1.54 

Stable 5.99∙10-9 

α = 1.33 

β = 0.871 

γ = 4.74 

δ = -4.72 

Normal (Gaussian) 2.20∙10-8 
µ = -0.303 

σ = 11.7 

Indeed, RSSI measurement partially confirms previous 

guess. Less busy channel 14 makes RSSI histogram to contain 

fewer modes than for channel 2. Still, however, it’s strong 

second mode (around +20 dBm) and noticeable third (around -

12 dBm) are problematic for typical, unimodal PDF estimates. 

Fig. 9 compares selected PDFs with normalized histogram of 

raw RSSI samples. Fig. 10 presents dependence of MSE on 

value of kernel bandwidth (for kernel PDF estimate). 

 

Fig. 9. PDF estimates for 2.4 GHz band (WLAN ch. 14). 

 

Fig. 10. MSE vs kernel bandwidth for 2.4 GHz. 
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VII. 5 GHZ BAND – WLAN CHANNEL 40 

Furthermore, WLAN channel 40 should be less affected by 

wireless traffic, because Wi-Fi devices operating in 5 GHz 

band are not yet so popular as their 2.4 GHz counterparts. 

Therefore, RSSI histogram is expected to resemble unimodal 

PDF. Tab. VI presents mean-squared errors for selected 

probability density functions. The results are sorted beginning 

from the best one – minimal value of MSE. 

TABLE VI 

MEAN-SQUARED ERRORS FOR 5 GHZ BAND (WLAN CH. 40) 

Probability density 

function (PDF) 

Mean-squared 

error [dBm] 

PDF parameters 

Kernel 9.18∙10-11 bandwidth = 0.49 

t-Location Scale 2.03∙10-10 

µ = -0.423 

σ = 1.80 

ν = 6.58 

Logistic 2.10∙10-10 
µ = -0.428 

σ = 1.18 

Normal (Gaussian) 2.99∙10-9 
µ = -0.471 

σ = 2.19 

Stable 4.06∙10-9 

α = 1.84 

β = -0.836 

γ = 1.39 

δ = 0 

Extreme Value 1.96∙10-8 
µ = 0.564 

σ = 2.38 

Indeed, RSSI measurements confirm previous guess. Less 

busy channel 40 makes RSSI histogram “almost unimodal”, 

therefore t-Location Scale and Logistic PDFs perform quite 

well. Unfortunately, normal PDF is still one magnitude 

“behind”. Fig. 11 compares selected PDFs with normalized 

histogram of raw RSSI samples. Fig. 12 presents dependence 

of MSE on value of kernel bandwidth (for kernel PDF 

estimate). 

 

Fig. 11. PDF estimates for 5 GHz band (WLAN ch. 40). 

 

Fig. 12. MSE vs kernel bandwidth for 5 GHz. 

VIII. 5 GHZ BAND – WLAN CHANNEL 157 

WLAN channel 157 is not affected by Wi-Fi traffic, because 

it is placed far beyond frequencies allowed for 5 GHz Wi-Fi 

devices in Europe. Therefore, it is expected to be “silent” and 

affected mainly by receiver’s noise – thus RSSI histogram 

should be unimodal. Tab. VII presents mean-squared errors for 

selected probability density functions. The results are sorted 

beginning from the best one – minimal value of MSE. 

This time, guess about radio-channel silence was missed. 

Clear multimodality of RSSI histogram can be noticed in the 

fig. 1. Possible explanation can be interference with radio-links 

using proprietary frequencies or weather (cloud) radars 

operating in 5 GHz band. Again, kernel PDF estimate have 

been found the best one. Fig. 13 compares selected PDFs with 

normalized histogram of raw RSSI samples. Fig. 14 presents 

dependence of MSE on value of kernel bandwidth (for kernel 

PDF estimate). 

 

Fig. 13. PDF estimates for 5 GHz band (WLAN ch. 157). 
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Fig. 14. MSE vs kernel bandwidth for 5 GHz. 

TABLE VII 
MEAN-SQUARED ERRORS FOR 5 GHZ BAND (WLAN CH. 157) 

Probability density 

function (PDF) 

Mean-squared 

error [dBm] 

PDF parameters 

Kernel 4.74∙10-10 bandwidth = 0.44 

Normal (Gaussian) 3.62∙10-8 
µ = -0.428 

σ = 2.85 

Extreme Value 3.94∙10-8 
µ = 0.933 

σ = 2.40 

Logistic 4.14∙10-8 
µ = -0.334 

σ = 1.67 

CONCLUSIONS 

Presented measurements and statistical analyses prove that 

estimates of probability density functions for RSSI 

measurements are far from normal (Gaussian) distribution. 

Strong multimodalities can be observed in 3 (of total 7) 

measurement cases. Two of them are strongly asymmetrical, 

thus definition of such a basic property like a mean (expected) 

value is not trivial and straightforward task. In these cases 

definitely, kernel PDF estimate is the only reasonable choice. 

The remaining cases have histograms of raw measurement 

data more resemble to unimodal probability density function, 

however their asymmetry can easily be observed. Therefore, 

all analysed histograms are better estimated by other PDFs 

than normal one! 

Therefore, the final conclusion is that, normal (Gaussian) 

probability density function is, in many cases, not good 

candidate for estimate of RSSI read-outs. Unfortunately, there 

has not been found a single good estimate. Reasons are not 

clear – definitely they depend on hardware/software 

implementation how RSSI is calculated for particular receiver. 

Therefore, for every “new” RF module, there should be 

performed statistical tests in order to find the closest PDF 

estimate. This can be important for proper modelling of 

synthetic RSSI data. On the other hand, using or assuming 

improper PDF estimate may e.g. reduce effectiveness of data 

filtering methods. 
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